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ABSTRACT: 
 
To decrease the dependency on fossil fuels, more renewable energy sources need to be explored. Over the last years, the 
consumption of biomass has risen steadily and it has become a major source for re-growing energy. Besides the most common 
sources of biomass (forests, agriculture etc.) there are smaller supplies available in mostly unused areas like hedges, vegetation 
along streets, railways, rivers and field margins. However, these sources are not mapped and in order to obtain their potential for 
usage as a renewable energy, a method to quickly assess their spatial distribution and their volume is needed. We use a range of 
data sets including satellite imagery, GIS and elevation data to evaluate these parameters. With the upcoming Sentinel missions, 
our satellite data is chosen to match the spatial resolution of Sentinel-2 (10-20m) as well as its spectral characteristics. To obtain 
sub-pixel information from the satellite data, we use a spectral unmixing approach. Additional GIS data is provided by the German 
Digital Landscape Model (ATKIS Base-DLM). To estimate the height (and derive the volume) of the vegetation, we use LIDAR 
data to produce a digital surface model. These data sets allow us to map the extent of previously unused biomass sources. This map 
can then be used as a starting point for further analyses about the feasibility of the biomass extraction and their usage as a 
renewable energy source. 
 

                                                             
*  Corresponding author.  This is useful to know for communication  
with the appropriate person in cases with more than one author. 

1. INTRODUCTION 

Stepping away from fossil fuels and their related carbon 
dioxide (CO2) emissions requires research into new, alternative 
and renewable energy sources. Such resources are generated on 
a daily level or over short periods of time (i.e. solar influx on 
the earth, wind or tidal power) and have seen a substantial 
amount of research to evaluate their potential (see Hepbasli, 
2008, for an overview). A different approach to renewable 
energies can be taken via biomass, which can be used for 
heating and electricity generation (Voivontas et al., 2001). As 
opposed to coal and gas, the generation of power through solar 
energy, wind, water or biomass does not unlock long-buried 
CO2 and, thus, does not effectively add CO2 to the atmosphere 
in the medium to long term. This lack of net-created CO2 has 
caused the interest in biomass in sight of the ongoing debate 
about climate change and the consequences for the 
environment (Field et al., 2007).  
 
The high abundance of biomass, its fast regeneration and the 
general easy accessibility are factors in favour of it being used 
as a renewable energy source. Principal targets for the biomass 
generation are forests and agricultural areas but, with the 
growing urbanisation, their extent is more and more limited 
and alternative vegetation sources need to be found. 
 
In this study, we focus on alternate biomass sources that have 
been largely ignored in the past. These targets include 
vegetation strips alongside streets, railways and waterways, 
unploughed strips that separate fields as well as hedges in 
general (see Figure 1 for examples). The object areas generally 

have elongated shapes with a limited width in the range of 5 to 
20m. The location of these vegetation types can be in bucolic 
as well as urban areas allowing for a wide range of potential 
biomass energy. 

Figure 1. Examples of the vegetation used in our study: 
unploughed strips (left) and vegetation alongside streets (right) 

 
The general classification of ‘biomass’ is further separated into 
ligneous, graminaceous and herbaceous vegetation. Alignment 
with one of the three groups depends on the growth pattern, 
hedge type and size of the respective plants as well as the 
amount of biomass produced in a given temporal interval. 
 
The vegetation targets of our study are regularly maintained to 
allow traffic to pass and to keep from interfering with other 
objects. This process yields a large amount of biomass ready 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7, 2014
ISPRS Technical Commission VII Symposium, 29 September – 2 October 2014, Istanbul, Turkey

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-7-165-2014 165



 

 

for collection and processing. In most areas, a central collection 
system does not exist. One of the outputs of this project is to 
address that point and to improve the energy supply by 
biological products. 
 
Estimating the potential of the available biomass in each area 
requires a detailed vegetation map. In most areas, local 
information about biomass diversity is unavailable and a user-
specified map needs to be created. To achieve this, we utilise a 
combination of several different low-cost data sources: As 
biomass quantities vary with vegetation height, we create a 
digital surface model (DSM) using LIDAR (Light Detection 
and Ranging) data. This height map will then be compared to 
aerial imagery obtained by the AISA Eagle, an airborne, 
hyperspectral sensor. We use this data as a substitute for the 
upcoming Sentinel-2 data, freely available data from the 
Copernicus mission which will start being available in 2015. 
To identify individual vegetation in the pixels with a spatial 
resolution of 10 to 60m, we utilise the spectral unmixing 
approach SMACC (Sequential Maximum Angle Convex Cone, 
Gruninger et al., 2004). The endmember information provided 
by SMACC in comparison to the LIDAR-derived height map 
yields the biomass volume. Having obtained this information, 
we will be able to outline areas of high biomass production and 
feasible transportation networks. For detailed information 
about our data sources and methods refer to sections 3 and 4. 
 
Our primary test site is located close to the city of Bottrop in 
North Rhine-Westphalia, Germany. It comprised a rural area 
with intensive agricultural use but also contains parts of a 
natural preserve. 
 
 

2. BACKGROUND 
 
Common targets of biomass quantisation for renewable energy 
usage include forests and agricultural areas. An overview of 
different approaches with concepts of active and passive 
remote sensing and commercial software was summarised by 
Ahamad et al. (2011). 
 
Small biomass units, like shrubs or riparian vegetation, have 
not been evaluated that often. Such scenarios often require 
additional information like LIDAR-derive height values to 
improve recognition rates. A few examples of such studies are 
reviewed in the following paragraphs: 
 
Estornell et al. (2012) worked on the biomass quantification of 
shrubs using a combination of LIDAR and aerial imagery. With 
those data sources, they developed a regression model which 
shows a good correlation to earlier estimates as well as the 
ground truth data. 
  
Riperian, woody biomass was targeted by Forzieri (2012). 
Spectral information from SPOT satellite imagery was the 
basis for the proposed multi-stage approach. In this study, an 
initial Maximum Likelihood classifier paired with a Principal 
Component Analysis determined the regions of mixed arboreal, 
shrub and herbaceous vegetation. In the further stages, an 
analytical model is defined representing the relationship 
between vegetation height, stem diameter and spectral 
information from the SPOT imagery. This allows for the 
calculation of the biomass. 
 

An example for an active remote sensing technique to detect 
and quantify biomass as well as sequestrated carbon in pines is 
explained in Popescu (2007). The author used LIDAR data in 
combination with an adaptive filtering technique to estimate 
tree diameters and height. These parameters, in turn, yield the 
total biomass above ground which can be converted to 
sequestrated carbon quantities.  
 
An alternative active remote sensing technique to classify 
satellite images in grassland, herbaceous vegetation, trees, 
shrubs and flower strips was introduced by Bargiel (2013). In 
this approach, High Resolution Spotlight imagery from 
TerraSAR-X is used over the period of one year with a 
Maximum Likelihood as well as a Random Forest classifier. 
The resulting producer’s accuracies are highest for woody 
structures (above 80%), followed by grasslands (75.8%), 
flower strips (75%) and herbaceous vegetation (57%). 
 
The approach outlined in this study uses similar techniques to 
the previously explained methods. We will focus on a 
combination of active and passive remote sensing approaches 
that will later be complemented with GIS (geographic 
information system)-based data sets. 
 
 

3. STRATEGY AND DATA DESCRIPTION 

3.1 Strategy 
 
Our research focuses on small units of biomass like hedges, 
unploughed strips between agricultural fields and vegetation 
along streets or railway lines (see Figure 1 for examples). We 
combine two data sources to analyse these vegetation types. 
Our primary information is, at this stage, derived from aerial 
imagery. We obtain spectral information from the airborne 
AISA Eagle with a spatial resolution of a few meters (see 
section 3.2). To have a cost-efficient approach, however, we 
ultimately plan to exchange this data set with the upcoming 
Sentinel-2 data. As part of the Copernicus Programme of the 
European Commission, Sentinel-2 data will be freely available 
from 2015 onwards with spatial resolutions between 10 and 
60m. Therefore, we artificially coarsen the spatial and spectral 
resolutions from AISA Eagle to match the Sentinel-2 data. 
With this data, we will conduct the qualitative identification of 
the vegetated areas. 
 
In addition to the spectral information, we look at height data 
on form of digital surface models (DSM). Such DSMs can be 
derived either from LIDAR data or by stereo matching of aerial 
images. While LIDAR acquisitions are very useful as they 
directly show the DSM, aerial imagery is more widely 
available. A combination of these data sources yields 
information about height, volume and, consecutively, mass of 
the vegetation. For the purpose of our test site, we use LIDAR 
data as its acquisition was time-coinciding with that of the 
AISA Eagle flight. For future biomass evaluations, however, 
we will also refer to stereo matching in order to be more cost 
efficient. 
 
These two data sources are further processed to indicate the 
biomass potential: For the spectral data set, we apply a spectral 
unmixing approach to evaluate the endmember distribution 
within each pixel. LIDAR data, on the other hand, is converted 
into a DSM to indicate biomass height, volume and, ultimately, 
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mass. Both processing chains are further explained in the 
following sections.  
 
Resulting from these processing steps, we gain an information 
layer stack with information about location and mass of 
available vegetation. This first part of our study will conclude 
in building this biomass potential map to outline areas of high 
biomass availability for energy production. An evaluation of 
this data in terms of concrete amount available vegetation as 
well as an economic analysis comprising gathering, storing and 
transport of the biomass will be part of follow-up research 
using our information stack as well as GIS tools to evaluate 
local road networks and storage facilities. 
 
3.2 AISA Eagle 
 
Information about the AISA Eagle sensor can be obtained from 
Specim (2014). The sensor is a passive, hyperspectral, airborne 
imager whose spectral range lies between 400 and 970nm. The 
number of spectral bands, and thus the spectral resolution is 
not fixed but increases with a decreasing image rate (images 
per second). The best spectral resolution achievable is 1.15nm 
in 488 bands at an image rate of 30 images per second. The 
image rates themselves vary with altitude and applied lens 
system. These two factors also influence the spatial resolution. 
Generally, the spatial resolution lies in the range of a few 
meters (<4m) for sensor altitudes of up to 5km and increases 
linearly with altitude flown. The swath width encompasses up 
to 1024 pixels.   
 
For our analysis, we obtained AISA Eagle data at about 800m 
altitude with 107 spectral bands in the range between 431 and 
926nm and a spatial resolution of 0.5m. The spectral resolution 
in our data set was between 4.27 and 4.81nm. The single strips 
have been pre-processed be the data provider to form an image 
mosaic. Sample data can be seen in Figure 2. Due to 
turbulences while acquiring the data sets, the resulting data 
shows small artefacts such as straight lines being represented 
in wavy. 
 

 
Figure 2. Central infrared bands of AISA Eagle acquired above 

our test site in western Germany. The scene comprises 
agriculture as well as forests and small settlements. Note the 
wavy roads, especially in the top left, which are a result of 

additional movement of the aircraft during image acquisition. 
 

This data set will be replaced with freely available Sentinel-2 
data. For the purpose of this study, however, we artificially 
coarsen the spectral resolution to match that of Sentinel-2 (see 
section 4.2). 

 
 

3.3 LIDAR 
 
For our test scenario, LIDAR data was acquired synchronously 
to the hyperspectral information using a RIEGL LMS-Q680i 
full waveform laser scanner. The information is delivered in 
binary LAS file format. This format is used to exchange 3-
dimensional data clouds and supports up to 15 return pulses 
from a target (ASPRS, 2011). This high echo rate is important 
for vegetation as different height layers of intertwined leaves 
and branches of the vegetation return multiple pulses. An 
analysis of these pulses results in a good knowledge of the type 
of vegetation. Figure 3 shows sample data of the LIDAR 
acquisitions at the same location in space and time as Figure 2.  
 

 
Figure 3. Example data from the LIDAR acquisition. This 
scene represents the same temporal and spatial location as 

depicted in Figure 2. Higher structures (mainly vegetation but 
also some houses) have lighter shades of grey. 

 
An alternative to such LIDAR scenes is the estimation of 
height information using aerial photos for stereo matching. We 
will also focus on this alternative for future biomass mapping. 
 
3.4 GIS 
 
After having detected and quantified the vegetation using the 
combination of data sources described above, we compare the 
results to GIS maps which show road networks and 
communities in addition to transportation restrictions like 
height clearances, restrictions on highways or within cities or 
villages. A detailed analysis of the ideal collection spot as well 
as transport route and destination is possible. We can define 
spatial areas which serve a specific community or vary those 
over the years as different harvests become available. A 
detailed description of these steps is not part of this paper but 
will be done in the follow-up study. 
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4. METHODS 

4.1 Vegetation height map 
 
As the LIDAR data consists of a point cloud with up to 15 
return pulses, a classification between non-ground points (i.e. 
vegetation) and ground (i.e. terrain) points is applied. For the 
purposes of LIDAR, anthropological structures like houses are 
classified as ‘terrain’ features as the only returning pulse will 
be from the surface as opposed to the leaf-branch structure in 
vegetation which returns multiple pulses. Out of these multiple 
pulses, the first is taken to represent the surface of the 
vegetation and the final characterises the ground. The 
vegetation height is determined by the difference between the 
first and last pulse. Soil and sealed surfaces (e.g. buildings and 
roads) have only one return pulse and their height is set to 
zero. 
 
To assign the vegetation height to each pixel in our data set, 
we need a regular interval of LIDAR data points. We achieve 
this by using all available, irregularly distributed, LIDAR 
points to span a triangulated irregular network (TIN). A linear 
interpolation between the knots of this raster will yield the 
height data for all pixels. Since the LIDAR point cloud used at 
our test site was acquired synchronously to the spectral 
information, its density is very high. The resulting 
interpolation errors of this method are, therefore, negligible. 
 
4.2 Sentinel-2 simulation 
 
The Sentinel series is part of the Copernicus Programme of the 
European Commission. Sentinel-1, equipped with C-Band 
synthetic aperture radar (SAR) was launched in April 2014 
with Sentinel-2 scheduled to follow in 2015 (Drusch et al., 
2012). As opposed to Sentinel-1, the Sentinel-2 data stream 
will be recorded in the visible, near infrared and shortwave 
infrared over 13 spectral bands: four bands at 10m, six bands 
at 20m and 3 bands at 60m spatial resolution. The Swath width 
will be 290km. The temporal resolution is planned to be about 
five days, making use of the two scheduled satellites. 
 
Since the AISA Eagle data set has a fine spectral resolution, 
we use that data set to simulate Sentinel-2 data the way we 
expect them to look in the identical settings. We use a 
simplified method for the generation of this data set as opposed 
to more complex sensor models described by Segl et al. (2012). 
 
Initially, we determined the corresponding bands between 
AISA Eagle and Sentinel-2. As both systems are 
hyperspectrally recording, there is a certain similarity allowing 
us to correlate the data. As an example, Sentinel-2 band 1 data 
is spectrally located between 433 and 453nm. The same range 
also holds five AISA Eagle bands (bands 2 to 6), which will 
form the basis for Sentinel-2 band 1 data generation. The 
complete correlation between bands is shown in Table 1. 
 
Following up on this correlation, the digital numbers (DN) of 
the Sentinel-2 pixels are calculated by averaging the DN values 
of all respective AISA Eagle bands according to Equation 1, 
where ti is the band number of Sentinel-2, sn the band number 
of the AISA Eagle dataset and n is the total number of AISA 
Eagle bands needed to simulate the given Sentinel-2 band. 
 
 

Sentinel-2 
simulation 
data band 
number 

Accumulated 
AISA Eagle 

bands 

Amount 
of AISA 

Eagle 
bands 

Target  
spatial 

resolution [m] 

1 2-6 5 60 

2 8-21 14 10 

3 26-33 8 10 

4 49-55 7 10 

5 60-62 3 20 

6 67-69 3 20 

7 76-79 4 20 

8 78-101 24 10 

8b 93-96 4 20 

Table 4. Corresponding AISA Eagle bands for Sentinel-2 data 
simulation. 

 
   
                                     
 
 
 
Finally, all DN values are normalised between 0 and 1 and 
resampled so that the spatial resolution of the Sentinel-2 data 
is achieved. An example RGB comprising Sentinel-2 simulated 
bands 2 to 4 with a spatial resolution of 10m created by using 
AISA Eagle bands between 8 and 55 can be seen in Figure 5. 
 

 
Figure 5. Simulated RGB data set representing the Sentinel-2 
bands 2 to 4. The scene is spatially and temporally identical to 

Figures 2 and 3. The spatial resolution here is 10m. 
 

4.3 Spectral unmixing 
 
With the limited spatial resolution of the Sentinel-2 data, the 
pixel values will be comprised of a range of spectral signatures 
belonging to different features on the ground. A classification 
based on this data alone is limited. Our target vegetation has a 
width down under 5m for individual specimen and, thus, will 
not be detectable in larger pixels due to the mixture of 
different spectral signatures. We performed a spectral 
unmixing approach to find the endmembers in each pixel 

(1) 
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which allows us to identify specific vegetation types and, in 
turn, their relevant biomass. 
 
Regular classifications - supervised and unsupervised - assign 
only one class, the most probable, to each pixel. Spectral 
unmixing, on the other hand, treats each pixel as a mixed 
spectrum and decomposes it into different constituent spectra, 
the endmembers. Each endmember is associated with an 
abundance, the fraction it takes of the pixel. The endmembers 
represent pure reflectances for each surface (i.e. a specific 
vegetation type, a road, water, soil etc.). The spectral unmixing 
is a two-step approach: The endmember detection and the 
unmixing of the mixed reflectance. 
 
In our study, we use the Sequential Maximum Angle Convex 
Cone (SMACC) approach introduced by Gruninger et al. 
(2004). It is available in the software ENVI and works with a 
convex cone, generated by using extreme vectors of the data 
(i.e. endmembers). The SMACC method works unsupervised. 
Initially, SMACC considers the pixel as pure and only assigns 
one endmember. After several sequences, this number is 
increased to incorporate more endmembers and, as such, more 
dimensions in the convex cone. The cone itself encompasses all 
vectors, i.e. mixed pixels, which can be created by the pure 
endmembers. The more endmembers are identified, the smaller 
the maximum relative error (MRE) becomes. The algorithm 
ends when either the maximum number of endmembers is 
reached or the MRE drops below a given percentage. An 
example of the relationship between found endmembers and 
MRE is given in Figure 6. With a very low number of 
endmembers, the maximum relative error is almost at 1, 
whereas it drops considerable fast once the next two 
endmembers are found. At a rate of four identified 
endmembers, the MRE reached a level of below 0.1 from 
where it only slowly converges on 0.  
 

 
Figure 6. SMACC output showing the relationship between the 
number of identified endmembers and the maximum relative 
error (MRE). The SMACC algorithm ends when either the 
MRE drops below a given threshold or a certain number of 

endmembers are found. 
 
As the second step, a linear spectral unmixing (LSU) is 
applied. This part of the algorithm involves a linear mixture 
model detailed in Equation 2, where DN is the digital number 
of each pixel, N represents the number of endmembers, ai the 
abundance of endmember i and si the spectrum of endmember 
i. The sum of all abundances ai have to add up to 1 (Equation 
3).  

                                                                                                                          
                                                    
 
 

                                                                                                                                          
                                             
 
                                                                              
 
 
The outputs of this analysis are the individual, extracted 
endmember spectra (Figure 7) along with their abundances. In 
addition, separate endmember locations within the imagery are 
yielded which allow for the analysis of biomass concentrations. 
 

 
Figure 7. Example of found endmember spectra over the first 

four bands of the Sentinel-2 data. The spectra represent 
normalised pixel values (NPV). It can be seen that some are 

more similar than others. 
 
4.4 Potential map 
 
As the ultimate step in this initial phase of the project, a 
biomass availability (or biomass potential) map is created. This 
map will have multiple layers of information to identify the 
biomass and its feasibility to be used as renewable energy. The 
basis for this map is the spectral unmixing of the Sentinel-2 
data (initially, the simulated and, later, the official data sets) as 
well as the DSM. Additionally, GIS data sets like a road 
networks, preferred biomass accumulation areas and transport 
limitations are incorporated. Other GIS objects like rivers and 
railways can also function as proxies as to where biomass is 
available. 
 
The spectral unmixing based on the SMACC method is 
unsupervised. Due to this, the resulting abundance maps need 
to be manually verified regarding the objects of interest 
represented by them. Two examples are in Figures 8 and 9. 
Figure 8 shows the abundance map of endmember 4, which 
represents vegetation in general, whereas endmember 8 
(Figure 9) only corresponds to vegetation to agricultural crops. 
The whiter the pixel in those Figures, the higher is the 
abundance of the respective endmember.  
 

Number of Endmembers 

MRE 

 

1     2                       3                   4 
Band Number 

NPV 

 

(2) 

(3) 
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Figure 8. Endmember 4 abundance map. The brighter the 

pixel, the higher is the percentage of the fourth endmember 
(general vegetation) in the image. 

 

 
Figure 9. Endmember 8 abundance map. The brighter the 

pixel, the higher is the percentage of the eighth endmember 
(agricultural crops) in the image. 

 
The LIDAR-based DSM is considered to be a direct indicator 
for biomass (Figure 10). The whiter a pixel in this the DSM, 
the higher the corresponding structure is. Artificial structures 
like houses have been removed in the due to their single-pulse 
nature. 

 

 
Figure 10. LIDAR-derived DSM showing all vegetation as grey 

pixels whose brightness increases with height above ground. 
 
 
 
 
 
 
 

5. DISCUSSION AND CONCLUSIONS 
 
This proposed methodology is applied to test data from a site 
in Germany, close to the city of Bottrop in North Rhine-
Westphalia. The test site is located in a rural area with 
intensive agricultural use but contains also parts of a natural 
preserve, including forests, as well as some settlements. 
 
To evaluate our method, we chose to create a vegetation 
abundance map solely using spectral unmixing as described 
above, i.e. without the height information (Figure 11). This 
map can then be compared to a vegetation reference map based 
on LIDAR data (Figure 12). Both maps are binary. The 
vegetation map combines all abundance maps where each pixel 
is set to 1 when one or more endmembers are determined to 
resemble more than 50% of the pixel. It thus shows the area 
that is identified as vegetation using only spectral information. 
The reference map also shows vegetation higher than 0.3m but, 
in this case, the information directly comes from LIDAR data. 
A matching vegetation outline thus shows a good assessment 
with the two chosen methods and a good data correlation for 
height determination. 
 

 
Figure 11. Vegetation map created solely based on unmixing of 
the spectral data sets without additional information from the 

DSM. All green pixels represent vegetation. 
 

 
Figure 12. Vegetation reference map solely obtained through 

LIDAR data. All green pixels represent vegetation higher than 
0.3m. 

 
 
 
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7, 2014
ISPRS Technical Commission VII Symposium, 29 September – 2 October 2014, Istanbul, Turkey

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-7-165-2014 170



 

 

A pixel-to-pixel comparison between both maps shows a 
vegetation match of 74.5%. When calculating the accuracy of 
the vegetation map alone (Figure 11), 69.8% of all biomass in 
the map is also classified as such in the reference whereas 
30.2% are misclassified. Errors can be introduced due to the 
0.3m minimum height required for the reference map as well 
as a wrong amount of endmembers taken during the SMACC 
calculations. 
 
Evaluations of single biomass entities prove difficult as the 
reference data is rare. However, the vegetation height map 
(Figure 10) shows a great amount of detail and, when 
combined with other data sources to the biomass potential 
map, will prove very valuable in detecting small scale features. 
 
The aim of the approach presented here is the mapping of 
previously largely ignored biomass sources important for 
energy production. To keep the data costs at a minimum, we 
aim to use the upcoming Sentinel-2 data sets, which will be 
freely available. In addition, we use height information based 
on LIDAR and, where available, aerial imagery.. 
 
The results of our study here are the creation of information 
layers, which can then be built upon to subsequent biomass 
quantifications. In combination with GIS data, the results will 
prove valuable in outlining biomass rich areas as well as 
logistically important places and times for pick-up and 
transport of the harvested vegetation.  
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