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ABSTRACT: 

 

Multi-temporal and multi-source images gathered from satellite platforms are nowadays a fundamental source of information in 

several domains. One of the main challenges in the fusion of different data sets consists in the registration issue, i.e., the integration 

into the same framework of images collected with different spatial resolution and acquisition geometry. This paper presents a novel 

methodology to accomplish this task on the basis of a method that stands out from existing approaches. The whole data (time series) 

set is simultaneously co-registered with a two-dimensional multiple Least Squares adjustment with different geometric 

transformations implemented. Some tests were carried out with different geometric transformation models (including similarity, 

affine, and polynomial) and variable matching thresholds. They showed a sub-pixel precision after the computation of multiple 

adjustment. The use of multi-image corresponding points allowed the improvement of the registration accuracy and reliability of a 

time series made up of data imaged with different sensors. 

 

 

1. INTRODUCTION 

The growing interest towards Earth Observation from space has 

led to the availability of an impressive number of images from 

satellites. Consequently, multi-source data is nowadays a 

fundamental source of information needed in several application 

domains. 

According to Phol and Van Genderen (1998), ‘image fusion 

aims at the integration of disparate and complementary data to 

enhance the information apparent in the images as well as to 

increase the reliability of the interpretation’. Wald (2002) 

defined data fusion as a ‘formal frame work in which are 

expressed means and tools for the alliance of data originating 

from different sources. It aims at obtaining information of 

greater quality; the exact definition of greater quality will 

depend upon application”. Hall (1992) describes data fusion as 

‘a process dealing with data and information from multiple 

sources to achieve refined/improved information for decision 

making’. Starting from these definitions, it is clear that the idea 

behind data fusion relies on the integrated use of more data in 

order to obtain better information than that achievable with a 

single-source data set. In this context, multi-source data could 

be defined as multi-sensor, multispectral, multi-resolution, or 

multi-temporal data. 

Overall, data fusion can be divided into two steps: (i) image 

registration and (ii) data integration (Lu and Weng, 2007). Both 

are complex tasks, especially in the case of data sets with 

different geometric resolution and spectral information (e.g., 

high-resolution optical images along with coarse resolution 

radar data).  

The registration problem can be intended as the estimation of a 

mapping function between several images aimed at recovering 

the overlap. Automated image registration procedures (Le 

Moigne et al., 2011) are available in most commercial software 

packages used in Photogrammetry and Remote Sensing. Some 

examples are MicroImages Auto-register, ENVI, ERDAS 

IMAGINE AutoSync or PCI Geomatics. Typically, these 

software packages use different mathematical models for 

matching corresponding features on specific spectral bands 

selected by the user. However, many other image matching 

techniques have been proposed in literature, such as correlation-

like methods (Pratt, 1991), mutual information (Pluim et al., 

2001), Fourier methods (Castro and Morandi, 1987), or 

relaxation methods (Price, 1985). 

In the case of optical satellite data, the registration phase is 

generally based on similarity, affine, polynomial homographic 

or rational function model (Poli and Toutin, 2012). The choice 

of the mapping function depends on the level of pre-processing 

of the data: from raw information up to terrain geocoded 

orthophotos.  

This paper deals with the problem of 2D-to-2D geometric 

registration with an automatic method of several medium 

resolution images. It should be mentioned that this step is 

mandatory to run the data fusion of the radiometric component, 

because accurate pixel-to-pixel correspondence is required for 

integrating together data collected from different platforms, 

with different viewing angles, spatial resolution, field-of-view 

and information content.  

The use of unregistered multi-temporal data is not possible for 

further analysis. Image pixels with same coordinates would not 

represent the same object (Goshtasby, 2005; Gianinetto and 

Scaioni, 2008; Le Moigne et al., 2011; Gianinetto, 2012) and it 

is well known that even a small mis-registration in the input 

data may produce large errors in the final outputs (Townshend 

et al., 1992) or false results in change detection (Khorram et al., 

2013). 

The new approach for image co-registration that is described in 

this paper differs from other existing techniques for the 
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simultaneous use of the whole data set. In fact, standard 

methods for image registration are based on the pairwise 

registration of any ‘sensed’ images to one adopted as 

‘reference’ image. This is also the procedure usually 

implemented in commercial software packages. The principle of 

multi-image registration here described is analogous to 

photogrammetric bundle adjustment (Kraus, 2007), but with a 

different mapping model (Barazzetti et al., 2014b). 

 

 

2. THEORETICAL BACKGROUND 

2.1 Extraction of multi-image features 

Although features from images can be manually extracted, in 

current Remote Sensing some reliable automatic image 

matching methods are needed. They should be able to provide 

accurate results, also in the case of data sets made of a large 

number of satellite images with both geometric and radiometric 

deformations. 

The current implementation of the automatic extraction of 

multi-image correspondences is carried out with SURF operator 

(Bay et al., 2008). This is based on a Hessian matrix measure 

for the detector and the distribution of the first-order Haar 

wavelet responses for the descriptor. The detector/descriptor 

matching strategy is used to find feature and to characterize 

each of them by a multi-dimensional vector to be used for 

matching. The original SURF code (available at 

www.vision.ee.ethz.ch/~surf/) was adopted and integrated with 

a robust procedure for outlier rejection based on RANSAC 

(Fischler and Bolles, 1981). Particular attention was paid to the 

threshold for blob response of the SURF operator. The number 

of points used in the data processing and their distribution is 

strongly dependent on this parameter 

Then, two strategies for comparing the descriptors are available: 

a quadratic matching procedure (slower but rigorous) and a kd-

tree (Samet, 1990) procedure (faster but approximate). The user 

can select both the detector-descriptor functions and the 

procedure to compare the vectors and to extract corresponding 

features. This choice depends on the number of the images and  

extracted features. 

Given two images i and j, in which m and n features were 

detected (each of them with descriptors Dm and Dn) the 

quadratic matching procedure compares all descriptors of the 

image i with all those of the image j. Then the Euclidean 

distance between both descriptors is estimated as a measure of 

the difference. Moreover, a constraint between the first-best and 

the second-best candidates is added to be more distinctive. The 

method can be summarised as follows: 

 

 Each descriptor Dm is compared with all the descriptors 

Dn by estimating the Euclidean distance dmn =||Dm–Dn||; 

 All the distances dmn are sorted from the shortest (dmn)1 

to the largest (dmn)n; 

 An image correspondence is accepted if (dmn)1<t(dmn)2. 

 

In our study, the threshold t was set to 0.75. This choice is a 

good compromise that ensures a sufficient distance between the 

first and second candidates. It provides distinctive matches and 

is useful for a preliminary removal of wrong correspondences. 

The choice of an exhaustive search in the whole set of features 

ensures a good robustness but is computationally expensive. 

The second strategy to compare the descriptors is based on a kd-

tree approach, widely-used in digital-photography applications 

such as for automatic panorama generation from unoriented 

images (Brown and Lowe, 2003).  The kd-tree  approach can be 

defined as a binary search tree where every node is a k-

dimensional point. For two generic images i and j, the procedure 

creates a kd-tree with the descriptors (Dm) of the image j and the 

descriptors (Dn) of i are compared by using the kd-tree. Then, 

the test on the Euclidean distance between the first two 

candidates is applied. Two fast computational codes are the 

approximate nearest neighbour (ANN) library (Arya et al., 

1998) and the fast library for approximate nearest neighbours 

(FLANN) (Muja and Lowe, 2009). 

 

2.2 Mapping function 

Given a set of n images from which m multi-image 

correspondences xij = [xij, yij] can be matched with respect to a 

reference image (i is the feature index, j is the index of a generic 

sensed image, while the letter R refers to the reference image), 

the image registration is given by a set of invertible mapping 

functions as follows: 

 

{
𝑥𝑖𝑅 = 𝑓ℎ𝑅(𝑥𝑖𝑗 , 𝑦𝑖𝑗)

𝑦𝑖𝑅 = 𝑔ℎ𝑅(𝑥𝑖𝑗 , 𝑦𝑖𝑗)
  (1) 

 

This means that any images have to be co-registered to the 

reference (or ‘master’), which also sets up the datum for the 

whole data set. 

The extension towards a simultaneous multi-image method can 

be carried out by introducing the image correspondences 

(features) between a generic image pair h and k (h≠k≠R):  

 

{
𝑥𝑖ℎ = 𝑓ℎ𝑘(𝑥𝑖𝑘 , 𝑦𝑖𝑘)

𝑦𝑖ℎ = 𝑔ℎ𝑘(𝑥𝑖𝑘 , 𝑦𝑖𝑘)
  (2) 

 

The use of such correspondences provides (n2-n)/2 image 

combinations for the whole data set. It should be mentioned that 

the additional group of Eqs. (2) are not strictly needed to write 

down the final system of equations to solve for the registration 

parameters with respect to the reference image R. Indeed, the 

group of Eqs. (1) already includes these additional features by 

assuming that the image coordinates in R have unknown values. 

If a feature is matched in N images (N = 2,3,…) that do not 

include the reference image R, two additional unknowns are 

introduced (the coordinates of this feature in R). On the other 

hand, this feature provides 2N equations. 

The first multi-image mapping function proposed in this 

implementation was the similarity transformation (Barazzetti et 

al., 2013; 2014a; 2014b): 

 

[
𝑥𝑖ℎ

𝑦𝑖ℎ

1
] = [

𝑠ℎ𝑘  𝑐𝑜𝑠𝛼ℎ𝑘 −𝑠ℎ𝑘  𝑠𝑖𝑛𝛼ℎ𝑘 𝑐ℎ𝑘

 𝑠ℎ𝑘𝑠𝑖𝑛𝛼ℎ𝑘 𝑠ℎ𝑘  𝑐𝑜𝑠𝛼ℎ𝑘 𝑑ℎ𝑘

0 0 1

] [
𝑥𝑖𝑘

𝑦𝑖𝑘

1
] (3) 

 

where shk is the scale factor, αhk is the rotation angle, chk and dhk 

are translation parameters between images h and k, respectfully. 

However, this method can be extended to encompass other 

geometric models in order to find a better fitting between the 

images of the data set being processed. For instance, polynomial 

functions can be implemented. Such transformations can be 

expressed in compact notation as: 

 

{
𝑥𝑖ℎ = ∑ ∑ 𝑎𝑢𝑣𝑥𝑖𝑘

𝑢−𝑣𝑦𝑣𝑢
𝑣=0

𝑝
𝑢=0

𝑦𝑖ℎ = ∑ ∑ 𝑏𝑢𝑣𝑥𝑖𝑘
𝑢−𝑣𝑦𝑣𝑢

𝑣=0
𝑝
𝑢=0

 (4) 

 

where p is the degree of the polynomial.  

The unknown coefficients (ahk, bhk) become 6, 12, and 20 for the 

1st, 2nd and 3rd degree polynomial functions, which are the most 

commonly used for image alignment.  
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Table 1 summarizes the geometric distortions that can be taken 

into consideration using these transformations models. 

Other examples of mapping functions can be encapsulated in 

the generic form: 

 

{
𝑥𝑖ℎ = ∑ ∑ 𝑎𝑢𝑣𝑥𝑖𝑘

𝑢𝑦𝑣𝑝
𝑣=0

𝑝
𝑢=0

𝑦𝑖ℎ = ∑ ∑ 𝑏𝑢𝑣𝑥𝑖𝑘
𝑢𝑦𝑣𝑝

𝑣=0
𝑝
𝑢=0

 (5) 

 

Among them, the bilinear (p=1) was implemented in the 

proposed algorithm (8 parameters per each image). The case of 

p=2 (bi-quadratic) was also considered and is based on 18 

parameters per each image. 

 

Mapping model Geometric deformations 

 

Similarity 

 

2D translation, rotation, scale 

 

 

Polynomial, 1st 

degree 

 

2D translation, rotation,                             

scale along both axis 

 

 

Polynomial, 2nd 

degree 

 

2D translation, rotation, scale along 

both axis, torsion and convexity along 

both axis 

 

Polynomial, 3rd 

degree 

 

2D translation, rotation, scale along 

both axis, torsion and convexity along 

both axis, other deformations without 

physical meaning 

 

Table 1. Deformations modelled by different mapping 

functions. 

 

 

3. EXPERIMENTAL SECTION 

3.1 Test site and data 

The chosen test site it the city of Las Vegas (Nevada, USA). 

The multi-source data set is made up of five satellite images 

collected by three different satellites/sensors: Terra/ASTER, 

Landsat-5/TM and EO-1/ALI. 

Only the reflective bands were considered. All of them have a 

similar geometric resolution (from 15 m to 30 m for 

Terra/ASTER and 30 m for both Landsat-5/TM and EO-1/ALI), 

but with different signal quantization level (8 bit for 

Terra/ASTER and Landsat-5/TM and 12 bit for EO-1/ALI) and 

different spectral band configuration. Table w summarizes the 

adopted data set. 

The study was carried out by using spectral band 1 for 

Terra/ASTER (0.520-0.600 µm), band 2 for EO-1/ALI (0.525-

0.625 µm) and band TM2 for Landsat-5/TM (0.520-0.600 µm). 

No atmospheric correction was applied beforehand (Barazzetti 

et al., 2013; 2014a; 2014b). 

 

  

ID Satellite/Sensor Date Spatial 

Resolution 

#1 Terra/ASTER 10th November 2002 15 m 

#2 EO-1/ALI 23rd May 2003 30 m 

#3 EO-1/ALI 22nd December 2013 30 m 

#4 Landsat-5/TM 15th July 2006 30 m 

#5 Landsat-5/TM 2nd April 2009 30 m 

 

Table 2. The multi-source data set available for the case study. 

 

3.2 Setting the thresholds 

The implemented algorithm needs some thresholds to be set for 

the multi-image matching procedure. One of the most important 

parameters is the threshold for the blob detection by the SURF 

operator. A low threshold leads to a large number of blobs with 

a large CPU time during descriptor comparison.  On the 

contrary, high threshold could give a limited number of points 

with a bad distribution in the images (Valgren and Lilienthal, 

2007; Mikolajczyk and Schmid, 2005; Mikolajczyk et al., 

2005). 

As data could contain a large percentage of gross errors, the test 

used to remove outliers is the robust estimation of the geometric 

model between pairs of images. Different robust estimators are 

available and are used in commercial or scientific image 

matching implementations (Agarwal et al., 2009; Cornelis and 

Van Gool, 2008; Rousseeuw and Loroy, 1987; Snavely et al., 

2008a-2008b; Torr and Murray, 1993; Torr, 1995-2002; Torr 

and Zisserman, 1995-1998). 

The proposed procedure is based on the RANSAC approach, 

that was coupled with a preliminary normalization of the image 

coordinates to overcome some issues relating to the use of pixel 

coordinates and images with a different spatial resolution.  

A preliminary normalization applied to all the images 

independently was implemented as follows: image coordinates 

(often provided in pixels with origin on the top-left corner) are 

translated so that their centroid is the origin and are then scaled 

so that the average distance from the origin is equal to √2 

(Hartley, 1997; Hartley and Zisserman, 2004). This reduces 

some numerical instability problems found with polynomial 

transformation of degrees 2 and 3. 

The proposed normalization, along with a procedure for de-

normalization after the parameters estimation, overcomes these 

drawbacks during Least Squares adjustement, proving its 

suitability also for noisy data sets. 

 

 

4. RESULTS AND DISCUSSION 

Figure 1 shows the multi-matching result for the case of the 

affine transformation (polynomial 1st degree). It shows only the 

features that have been detected in at least two images of the 

time series. 

The initial threshold for the blob detection (100,000) was 

progressively reduced (70,000, 40,000, 10,000) to increase the 

number of matched features. 

The use of a maximum number of extracted features with a 

random decimation procedure has a direct impact on the total 

number of matched features. Although the threshold for blob 

response is varied of a factor ten (from 10,000 to 100,000), 

there is no significant change in the final number of features. 

Indeed, the matched feature for the different pairs cannot be 

more than 8,999 (in the current implementation). This choice is 

a prefixed parameter at the moment, but its variability will be 

addressed in future work. 

Figure 2 shows the corresponding connection graphs that give 

an overall graphical representation about the structure of 

corresponding points in the data set. Results show several 

connections for the proposed multi-source data set, where in 

some cases the maximum number of features for a single pair 

(8,999) was reached.  

It should be mentioned that a low threshold increases the 

number of points between weak image combinations (e.g., 

images 1-2, 2-3, 3-4) whereas does not modify strong 

connections (e.g., images 4-5). 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7, 2014
ISPRS Technical Commission VII Symposium, 29 September – 2 October 2014, Istanbul, Turkey

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-7-23-2014 25



 

Blob threshold 100,000 
932 features 595 features 110 features 9,075 features 9,805 features 

     
 

 

(b) (c) (d) (e) 

Blob threshold 70,000 

1,478 features 817 features 219 features 9,380 features 10,936 features 

     
(a) (b) (c) (d) (e) 

 

Blob threshold 40,000 
2066 features 1,512 features 454 features 9,638 features 11,577 features 

     
(a) (b) (c) (d) (e) 

 

Blob threshold 10,000 
4,265 features 4200 features 822 features 11,546 features 14,958 features 

     
(a) (b) (c) (d) (e) 

 

Figure 1. Multi-image features matched with a variable threshold for the blob detection. (a) Terra/ASTER ID #1; (b) EO-1/ALI ID #2; (c) 

EO-1/ALI ID #3; (d) Landsat-5/TM #4; (e) Landsat-5/TM #5 

 
Blob threshold 100,000 Blob threshold 70,000 Blob threshold 40,000 Blob threshold 10,000 

(a) (b) (c) (d) 

 

Figure 2. Connection graphs for the affine mapping function computed for different blob detection thresholds. 
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The estimation of registration parameters was carried out for the 

different mathematical models. The multi-image corresponding 

features used in Least Squares adjustment correspond to the 

threshold combinations illustrated in Figures 1 and 2.  

Although different geometric models were described in section 

2.2, the resulting systems of equations are linear. The only 

exception is the approach based on the similarity 

transformation, where a solution for linearization can be found 

in Barazzetti et al. (2014b).  

The general problem can be solved via Least squares obtaining 

the unknown parameter vector (transformation parameters and 

features for slave-to-slave pairs reprojected on the reference) 

and the variance-covariance matrix. Figure 3 shows the 

registration results using different mapping functions and 

different thresholds used for blob extraction.  

The sigma-naught of least squares adjustment showed a sub-

pixel accuracy, that was better in the case of low thresholds.  

 

 

 
 

Figure 3. Multi-image registration results using different 

mapping functions and thresholds for blob calculation. Image 

ID #5 was assumed as reference image. 

 

 

The (small) improvement achieved with a low threshold can be 

due to the limited number of points extracted in this 

configuration. These features have a better response and 

therefore are more distinctive. The precision of localization (x, y 

pixel coordinates) is better and gives an overall improvement of 

the global registration.  

On the other hand, it should be mentioned that the use of a high 

threshold leads to a small worsening of registration precision. 

Sub-pixel precision was always achieved and points had a more 

homogenous distribution in the data set. 

The results obtained for the proposed case study (images 

already terrain corrected) showed that all the proposed 

geometric model are valid for data registration because data are 

mainly affected by a similarity transformation, notwithstanding 

slightly better results were obtained with high order polynomial 

implementations.  

 

 

5. CONCLUSIONS 

This paper describes a new method for the registration of multi-

source satellite images with medium geometric resolution. 

Some experimental tests were accomplished using a medium-

resolution data set made up of Terra/ASTER, Landsat-5/TM 

and EO-1/ALI multispectral images collected during over a 

period of twelve years. 

The multi-image registration technique proved to be resistant to 

changes in scale, land-cover, illumination conditions and 

atmospheric effects. The use of the different thresholds set in 

the blob calculation phase, the ratio of descriptors vector, the 

maximum numbers of points in image pairs, and the 

normalization of pixel coordinates was investigated as well. 

Experimental results showed that a low threshold for blob 

detection provided only a little improvement of the solution 

(from 0.6 to 0.4 pixels). On the other hand, restrictive thresholds 

correspond to less homogenous point distribution in the images, 

with a less reliable estimate of transformation parameters.  

The advantage of high thresholds concerns the fast data 

processing, that mainly depends on the number of images and 

points. On the other hand, these issues can be solved with ad-

hoc implementations based on intelligent strategies for keypoint 

description and matching. This means that a moderate 

thresholds should be preferred, as they provide better geometric 

point distributions without significantly degrading the overall 

accuracy of image alignment.  
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