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ABSTRACT: 

 

Precise co-registration of panchromatic and multispectral images can be challenging due to the imperfect alignment of different 

sensors from the same platform or the involvement of different platforms. However, conventional methods heavily depending on the 

quality of feature matching and parameterized model fitting fail to yield an accurate result if the relative deformation between images 

is large. We propose a non-parameterized method that is free of such problems. A basic functional model is established with the 

consideration of equal radiance and smooth regularization. The local radiance deformation and the self-tuning weighting are then 

introduced to make the model more suitable for the specific requirement of co-registration. The model is finally solved with a two-

stage coarse-to-fine optimization approach. Our experiment on ZY-3 (China) images demonstrates its superiority over conventional 

methods, especially when large deformation due to terrain relief and sensor mis-alignment exists.  

 

 

1. INTRODUCTION 

The remote sensing technique usually collects earth observation 

images from air- or space- borne sensors. To meet specific 

practical requirements, these sensors are designed to work at 

quite different spatial and spectral resolutions. However, the 

greedy demand for high resolutions of both types is unable to be 

considered in a single image due to the limitation in radiance 

energy and space-to-earth data transmission (Wöhler and Hafezi, 

2005). Usually high (spatial) resolution images are available 

only in panchromatic band while multispectral images suffer 

from low spatial resolutions. Thus studies in image fusion 

become necessary to cope with this discrepancy by combining 

two types of images into a high resolution multispectral image. 

 

Image fusion generally involves two steps (Chavez et al., 1991): 

geometric co-registration and spatial-spectral content mixing. 

Existing studies mainly focus on the latter to develop methods 

simultaneously preserving spectral information and representing 

spatial details. Great progresses have been achieved through the 

last decades. Considering the co-registration, however, a few 

studies are published. Most of platforms simultaneously 

collecting panchromatic and multispectral images (e.g., Leica 

ADS 70，Zeiss/Intergraph DMC, and Microsoft UltraCam for 

airborne sensors or Quickbird, Ikonos and GeoEye for satellite 

sensors) are benefited from the precise alignments of sensors or 

a careful geo-registration preprocess. The relative deformation 

of two images is thus reduced to an insignificant level for the 

subsequent mixing process. However, in some other situations 

the issue might not be so optimistic. Some multi-linear array 

satellites such as SPOT-5 and ZY-3 (China) provide several 

panchromatic images from very different viewing angles for 

stereo vision. It would potentially be valuable to fuse these 

images with the multispectral one in terms of information 

enhancement. Therefore, their co-registration is very necessary. 

In some other cases like the IRS-P5 satellite, without available 

multispectral observation onboard, the fusion can only be 

successfully achieved with external images from, for example, 

the IRS-P6 satellite (Yakhdani and Azizi, 2010). It is another 

interesting case of multi-source fusion which is heavily affected 

by the differences in geometric orientation, spectral responses, 

and time. In these cases, the co-registration is not part of the 

standard process on the image provider side, so it should be 

carried out by the user. This study tries to give a practical 

solution to this problem. The discussion is confined to satellite 

images without significant temporal difference here. 

 

Certainly the geo-registration is still applicable, but without 

DEM or precise orientation parameters it becomes an extremely 

difficult mission. Researchers alternatively turn to developing 

feature-based co-registration methods. The widely adopted 

framework can be depicted similarly with that in (Blanc and 

Wald, 1998): 

 

(1) TP (tie point, or feature point) extraction in the reference 

image (often the high resolution image); 

 

(2) Matching TPs in the second image (often the multispectral 

image) with careful quality control; 

 

(3) Estimate the relative deformation between images based on 

matched TPs. 

 

In some works the first two steps have been extended to line 

matching (Eugenio and Marqués, 2003) or region matching 

(Flusser and Suk, 1994). Nevertheless, it is regarded as a 

standard framework for image co-registration. One may notice 

that the accurate deformation estimation is only possible in 

regions characterized with distinct features (e.g. corner points, 

contours, etc.). Other regions or pixels must be predicted in 

order to achieve the usually demanded pixel-level fusion (Pohl 

and Van Genderen, 1998). As a common practice the 

interpolation is popularly adopted. Besides, the model fitting 

approach is also applicable if the deformation model is prior 

known to be a parameterized function. 

 

We define the above-mentioned approaches uniformly as the 

ones based on parameterized model. The fitting approach is 

quite direct that it equates the deformation determination to the 

parameter estimation of functions (e.g. affine function, 

polynomial, etc.). On the other hand the interpolation approach 

is also parameter-based. Taking the bilinear interpolation for 

instance, it solves the three parameters of a plane and predicts 

inside deformations for each triangle patch constructed by 
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adjacent TPs. Once a parameterized model is adopted, its 

correctness, as well as the density and accuracy of TP matching, 

becomes the vital factor tightly associated to the accuracy of co-

registration. A typical example is illustrated in Figure. 1. An 

arbitrary deformation leads to an erroneous co-registration if the 

parameterized method is applied. 

 

    

Figure 1. The original panchromatic ortho-image (left) is 

warped arbitrarily to generate the middle image. Then the 

conventional feature-based method is applied to predict the 

deformation. The result is shown to the right, where bars 

alternately display the original image and the rectified image 

based on the estimated deformation. 

 

The above deformation was derived from an arbitrary function 

that cannot be represented by a simple parameterized model. In 

order to pursue a good result the matched points should be both 

dense and accurate to apply parameterized methods locally. 

However, the large deformation leads to an erroneous matching 

result. Though the automatic removal of anomalies is applied, 

there still remain some false matches due to the ambiguity along 

the road. Moreover, the density of matched points is 

significantly reduced. This is the critical limitation of the 

parameterized method. 

 

This paper proposes a non-parameterized co-registration method 

to cope with the annoying trouble faced by the conventional 

parameterized method. Differing from the common scheme 

(Zitova and Flusser, 2003), it needs neither feature-based 

correspondence nor parameterized deformation model and 

provides accurate pixel-wise geometric deformation estimation. 

With self-tuning edge-enhancing weighting and regularization 

constraint, the method is able to achieve rigorous matching for 

featured regions while produces smooth estimation for others. 

We also introduce additional radiance difference estimation 

which effectively avoids the false correspondence caused by 

systematic radiance difference through various sensors. The 

experiment on the ZY-3 images is then conducted to evaluate 

this method. 

 

2. NON-PARAMETERIZED CO-REGISTRATION 

The concept of non-parameterized co-registration is proposed to 

discriminate from the conventional parameterized one. In the 

case of remote sensing images, the relative deformation 

basically comes from the joint effect of un-aligned orientations 

and the terrain relief. This may be a very complex model 

difficult for parameterized methods in some situations (e.g. 

Figure 1). By jumping out of this conventional parameterized 

framework, we propose another solution with a quite 

straightforward thinking. Since the pixel-level co-registration is 

required, the deformation should be estimated pixel by pixel. In 

the aspect of solved variables, the corresponding model 

involves no parameterized function but a field of vectors 

implying the deformation of each pixel. The deformation can be 

directly estimated with this model without post process such as 

interpolation or model fitting. 

 

 

2.1 The basic functional model 

Initially we define the pixel-wise deformation as u and v in the 

horizontal and vertical directions respectively. The 

correspondence between two images is then expressed as: 

 

      , , ,P M M  x u y v x y x y   (1) 

 

where P is the radiance value of the panchromatic image, M is 

the multiband radiance values of the multispectral image, and Θ 

is the transformation from the multispectral radiance to the 

panchromatic radiance. Readers can refer to (Wang et al., 2005) 

to find a physically rigorous form of Θ. Under the assumption 

of precise radiance transformation and noise free, the equation 

conveys a simple idea that the radiance stays unchanged after 

deformation which is an important cue for deformation 

estimation. It shares common points with feature point matching 

but replaces the feature similarity with the radiance equality, 

making variational solution possible as we will see later. 

 

Unfortunately this single equation is not robust at all comparing 

to feature matching. We introduce an additional regularization 

constraint to relieve the problem. Then a functional model is 

obtained: 

 

     

   

1 2
arg min , , y ,

2,

2 2
, ,
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


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

 
    

 

  (2) 

 

where Ω is the space of image plane, and α and β are the weight 

values for the two terms respectively. Herein we use a function 

formation embedded in W1,2 space (Aubert and Kornprobst, 

2006) instead of the original matrix for bi-directional 

deformation to derive the functional model. The regularization 

constraint is provided by the penalty of large gradients in u and 

v with a L2-norm. In other words, the deformation should be 

largely smooth without significant discontinuities. It can 

effectively exclude mismatches which usually break the 

smoothness constraint. So the aim of (2) is to find the optimal 

estimation of deformation which makes a perfect balance 

between radiance equality and deformation smoothness. The 

weights α and β are designed to distribute the relative 

importance of these two considerations. 

 

In fact (2) is equivalent to the old model proposed in (Zhang, 

2004). It is to impose isotropic smoothness constraint in the 

solved deformation field with a constant β. In addition, the 

strong L2-norm constraint on the radiance equality may be 

problematic since it is not robust enough to reject the noise. The 

solution space of (2) i.e. the W1,2 space does not allow for any 

discontinuity e.g. the boundary of buildings. A lot of studies 

focus on these problems and propose many practical and 

advanced methods like the anisotropic regularization, the total 

variation regularization (Chambolle, 2004) and robust penalty 

(Werlberger et al., 2009). Though their strong capability is 

proved, they are often not economic to solve the practical 

remote sensing image co-registration problem considering their 

large expense for computer memory and processing time. In our 

current study, we do not consider urban areas, so the 

discontinuity is not involved here. According to our experiments, 

the radiance noise seems not to be very critical in co-registration 

of modern satellite images. Instead the systematic radiance 

difference between different sensors is of more importance. 

Meanwhile the isotropic smoothness constraint is not very 
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appropriate indeed. We will provide corresponding solutions for 

the two challenges as follows.  

 

Readers may notice that model (2) is identical to the optical 

flow model in computer vision studies. Indeed we borrow the 

idea from the latter. Researchers form computer vision areas are 

mostly interested in the movement of the foreground object 

from a video sequence. The discontinuity between foreground 

and background objects should be paid more attention while the 

pixel-to-pixel correspondence inside a continuous region is less 

challenging due to the small deformation through video images. 

However, for remote sensing image co-registration the 

discontinuity seldom occurs except in urban areas. As a result, 

the main consideration is paid to the precise pixel-to-pixel 

correspondence under a potential large deformation. The similar 

idea is also found in previous studies (Fonseca et al., 1999; Liu 

and Yan, 2008) but these works only used the optical flow to 

assist the accurate matching of feature points rather than 

estimate pixel-wise deformation directly. 

 

2.2 Radiance difference estimation 

The inevitable challenge in image fusion comes from the 

incompatibility of spectral response in different sensors. The 

working spectrums of panchromatic and multispectral sensors 

are often not identical, especially when different satellites are 

considered. Even if the spectrums have a perfect overlap, the 

respective contribution to the panchromatic response from each 

multispectral portion, which is presented by Θ in (1), remains 

unknown if the image provider does not publish that. Through 

the digitalization of the spectral response, the difference in gain 

and offset parameters brings in extra difference in the final 

image. 

 

All these factors cause a systematic radiance difference between 

the processed two images (Figure 2). The strong L2-norm 

constraint on the radiance equality is not robust to cope with 

this problem. So we introduce additional variables to explain for 

the radiance difference: 
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 (3) 

 

where r0 and r1 are the pixel-wise additive and multiplicative 

factors respectively, and η0 and η1 are their corresponding 

regularization weights. 

 

In this extended model, we assume that the transformed 

radiance has a locally linear deformation relative to true 

panchromatic radiance. The assumption introduces additional 

variables with double number of pixels, which depicts the 

additive and multiplicative effects at each pixel. Such a large 

size of unknown variables has made the model very unstable, so 

the regularization is as well imposed on the new variables. The 

regularization is quite natural since patterns of radiance 

difference in neighboring pixels are close to each other; 

otherwise difference is not systematic but random, contrary to 

the above discussion. We use an isotropic regularization on the 

new variables because anisotropic version produces little 

improvement and increases the complexity in our experiments. 

 

The first term in (3) implies an interesting interrelation 

between geometry-relevant (u and v) and radiance-relevant 

variables (r0 and r1). The optimal solution should have a 

compatible estimation of both types of variables and meanwhile 

meet the regularization conditions. According to our 

experiments, their simultaneous estimation becomes quite 

unstable due to the large magnitude difference. We prefer a two-

stage strategy as a substitute. In the first stage, the geometry-

relevant variables are fixed to solve the radiance-relevant 

variables. Then the condition reverses to solve the optimal 

geometric deformation. These steps are iteratively operated on 

the image until the global optimum is reached. With the 

pyramid strategy and carefully selected down-sampling ratio we 

find that one two-stage step for each level is quite enough to 

obtain a satisfactory result.  

 

  

Figure 2. The panchromatic (left) and transformed multispectral 

(right) images of a same region. Both images are from the ZY-3 

satellite where the nadir panchromatic sensor and multispectral 

sensor almost cover the identical spectrum. We transform the 

multispectral image with the average operation, but there still 

remains apparent systematic radiance difference. 

 

2.3 Edge-enhancing weighting 

From the perspective of differential geometry, the L2-norm 

regularization constraint imposed on the gradient of u and v 

equivalently minimizes the curvature of these two variables. 

Without other constraints (such as the radiance equality), the 

final solution is known as a rigorous plane, which is definitely 

not what we want. The radiance equality controls the smoothing 

tendency driven by the curvature minimization principle. If the 

radiance quality constraint is allocated with a larger weight, the 

regularization force on the corresponding pixel is accordingly 

reduced. It leads to an analogous solution with the anisotropic 

regularization constraint. So we attempt to cope with the 

problematic isotropic regularization by self-tuning radiance 

equality weight in this study. 

 

In the image fusion application, some parts of the image which 

include distinct features should be forced to strictly match their 

counterparts in the other image. It is understandable since the 

aim of image fusion is sometimes stated as the integration of 

different features from different images. The least requirement 

is naturally to be met that the re-occurred features should be 

precisely matched to each other. For the regions revealing 

distinct features we will impose a stronger weight α than other 

regions. The curvature of deformation in these regions is 

allowed to be large, that is, the smooth constraint is secondary 

to be considered. 

 

Yet the distinctness of features is an open problem. In this paper, 

we relate it to the edge strength which is calculated as the 

magnitude of Gaussian-filtered gradients. This definition for 

edge strength is able to capture intensity discontinuity while 

suppress unexpected noise and thus is widely used in many 

studies e.g. the famous Canny operator. Once a strong response 
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of edge is detected, an additional edge-enhancing weight is 

added to the initial weight. The final expression to calculate the 

weight of the pixel-wise data term is given as: 

 

 
0

min ,
e

G P T

T



  
 

   
 
 

  (4) 

 

where α0 is the initial weight for the data constraints, αe is the 

maximum value for edge-enhancing weight, T is the threshold 

to truncate large edge strength, γ is a power coefficient, and G* 

means the Gaussian convolution. In practice most of the edges 

we are interested in always associate to a big edge strength 

value but smaller than the largest one. The value can be 

estimated statistically with robust estimators like the 80%-

quantile. We use it as the threshold T to avoid over-suppression 

on interested edges caused by too large edge strength maximum. 

The γ is designed to achieve a non-linear dependence of the 

edge-enhancing on the edge strength. It is obvious that a large γ 

reduces the edge-enhancing weight on the pixel with small edge 

strength, i.e. featureless region, effectively avoiding the abuse 

of the new weight. Since (4) is calculated based on the 

panchromatic image, it only needs to be evaluated once at each 

pyramid level without updating through iterations. 

 

2.4 The Euler-Lagrange equation and solving process 

The classical solution of the typical variational problem (3) is 

given by the Euler-Lagrange equation. Since we adopt a two-

stage strategy to solve geometry-relevant and radiance-relevant 

variables separately, the EL equation should be accordingly 

derived for each stage respectively. We have: 
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for the first stage; and: 
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for the second stage. The arguments x and y are left out here. 

Readers should be aware that these equations are derived for 

each pixel on the panchromatic image. And the value of M is 

predicted by the current geometric deformation variable 

attached to each pixel. 

 

Replacing the Laplacian operators with their discrete form 

cheerfully leads to linear equations about the solved variables 

for most terms in (5) and (6). Terms relevant to transformed 

multispectral radiance in (6), however, is not linear due to the 

nonlinearity and nonconvexity of the image function. The 

problem is critical since it misleads the solution to converge to a 

suboptimum. In our work the image pyramid is pre-calculated to 

perform a coarse-to-fine optimization. This is a widely-used and 

practical strategy to avoid suboptimum convergence. The final 

solution process of our method is shown in Table 1. 

 

 

 

 

 

1 

Up-sample the multispectral image to a similar 

resolution with the panchromatic one and do the 

radiance transformation. 

2 
Build pyramids for the panchromatic image and 

transformed multispectral image respectively. 

3 
Starting from the coarsest level, repeatedly solve (5) 

and (6) at each pyramid level. 

4 

If the finest level is reached, output the deformation 

estimation u and v. 

Otherwise, interpolate u, v, r0 and r1 to the finer level. 

5 
Warp the multispectral image based on the estimated 

deformation to perform the pixel-level fusion process. 

 Table 1. The solution scheme of our method 

 

3. EXPERIMENTS AND ANALYSIS 

In this section we present results of co-registration with the ZY-

3 images. The main part of the experiment is conducted on the 

simultaneously captured images of the same satellite. ZY-3 is 

equipped with the three-linear CCD camera similar to SPOT-5. 

The onboard 5.8m VNIR sensor is aligned to the 2.1m nadir 

panchromatic sensor in order to minimize the relative 

deformation between images collected by them. However, the 

alignment is not precise enough so the deformation should be 

estimated by co-registration. Moreover, we attempt to integrate 

the multispectral information into the forward and backward 

panchromatic sensors (both with deviation of 22 degrees with 

respect to the nadir one at 3.6m resolution), an effort to consider 

even larger deformation.  

 

The experimental site belongs to the Taihang Mountains, 

located near the boundary of Shanxi and Hebei province, China. 

We select the image (four sensors are all available) captured on 

May 10 2013 to evaluate the performance of our method. The 

topography is typically mountainous with elevations changing 

from 900m to 1400m. Two co-registration experiments are 

conducted on the nadir-multispectral (NAD-MS) pairs and 

forward-multispectral (FWD-MS) pairs independently. The 

RMSE assessment of the predicted deformation is presented in 

Table 2 based on manually selected 12 and 14 tie points 

respectively. 

 

  RMSEu RMSEv RMSEtotal 

NAD-MS 
P. 0.81 1.05 1.32 

Non-P. 0.71 0.84 1.10 

FWD-MS 
P. 0.49 4.92 4.94 

Non-P. 0.51 0.88 1.02 

Table 2. The RMSE (in pixel) of deformation predicted by 

parameterized (P.) and non-parameterized (Non-P.) methods on 

the two co-registration experiments. In this case of ZY-3 images, 

u is deformation across the flight direction while v is 

deformation along the flight direction. The circular accuracy of 

the vector (u, v) is implied by RMSEtotal. 

 

The result of our non-parameterized method is produced with an 

experimentally designed setting: α0 = 800, αe = 1,500, γ = 2, β = 

1, η0 = 6 and η1 = 6. We also use the ENVI 4.8 software to 

produce the result of the compared conventional parameterized 

method. Specifically feature points are extracted with the 
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Moravec operator with average spacing of 30 pixels. Given an 

initial guess of deformation, the matching process is then 

achieved with 11*11 patches to calculate normalized correlation 

coefficients (NCC) and 31*31 windows to search for potential 

correspondences. False correspondences are inevitable after this 

primary process, so we filter out matches with NCC below 0.8 

and further remove anomalies by local plane fitting with a 

tolerance of 3 pixels. The final pixel-wise deformation 

estimation is achieved by triangular linear interpolation. 

 

When the co-registration is between the nadir and multispectral 

images, two methods have similar accuracy. The small relative 

distortion has been effectively guaranteed by sensor alignment, 

so the accurate correspondence becomes easy for both methods. 

Our method has a little advantage over the other since it is a true 

pixel-to-pixel method without any interpolation. The FWD-MS 

case, however, is more challenging with orientation deviation as 

large as 22 degrees. The deformation along the flight direction 

is not systematic at all but dependent on the terrain relief while 

the deformation across the flight direction is mainly linear 

caused by the resolution difference of two sensors. The result in 

Table 2 illustrates the failure of conventional method in dealing 

with the large distortion in the along-flight direction caused by 

mountainous topography. Contrarily, our method still can 

control RMSEv in the same level with that in the previous 

NAD-MS experiment. Some details of the rectified images 

based on the estimated deformation are displayed in Figure 3, 

offering a direct impression of the rectified result.  

 

  

  

  

Figure 3. The left column is the rectified multispectral image 

overlapping on the forward panchromatic image produced by 

the parameterized method while the right column is produced 

by the non-parameterized one proposed in this study. 

 

Though the parameterized method accurately matches features 

when the distortion is small, it performs quite poorly with some 

false matching of roads and mountain ridges. It is a joint result 

of sparse matched points and inappropriate deformation model 

(linear triangles). In fact we have initially extracted 2,500 

feature points and only 879 of them are retained after filtering 

anomalies. With a loose threshold the number could certainly be 

increased but meanwhile brings the problem of plentiful false 

matches. The non-parameterized method is free of such 

dilemma for the reason that it conducts the true pixel-to-pixel 

correspondence with no need to remove anomalies afterwards. 

The final deformation estimated by two methods is visualized in 

Figure 4. We find that the non-parameterized method 

successfully captures the detail deformation in contrary to the 

conventional method. Furthermore if the accuracy orientation 

parameters are known, the deformation reduces to one direction 

and can be estimated more accurately - that is the main focus of 

stereo matching studies. 

 

  

  

Figure 4. Deformation in across-flight direction (top row) and 

along-flight direction (bottom row). The left column is 

produced by the parameterized method while the right column 

is from the non-parameterized one proposed in this study. 

 

  

  

Figure 5. The co-registration result of ZY-images from different 

flights. The left column is produced by the parameterized 

method while the right column is produced by our non-

parameterized method. 
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There is also the requirement for co-registration of images from 

either different satellites or different flights of the same satellite. 

In either situation images are captured from different positions 

and orientations, so images suffer from non-systematic 

deformations in dual directions, which raise the difficulty of co-

registration. We conduct the co-registration experiment on the 

backward panchromatic image from the previous experiment 

and a multispectral image from another flight 10 days later. 

Some details of the result are displayed in Figure 5. 

 

The result is consistent with the previous experiment of 

simultaneously captured images. It suggests that our method is 

also applicable and advantageous when dual-directional non-

parameterized deformations occur. It should be noted that the 

non-systematic deformation in the across-flight direction does 

not get as large as that in the orthogonal direction due to the 

narrow view field of linear sensors and the parallel relationship 

of different flights. A more challenging situation might be 

encountered if the co-registration is required for arbitrarily 

different satellites where the two favorable conditions are 

probably broken.  

 

4. SUMMARY AND CONCLUSION 

We have introduced a pixel-wise co-registration method that 

does not require for any parameterized deformation model for 

co-registration of panchromatic and multispectral images. The 

new method is originally derived based on pixel-wise radiance 

equality and additional regularization constraints. The basic 

functional model is then extended with radiance difference 

estimation and edge-enhanced weighting. According to 

experiments on the ZY-3 images, the new method is able to 

recover smooth and detailed deformation caused by the joint 

effect of terrain relief and orientation deviation of sensors. It is 

superior to the conventional parameterized method especially 

when the deformation gets large. Our method would be 

beneficial to register multispectral images to high resolution 

panchromatic images captured from a totally different 

orientation. Future studies may focus on the co-registration 

between different satellites. The incorporation of matched 

feature points is also attractive since it would be helpful to 

accelerate our method and avoid false convergence. 
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