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ABSTRACT: 

 

Hyperspectral remote sensing helps to acquire information about the status of agricultural crops to allow optimized management 

practices in the context of precision agriculture. Due to technological innovations small and lightweight hyperspectral sensors 

have become available which may be carried by unmanned aerial vehicles (UAVs). In this paper we give a brief overview over 

existing hyperspectral sensors for UAVs. We focus on a new type of full-frame sensors which capture hyperspectral information 

in two dimensional image frames. We then develop a calibration procedure for these sensors and identify challenges in remote 

sensing of vegetation. The calibration is evaluate by in-field data acquired during a flight campaign. The spectral calibration 

shows good results with less than three percent difference in reflection for 110 of the 125 bands (458 to 886 nm).  

 

1. INTRODUCTION 

In consideration of the increasing human population, sharpened 

by extended meat and dairy consumption and biofuel production, 

Ray et al. (2013) concluded, that the agricultural production 

needs to be roughly doubled by 2050 or increased by about 2.4 

percent per year. At the same time expending agricultural areas 

have far-reaching effects on the ecosystem (Foley et al., 2005). 

Thus the agricultural production needs to intensify to increase 

crop production while reducing unsustainable uses of water, 

nutrients and agricultural chemicals (Foley et al., 2011).  

Precision agriculture aims at more efficient use of resources by 

optimizing the management practice of agricultural crops to 

apply treatments at the right amount, place and time (Mulla, 

2013). To archive this, in-time knowledge of the crops status is 

needed (Atzberger, 2013).  

Hyperspectral data has shown great potential to derive 

information about the biophysical (Aasen et al., 2014; Erdle et 

al., 2011; Gnyp et al., 2013; Hansen and Schjoerring, 2003) and 

biochemical parameters (Li et al., 2010; Yu et al., 2013b) of 

agricultural crops as well as to detect environmental stress or 

plant diseases (Delalieux et al., 2007; Mahlein et al., 2013; 

Stagakis et al., 2012; Yu et al., 2013a). Traditionally, 

hyperspectral data is acquired with field spectrometers, airborne 

sensors or satellites (Green and Eastwood, 1998; Milton et al., 

2009; Pearlman et al., 2003).  

Unmanned aerial vehicles (UAVs) represent a flexible carrier 

platform for different sensors. They are easily transported to an 

area of interest and used for in-time data acquisition. In 

comparison with satellite and high flying airborne platforms 

UAVs fly below the clouds. Thus, optical remote sensing with 

UAVs is not limited to clear sky conditions - provided robust 

calibration methods to account for changing illumination with 

changing cloud cover. Fixed wing (airplane-like) UAVs can 

cover large areas while multi-rotor (helicopter-like) UAVs have 

no minimum speed and allow complex flight patterns and 

stationary measurements.  

With technological innovations, hyperspectral sensors have been 

shrinking in size and weight and a have thus become feasible for 

use onboard of UAVs. Burkart et al. (2014) introduced an ultra-

light weight spectrometer mounted on a UAV for field 

spectroscopy. Several line scanners are available for UAVs and 

have been flown on fixed-wing (Berni et al., 2009; Hruska et al., 

2012) and multi-rotor UAV (Lucieer et al., 2014) for vegetation 

studies.  

Recently, a new type of hyperspectral sensors was introduced that 

records a full hyperspectral image frame (full-frame). In contrast 

to line scanners, which create line-frames with one spatial and 

one spectral dimension, full-frame hyperspectral sensors record 

a full image with two spatial dimensions and one spectral 

dimension. Currently, two systems are available for UAVs. The 

Rikola (http://www.rikola.fi/) Fabry-Perot interferometer (FPI) 

uses an adjustable air gap to record selectable spectral bands in 

the wavelength range from 400 to 1000 nm with a spatial 

resolution (in default binning) of 1024 by 648 pixels 

(Honkavaara et al., 2013).  

The second available full-frame hyperspectral imager is the 

Cubert UHD 185 - Firefly (http://cubert-gmbh.de/). This camera 

simultaneously records 125 bands between 450 and 950 nm with 

50 by 50 hyperspectral pixels within one frame acquisition. At 

the same time a grayscale image with about one megapixel is 

recorded. With the software provided by the manufacturer the 

hyperspectral pixel may be pan-sharpened to the grayscale 

image’s resolution. The latter sensor is used in this study and 

further details are given in section 2.1. A third light weight 

hyperspectral full-frame camera has been presented by BaySpec 

(http://www.bayspec.com/). To the authors knowledge this 

sensor has not been used with an UAV so far.  

Due to the weight and size limitation for hyperspectral sensor 

systems carried by a UAV, several challenges exist for vegetation 

and agricultural crop monitoring:  

 Since the sensor is mounted on a moving platform the 

image acquisition has to be fast enough to avoid image 

blur and spectrally mixed pixels 

 Since the light reflected by plants in the near infrared 

(NIR) is many magnitudes stronger than in the visible 

(VIS) the signal to noise ratio and the dynamic range 

of the sensor have to be high enough to capture the 

reflection variances in the in both regions.  

 Since slight changes in the reflectance of plants may 

point out changes in their biophysical and biochemical 

parameters, the sensors need to be spectrally well 

calibrated.  
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Due to the fact that full-frame hyperspectral sensors (spatially) 

record two dimensional images, orthorectification and 

georeferencing is simpler than with line scanners. However, this 

comes with the disadvantage that during the sensor calibration 

process, besides of the spectral dimension, two spatial 

dimensions have to be taken into account instead of one. At the 

same time the complex optical system of such sensors introduce 

an additional source of error to the whole system. Thus, the data 

recorded has to be carefully examined and interferences have to 

be corrected with appropriate calibration procedures. This 

procedure is critical to provide high quality data products that can 

be used for vegetation studies. The calibration procedure 

becomes even more important if results from different sensors (e. 

g. field spectrometers, UAV, airborne and satellite sensors) 

should be comparable among each other.  

During image acquisition the reflectance of an object is 

influenced by a combination of environmental effects (EE), 

sensor effects (SE) and the objects properties (OP). For 

vegetation and agricultural crops, the OP are the biochemical or 

biophysical properties of the plant.  

EE include the condition of the atmosphere, bi-directional 

reflectance effects influenced by the sun-object-sensor 

arrangement including (micro-) topography, surface conditions 

(e.g. surface wetting) and, in case of passive sensors, illumination 

changes. SE are errors by the sensors charge-coupled device 

(CCD) detector and the electronically components and optical 

system.  

In this paper we present a calibration method for a full-frame 

hyperspectral sensor for the measurement of the surface 

reflectance signatures. Thus, we focus on correcting the SE 

influencing the signatures. Moreover only those EE influencing 

the path of the light from the object to the sensor will be discussed 

in this paper while others (e.g. surface condition) are accepted as 

part of the objects spectral properties.  

We first present a calibration approach for the new type of full-

frame hyperspectral camera. After presenting the equipment used 

for the calibration we evaluate the calibration approach using 

field data recorded during a flight.  

 

2. EQUIPMENT 

In this study we used the Mikrokopter OktoXL to carry the UHD 

185 hyperspectral full-frame imaging system together with a mini 

computer to (remotely) control the camera and store the data.  

The calibration process of the camera was carried out in the lab 

with a Labsphere integration sphere.  

 

2.1 Cubert UHD 185-Firefly 

The UHD 185-Firefly is a hyperspectral full-frame camera which 

simultaneously captures 138 spectral bands with a sampling 

interval of 4 nm. From these bands the camera’s manufacturer 

recommends the use of 125 bands between 450 and 905 nm. The 

full-width half-mean (FWHM) of the bands is shown in Figure 1. 

The FWHM increases from about 4 nm at 450 nm to about 25 nm 

at 810 nm (Cubert GmbH, personal correspondence, 2014). For 

each band a 50 by 50 pixel image with 12 bit (4096 DN) precision 

is created. At the same time a grayscale image with a resolution 

of 990 by 1000 pixel is captured.  

 

Figure 1. FWHM as given by the manufacturer 

 

The camera housing is about 28 by 6.5 by 7 cm. Inside a Si CCD 

is used as a detector. We use a lens with a focal length of 30 mm 

resulting in a field of view (FOV) of about 11°. Since the camera 

housing is elongated with the lens locking forward a mirror is 

fixed at the front to capture images in nadir orientation (Figure 

2). The ground resolution at 30 m flying height is about 21 cm 

for the hyperspectral pixels and 1 cm for the grayscale image. 

With the software of the camera the hyperspectral resolution may 

be pan-sharpened to the grayscale images resolution. Latter was 

not used in our study. The total weight of the Camera is about 

470 gr.  

The camera is controlled by a single board computer (SBC). It is 

connected to the camera by two gigabit ethernet cables and runs 

a server application which takes care of the communication with 

the camera and the data storage. The configuration may be done 

remotely via WiFi from a control application run on a different 

computer. Within the WiFi range a live view may be transmitted 

to the control application and measurements may be triggered 

manually. Additionally, a sequence of images may be recorded 

with defined frequency and duration. In our case we used a Pokini 

Z (http://www.pokini.de/) as SBC. This combination allows to 

capture full-frame image cubes with a frame rate of about 0.6 

hertz. The typical integration time under cloudless conditions is 

one millisecond (ms), increasing to about four ms under cloud 

covered conditions. The whole image capturing system (ICS) 

consisting of the camera, SBC and a separate lithium polymer 

battery weights about 1 kg. The whole package is mounted on a 

gimbal carried by the UAV (Figure 2.)  

 

2.2 MikroKopter OktoXL 

The MK-OktoXL is a multi-rotor Mini-UAV 

(http://www.mikrokopter.de). The Mini-UAV carries a max. 2.5 

kg payload, which results in a total weight of under 5 kg. The 

payload consists of the sensor that is mounted on a gimbal. The 

gimbal compensates pitch and roll movement during the flight by 

using the UAV’s on-board gyroscopes. The compensation allows 

to maintain a nadir orientation of the sensor. Depending on the 

payload and the batteries, the flight time varies from 15 to 30 min. 

Flights are allowed within the line of sight, which equals several 

100 m. Altitude, speed and position are controlled during the 

flight and logged to an on-board memory card. The flight path is 

controlled by an autopilot that enables waypoint navigation. 
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Figure 2: UHD 185 with SBC and OktoXL with gimbal 

 

2.3 Integration Sphere 

For the flat-field measurements an integration sphere of 

Labsphere (http://www.labsphere.com) was used (CSTM-USS-

1200C-SL). The sphere has four internal light sources: Three 

static 35 Watts and one dimmable 100 Watts. The integration 

sphere is calibrated such that it is homogenously illuminated 

when all lights are activated. The illumination is measured by a 

silicone and an InGaAS detector. Since we wanted to perform the 

test under typical in-field settings with about one ms integration 

time we only used two of the lights. More lights would have 

exceeded the dynamic range of the UHD 185 with this integration 

time. All measurements where performed in a dark room with all 

light turned off but the sphere.  

 

3. METHODS 

3.1 Noise removal 

CCD sensors proportionally transform the incoming luminous 

energy of each point of a scene into an electrical signal (Mansouri 

et al., 2005). During the process of translating radiation into 

digital numbers (DN) noise is added to the signal. The noise 

becomes obvious when the camera is triggered under perfect dark 

conditions. Theoretically, the image DN values should be zero. 

Mostly, this is not the case due to the dark current (DC). The DC 

consists of a constant part (readout noise) and a non-constant part 

depending on the detectors temperature and the integration time 

(thermal noise). After measuring the DC (e.g. by obscuring the 

light entrance to the detector) it can be subtracted from the 

sensor’s raw DN values. So far hyperspectral UAV sensors do 

not provide DC measurements in-flight. Due to its temperature 

dependency Burkart et al. (2014) developed a DC correction 

depending on the sensors temperature for his flying spectrometer.  

Unfortunately, the UHD 185 does not provide temperature 

logging so far. To approximate the magnitude of the thermal 

noise we captured 30 images under perfectly dark conditions at 

13, 23 and 33 minutes after the sensor was switched on. We 

assumed an up-heating with time. We then calculated the average 

of the images for every image sequence. Because of the sensor 

design, different bands are measured at different parts of the CCD 

and may behave differently. To take this into account we 

estimated the noise by extracting the median values of the 

averaged images for four representative bands.  

 

3.2 Dynamic range and signal to noise ratio 

If the quantum of photons received by a CCD reaches a certain 

level the photodynamic cells start to saturate (the CCDs quantum 

efficiency decreases). As a result the transformation from 

incoming radiation to DN values is not linear anymore. For most 

detectors this level is below the theoretical dynamic range (e.g. 

12 bit = 4096 counts for the UHD 185). Careful extermination of 

the quantum efficiency has to be performed to avoid 

misinterpretation due to saturation effects. Consequently, the 

dynamic range should be limited to a level below the saturation 

(real dynamic range (rDR)). This limitation is particularly 

important for UAV remote sensing since illumination conditions 

may change quickly with cloud cover. Moreover, remote sensing 

of vegetation faces the challenge of low reflectance by plants in 

the VIS and high reflectance in the NIR. Thus, the rDR should be 

known and optimally used to use the biggest possible range of 

DN values (and improve the real SNR) for the VIS while 

avoiding saturation in the NIR.  

To assess the saturation point of the UHD 185 we pointed the 

camera into the integration sphere and successively incremented 

the light intensity in 16 steps. At each step we took 30 images 

and later averaged these. From these images we extracted the DN 

values of 25 pixels at the center of the brightest band at 734 nm. 

These values were averaged for each illumination step. To 

evaluate the linearity we divided the resulting DN values by the 

light intensity measured by the light detectors inside the sphere.  

 

3.3 Flat-fielding 

On the path through the optical system of the sensors the 

incoming radiance is altered by the vignetting effect. Vignetting 

is defined as a spatially dependent light intensity fall-off that 

results in a radial reduction in radiance towards the image edges 

(Goldman, 2010; Kim and Pollefeys, 2008). A more specific 

overview over different sources of vignetting can be found in 

Goldman (2010).  

Vignetting may be corrected by modelling the optical pathway or 

by image-based techniques. We used the latter approach since it 

is both simpler and more accurate (Yu, 2004). It is based on the 

generation of per pixel coefficients stored into a look-up-table 

(LUT) to correct for illumination fall-off. This calibration is done 

by pointing the sensor at a perfect homogeneous, lambertian 

surface (flat field).  

In our case we pointed the sensor inside the integration sphere. 

30 images were taken with two lamps activated (one at 70 percent 

closure) to stay within the rDR. We averaged the images and used 

the median value of each band to generate the LUT for every 

pixel in the band. We chose the median to exclude extreme pixel 

values from the procedure and to minimize overcompensation by 

extreme coefficients. Besides the vignetting the optical system of 

the camera may influence the incoming radiation in other ways. 

As long as these are linear the LUT approach corrects for these 

influences as well.  

 

3.4 Transformation to reflectance 

After the SE correction the resulting DN values are transformed 

to reflectance values to ease further analysis. Additionally, the 

environmental conditions may change between different field 

campaigns, in-between flights and even within a flight. During 

the transformation these effects may be normalized making the 

data comparable.  

For hyperspectral UAV remote sensing three main methods for 

DN to reflectance transformation are conceivable:  

UHD 185 with 

SBC 

OktoXL with 

gimbal 
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a) Simultaneous irradiance measurements of the sun’s 

radiation on the ground (Burkart et al. (2014)) or on the 

UAV,  

b) In-flight measurements of spectrally well characterized 

targets on the ground (Lucieer et al. (2014)),  

c) Pre-flight reference calibration with a spectrally well 

characterized target (Bareth et al., in review; 

Suomalainen et al., 2014).  

For the pre-flight reference calibration the sensor is pointed at a 

spectrally homogenous target with a known reflectance lying on 

the ground and an image is taken. In the post-processing this 

reference image is used to transform the image’s DN values 

captured during the flight to reflectance. Since the reference 

target is homogenous, the reference image should correct for the 

previously mentioned disturbances of the imagery by the optical 

system. However, careful assessment of the sensor-to-

calibration-target geometry as well as stray light sources from 

objects and people surrounding the target are critical. Since the 

reference image will be used for the transformation of all images, 

errors during the measurement of the calibration target will 

influence all data. Additionally, no adaptation to changing light 

conditions during the flight is possible since another 

measurement may only be carried out again after the flight.  

The pre-flight reference calibration with one calibration panel 

represents a one-point calibration. Burger and Geladi (2006) 

mentioned the beneficial effect of calibration targets with 

different grayscale intensities (multi-point calibration). 

Measuring multiple targets before the flight would add 

complexity to the pre-flight procedures and eventually reduce 

flight time due to battery consumption. In-flight measurements 

of calibration targets provide the opportunity to efficiently 

measure multiple targets under in-flight illumination conditions. 

However, these targets need to be big enough to cover several 

pixels. In the post-processing these targets are then identified, 

their spectra are extracted and conversion coefficients from DN 

to reflectance are calculated and applied to the imagery. To take 

into account changing illumination, multiple targets have to be 

spread out along the flight path or the targets have to be 

overflown several times during the flight.  

More conveniently, continuous sun irradiance measurements 

may quantify the illumination change during the flight. If these 

measurements are ground based a spatial error may be introduced 

since the UAV might fly in an area with different conditions than 

what is measured on the ground. To minimize this error the 

irradiance sensor should be mounted on the UAV. The latter 

might be the best approach for the correction of illumination 

changes. However, the irradiance sensor would add additional 

weight and complexity to the sensor system.  

For this study we modified the pre-flight reference calibration 

approach. Before the flight the sensor was pointed at a white 

Zenith LiteTM panel lying on the ground. The integration time 

was adapted to yield a maximum DN value of 3500 and a 

measurement was taken. We then applied a flat-fielding to the 

image of the Zenith LiteTM. Since the sensor to panel geometry 

as well as the sun angle might introduce a bias we used the 

median of each band to minimize the influence of these effects. 

We multiplied the values by 1.042 since the Zenith LiteTM has a 

reflection coefficient of about 96 percent for the visible and NIR 

part of the spectrum. We used the resulting values as coefficients 

to transform the DN values to reflectance.  

 

4. RESULTS 

4.1 Noise removal 

Figure 3 shows the DC for one ms integration time of four 

representative wavelength (502, 550, 670, 770 nm) in relation to 

the time after the sensor was switched on. After 13 min the 

average dark current is about 0.41 DN. After 33 minutes the dark 

current increased by 0.55 DN to an average value of 0.96 DN. 

The inter band difference is below 0.17 DN.  

 
Figure 3. Dark current for 1 ms integration time in four different 

bands 13, 23, 33 min after sensor switch-on 

 

Visual evaluation of the dark current measurements reveal slight 

spatial inhomogeneity of the DC within on band below one count. 

This pattern is also reflected in the standard deviation. After the 

sensor is heated up (33 min) the standard deviation spatially 

equalize itself to a value of about 0.8 counts.  

 

4.2 Dynamic range and signal to noise ratio 

Figure 4 shows the measured DN values of the UHD 185 together 

with the ratio of the DN values divided by the light intensity 

measured inside the sphere. For the first two illumination steps 

the ratio is increasing. The third step corresponds to one 

illuminated lamp with a closure of 75 percent (8.00E-5 W/m²). 

The ratio is quite stable until illumination step 12. The measured 

DN at step 12 is about 3600. After step 12 the ratio decreases. At 

step 13 the measured DN is about 3800.  

 
Figure 4: Measured DN (red) and ratio between DN and light 

intensity of the sphere (green). For a better visualization the 

latter value was multiplied by 10000 

  

4.3 Flat fielding 

Figure 5 shows the LUT coefficients for band 550 nm and 770 

nm. A spherical fall-off of the DN values can be seen. 

Additionally, an undulated pattern is visible in the x direction. At 

550 nm the DN values of the brightest and the darkest pixel differ 

by about 65 percent. At 770 nm they differ by about 90 percent.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7, 2014
ISPRS Technical Commission VII Symposium, 29 September – 2 October 2014, Istanbul, Turkey

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-7-1-2014 4



 

 
Figure 5. LUT coefficients at 550 nm (left) and 770 nm (right) 

 

To validate the stability of the flat field calibration across 

different light intensities we applied the flat field coefficients 

stored in the LUT to measurements at different light intensities 

(Table 1). Overall, with doubling the light intensity the DN 

values have a range less than 8 percent relative to the mean with 

a coefficient of variation close to zero. 

 

 
 

Table 1. Descriptive statistics of the LUT applied to different 

light intensities shown in percent of the calibration intensity (in 

gray).  

 

Visual inspection reveals a spatial pattern that relatively increases 

with the change in light intensity compared to the calibration 

intensity (Figure 6, left). The difference of the brightest and 

darkest pixel is below 4 percent of the average DN. Additionally, 

strong gradients are observed in the top right corner with the 

highest and lowest DN values close to each other.  

 
 

Figure 6. Relative DN offset with doubled light intensity 

compared to the calibration (left). Artefacts after applying the 

flat-field coefficients to an in-field measurement of a Zenith 

panel (right).  

 

To further evaluate the flat-fielding we applied the flat-field 

coefficients to an image of a Zenith LiteTM panel (Figure 6, right). 

Visual inspection of the image reveal a residual undulated pattern 

in the x direction after the flat-fielding. Additionally, an 

underlying gradient with higher values across the image from the 

top left to the bottom right corner can be observed.  

 

4.4 Transformation to reflectance 

To evaluate the result of the modified pre-flight reference 

calibration we compared spectra of four 80 by 80 cm reference 

panels measured with an ASD FieldSpec 3 at 1 m above the 

ground and the UHD 185 flying at 30 m above ground. The 

integration time was set to 1 ms. The experiment was carried out 

in early June near the city of Bonn, Germany, under blue sky 

conditions at about 1 pm local time. The measurement of the pre-

flight reference, the in-flight scene and the ASD took about 30 

minutes.  

 
Figure 7. Comparison of the resampled ASD spectra (dashed) 

with the UHD spectra (solid) of band 1 to 125 for four spectral 

panels (5, 18, 43 and 58 percent reflectance). 

 

We applied the modified pre-flight reference calibration to the 

scene captured by the UHD 185. To compare the spectra we 

manually extracted the center pixel of each panel from the in-

flight scene. The ASD spectra were resampled using ENVI 5 

(Exelis Visual Information Solutions, Boulder, Colorado) with 

the FWHM values of the UHD 185 provided by the 

manufacturer.  

Bands 3 to 110 (458 to 886 nm) show an absolute offset of less 

than 3 percent reflection, whereas most bands (3 to 75) show an 

offset of less than 2 percent (Figure 7). The average offset is less 

than 1 percent between band 1 and 110. Overall, the UHD 

slightly underestimates the reflectance in the lower and slightly 

overestimates it in the higher bands. 

 
 

Figure 8. Grayscale image (top left), 770 nm raw DN and 

reflectance (bottom left and right) and NDVI from a scene with 

four calibration panels (top right). 

 

Figure 8 shows the full scene for the 770 nm band before and 

after the calibration, a NDVI derived from the 670 nm and 770 

nm bands and the grayscale image captured simultaneously. The 

targets are surrounded by “homogenous” grass. On the top and 

bottom of the image experimental plots can partially be seen. 

These were separated by applying herbicides resulting in paths of 

Light Int. 

(%) min (DN) max (DN) range (DN) mean (DN)

range / 

mean std cv

197.48 2464.10 2631.10 167.00 2541.20 0.07 25.08 0.01

185.56 2332.90 2471.80 138.90 2398.30 0.06 21.66 0.01

164.12 2074.20 2188.60 114.40 2129.50 0.05 16.73 0.01

139.51 1787.90 1861.50 73.60 1822.80 0.04 10.37 0.01

116.44 1522.50 1559.60 37.10 1539.30 0.02 4.78 0.00

100.00 1341.20 1341.20 0.00 1341.20 0.00 0.00 0.00

92.65 1239.70 1262.60 22.90 1252.20 0.02 3.16 0.00

91.10 1223.10 1247.30 24.20 1235.70 0.02 3.28 0.00

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7, 2014
ISPRS Technical Commission VII Symposium, 29 September – 2 October 2014, Istanbul, Turkey

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-7-1-2014 5



 

dry grass. Some of these can be identified in the NDVI image. 

Besides, the reference panels and the ground control points are 

clearly visible. When taking a close look at the top right corner 

of the hyperspectral images the already mentioned erroneous 

pattern can be observed.  

 

5. DISCUSSION AND CONCLUSION 

The goal of this study was to develop a calibration methodology 

for hyperspectral full-frame sensors. Additionally, we wanted to 

evaluate important characteristics (like the dark current and the 

real dynamic range) and consider the feasibility of the UHD 185 

full-frame hyperspectral imager for vegetation studies.  

We found a linear behavior of the UHD 185 for a wide range of 

illumination intensities. At a DN higher than 3600 (out of 4096) 

the quantum efficiency decreased significantly. The results also 

show a nonlinear behavior at low DN values. Since the latter 

effect is a not known for CCDs it might result from the very low 

light intensities and eventually non-homogeneous illumination 

conditions inside the integration sphere. For the specific case of 

vegetation studies, were the reflectance of the visible part of the 

spectrum is significantly lower than the reflectance in the near 

infrared a rDR of about 3600 still leaves a fair amount of dynamic 

range for the visible region. Additionally, low dark current only 

has a negligible effect. With these results the sensor shows a good 

signal to noise ratio. However, the dark current should be 

evaluated under in-field conditions were the sensor might heat up 

more due to the sun’s radiation and higher air temperature. For a 

more precise dark current correction a temperature sensor would 

be beneficial.  

During the assessment of the vignetting effect an overlying 

pattern with a presumable origin in the sensor’s optical system 

was observed. Together both effects resulted in a DN difference 

of up to 90 percent between the brightest and darkest pixel. 

Despite these effects are relatively decreasing with light intensity 

they significantly reduce the rDR range of the sensor towards the 

edges of the image. Latter needs to be further evaluated. To 

improve the overall signal to noise ratio in remote sensing of 

vegetation it might be considered to apply a filter which blocks 

some of the NIR radiation. However, this filter would bring the 

disadvantage of longer integration times.  

The LUT approach yielded good results in compensating the 

inhomogeneous illumination of the CCD. Different coefficient 

for different pixels highlight the need for band specific 

calibrations. The derived LUT coefficients provided stable 

results for different illumination conditions. The slight 

inhomogeneity with increasing illumination might be attributed 

to slight inhomogeneity inside the integration sphere when not all 

light sources are used. This is supported by the spatial trend 

across the flat-fielded images with changed illumination (Figure 

6, right).  

When applying the LUT to an in-field measurement of a Zenith 

white panel a residual undulated pattern appears. Between the 

trough and the crest the DN values differentiate by up to 15 

percent. Currently, the origin of this effect is still unknown. 

Despite it is not obvious in real in-field scenes (Figure 8) this 

error needs further investigation.  

In this paper we introduced a modified pre-flight calibration were 

a flat-fielded measurement was used to translate the measured 

DN values to reflectance values. This approach yielded very good 

results leading to an offset smaller than 3 percent for 110 of the 

125 bands when compared with measurements of an ASD 

FieldSpec 3. Above 886 nm (band 110) the offset rapidly 

increases which might result from the decreasing sensitivity of Si 

CCDs and the general lower light availability in this spectral 

region. Compared with a standard pre-flight calibration, where 

the raw image of a reference target is used, the introduced new 

approach is less prone to disturbances by the sensor-calibration 

target geometry. In Figure 6 (right) a subordinated trend of higher 

illumination across the calibration panel becomes obvious after 

the calibration. With the standard calibration approach, this 

would have been introduced to all measurements transformed 

with this reference.  

One of the biggest benefits of UAV remote sensing is the ability 

to gather optical measurements below the clouds. However, due 

to changing illumination conditions this requires constant 

measurements compensation of the change in incoming 

radiation. Even under cloudless conditions monitoring the 

illumination conditions becomes increasingly important with 

increasing flight duration and extended spatial coverage of 

UAVs. Thus, lightweight irradiance sensors should be developed 

and deployed with mobile hyperspectral sensor systems.  

Overall, the presented results align with the experiences in the 

field which show that the UHD 185 is suitable for hyperspectral 

remote sensing of agricultural crops. The short integration time 

reduces image blur and allow adaption to less illuminated 

conditions due to cloud cover. Besides of the hyperspectral data 

three dimensional crop surface models may be derived since the 

sensor captures full image frames. These serve as a 

complementary information for crop growth monitoring (Bendig 

et al., 2013).  

However, as mentioned in this paper, some uncertainties still 

remain. These will be targeted in future work. Additionally, the 

automated processing chain developed for the processing of 

hyperspectral data of full-frame sensors will be optimized.  
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