The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7, 2014
ISPRS Technical Commission VII Symposium, 29 September — 2 October 2014, Istanbul, Turkey

ORDINAL CLASSIFICATION FOR EFFICIENT PLANT STRESS PREDICTION IN
HYPERSPECTRAL DATA

J. Behmann®, P. Schmitter, J. Steinriicken, L. Pliimer
Institute of Geodesy and Geoinformation, University of Bonn, Meckenheimer Allee 172, Bonn, Germany, behmann @igg.uni-bonn.de

Commission VII, WG VII/3

KEY WORDS: Hyper spectral, Classification, Close Range, Agriculture, Feature

ABSTRACT:

Detection of crop stress from hyperspectral images is of high importance for breeding and precision crop protection. However, the
continuous monitoring of stress in phenotyping facilities by hyperspectral imagers produces huge amounts of uninterpreted data. In
order to derive a stress description from the images, interpreting algorithms with high prediction performance are required. Based on
a static model, the local stress state of each pixel has to be predicted. Due to the low computational complexity, linear models are
preferable.

In this paper, we focus on drought-induced stress which is represented by discrete stages of ordinal order. We present and compare five
methods which are able to derive stress levels from hyperspectral images: One-vs.-one Support Vector Machine (SVM), one-vs.-all
SVM, Support Vector Regression (SVR), Support Vector Ordinal Regression (SVORIM) and Linear Ordinal SVM classification. The
methods are applied on two data sets - a real world set of drought stress in single barley plants and a simulated data set. It is shown,
that Linear Ordinal SVM is a powerful tool for applications which require high prediction performance under limited resources. It is
significantly more efficient than the one-vs.-one SVM and even more efficient than the less accurate one-vs.-all SVM. Compared to the

very compact SVORIM model, it represents the senescence process much more accurate.

1. INTRODUCTION

Crop stress is induced by environmental factors (e.g. drought,
out-of-range temperatures or pathogens) which exceed a critical
level (Gaspar et al., 2002, Taiz and Zeiger, 2010). Under pro-
longed stress, crop productivity is impaired significantly (Gas-
par et al., 2002). In order to meet the demand of agricultural
output for an increasing world population (FAO, 2009), agricul-
tural science is challenged to enhance crop productivity by im-
proving methods of crop management (Davies et al., 2011) and
by breeding crops with higher stress tolerance levels (Tester and
Langridge, 2010). Breeding and crop management will benefit
from phenotyping information: the detection, quantification and
visualization of a plant’s stress responses.

In this paper, we focus on drought stress, one of the biggest
challenges in global crop production (Pennisi, 2008, Tuberosa
and Salvi, 2006). If water shortage exceeds a critical level, a
plant initiates stress responses which result in biochemical and
morphological adaptations. An important response process, in
which resources are reallocated within the plant, is leaf senes-
cence. Leaf senescence denotes the final phase of leaf develop-
ment and may be induced prematurely under drought stress (Lim
and Nam, 2007). It is a spatiotemporal process, which allows the
plant to attain the reproductive state under drought conditions.
The process is characterized by a degradation of pigments and
the relocation of nutrients. It develops continuously and proceeds
in patterns from older to younger leaves and, within a leaf, from
the tip towards the leaf base (Guiboileau et al., 2010, Lim and
Nam, 2007). Furthermore, the senescence process forms an or-
dinal order mainly related to pigment degradations (Merzlyak et
al., 1999).

In contrast to some plant diseases, drought stress induced senes-
cence does not manifest itself in local symptoms. The reallo-
cation of resources involves the entire plant - and occurs in all
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Figure 1: RGB visualization and labeling of a hyperspectral im-
age of an barley plant.

plants, even the well watered, to a specific degree. Drought stressed
plants are characterized by early and accelerated leaf senescence
(Munné-Bosch and Alegre, 2004). The aforementioned degra-
dation of pigments (particularly chlorophyll) alters the ratio be-
tween reflected, absorbed and transmitted radiation (Blackburn,
2007). These changes in spectral characteristics can be observed
non-invasively by hyperspectral sensors - even in early stages.
The detection and distinction from normal variations requires spec-
tral information with high degrees of temporal and spatial resolu-
tion.

The analysis of such series of hyperspectral images is challenging
- especially in real-time applications. The occurrence of differ-
ent degrees of leaf senescence in a single plant requires analysis
methods which predict the stress state for each pixel. The aggre-
gation of these local states compose a global pattern which allows
conclusions about a plant’s health state (Fig. 1). On pixel scale
the early stress stages are invisible for the human eye and, there-
fore, labels are extracted by an unsupervised labeling (Behmann
et al.,, 2014). The continuous senescence process is discretized
into classes which are ordered on an ordinal scale. The contex-
tual knowledge about this ordinal scale can be integrated into the
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model selection resulting in adapted and more efficient prediction
methods.

In this paper, we present an evaluation of five supervised pre-
diction methods for deriving the local stress levels: One-vs.-one
Support Vector Machine (SVM), one-vs.-all SVM, Support
Vector Regression (SVR), Support Vector Ordinal Regression
(SVORIM) and Linear Ordinal SVM classification. In order to
compare their accuracy and efficiency, the methods are applied
on two data sets - a real world set of drought stress in barley
(Hordeum vulgare) and a simulated data set. In the barley data
set, the spectra are represented by the values of five Vegetation
Indices (VIs).

The rest of this paper is organized as follows: In Section 2 we will
describe the data sets used; the aforementioned prediction algo-
rithms will be introduced in Section 3. In the fourth section, the
results of applying the algorithms on the data sets are presented
and discussed. The paper ends in Section 5 with a conclusion.

2. DATA SET

In this study, we compare the performance of different predic-
tion algorithms on two data sets. The first data set consists of
simulated features and partial overlapping classes with a perfect
ordinal order. The second data set consists of VIs derived from
hyperspectral images of barley plants under drought stress. The
selection of these data sets intends to show the theoretical advan-
tages of ordinal classification and how much benefit remains in
real world applications.

2.1 Simulated ordinal data
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Feature 1

Figure 2: The simulated ordinal data set consists of six Gaussian
distributed classes. Each class is represented by a different color,
the centroids of the classes are represented by black squares.

The simulated data set consists of six classes and represents a pro-
totype of ordinal ordered data. It is used to visualize the discrim-
inant functions of the applied prediction algorithms and to show
their relevant differences. In order to enable the visualization of
the whole feature space, it contains only two features. The ordinal
structure is realized by arranging the classes on an arc as shown
in Fig. 2. The class centers c; have the same pair-wise distance
of 1 and the samples are Gaussian distributed by ~ N (c;, 0.2).
The standard deviation of 0.2 maintains the ordinal order of the
classes and, on the other hand, allows distinguishing different re-
sult qualities. The data set consists of 5000 labeled instances;
10% are used as training data, the remaining as test data.
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Figure 3: Centroids of the cluster for the labeling of the bar-
ley data set. The transition from blue to magenta represents the
senescence states of the corresponding spectra.

2.2 Hyperspectral features of drought stressed barley plants

The real-world data set is derived from time series of hyperspec-
tral images which have been described in detail in (Behmann et
al.,, 2014). In that study, we aimed to detect drought stress in-
duced changes in single barley plants as early as possible. Hy-
perspectral images were recorded daily for a period of 20 days
by a SOC700 hyperspectral imager (Surface Optics, USA). The
SOC700 observes the reflectance characteristics from 430 nm to
890 nm in 120 bands; each hyperspectral image has a spatial
resolution of 640 x 640 pixels. The images were preprocessed
by removing the background using a combination of clustering
and setting a threshold as described in (Behmann et al., 2014).
Furthermore, the spectral range is reduced due to noise effects
at spectral border regions. Examples of hyperspectral images
and the spatial variability of the senescence process are shown
in Fig. 1 and Fig. 9.

The pixels are labeled by an unsupervised labeling, introduced in
(Behmann et al., 2014). The unsupervised labeling uses k-Means
to extract k ordinal ordered classes whose centroids represent the
ordinal order mainly related to chlorophyll degradations of the
senescence process. The classes are labeled in ascending order
from 1 to k and the labels are assigned to single pixels.

In this study, the labeling uses £ = 10 classes and the instances
were sampled without spatial context. The final barley data set
comprises 211500 test and 21150 training instances, each repre-
sented by the values of five Vegetation Indices (VIs). The used
VIs were selected by the ReliefF algorithm (Kononenko, 1994)
from a basic feature set of 20 VIs (Exelis Visual Information So-
lutions, 2012) to reliably exclude irrelevant features and are given
in Tab. 1.

Name Formula Reference
ARVI Rs00—2(Re70—Fa90) (Kaufman and Tanré, 1996)
R8%+2%R670*R490) ’
RGRI m (Gamon and Surfus, 1999)
RENDVI % (Gitelson and Merzlyak, 1994)
SumGreen % Z;’igsoo R; (Gamon and Surfus, 1999)
PSRI % (Merzlyak et al., 1999)

Table 1: The selected VIs included in the barley data set ordered
descending by their ReliefF score
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Figure 4: Decision boundaries of the one-vs.-one SVM classifi-
cation model for the simulated data set

3. PREDICTION ALGORITHMS

In machine learning, various supervised algorithms are available

for the deduction of models from annotated/labeled training data

and the prediction of target variables for unlabeled test data. Clas-

stfication algorithms predict discrete classes whereas regression

algorithms predict continuous target values. Ordinal classifica-

tion relies on the assumption of ordinal ordered but discrete classes
with a corresponding structure in the feature space.

3.1 Multiclass SVM classifiers

The Support Vector Machine (SVM) (Cortes and Vapnik, 1995)
is an established classification method that determines the opti-
mal, linear discriminant function between two classes based on
the maximum margin principle. Extensions of this method han-
dle overlapping classes and even non-linear discriminant func-
tions. Multi-class tasks are handled in general by decomposing
the multi-class problem in multiple binary class problems (Duan
and Keerthi, 2005). The most common decomposing approaches
are the one-vs.-one and the one-vs.-all approach.

3.1.1 One-vs.-one SVM The one-vs.-one SVM is the most
common multiclass approach. It is based on pairwise classifica-
tion, separating all classes from each other (Fiirnkranz, 2002). An
example of the decision boundaries for the simulated data set is
shown in Fig. 4.

In the learning step, a discrimination function is optimized for
each class pair resulting in %ﬁl) discrimination functions for
n classes. Each optimization uses only the training samples of
the regarded pair of classes. The optimization is quite efficient
because the amount of training data for a single optimization is
small (Duan and Keerthi, 2005). However, the number of opti-
mization procedures increases quadratically with the number of
classes. A high number of classes result in many, potential un-
necessary, discriminate function.

The classification follows the max wins voting principle in which
each discrimination function is applied to the sample (Duan and
Keerthi, 2005). Every winning class gets a vote and the class
with the highest number of votes is selected as predicted class.
This principle is very robust because the contribution of a single,
probably misleading discriminant function, is limited. However,
for each prediction all of the w discrimination function
have to be evaluated. For an improved prediction performance,
approaches which can reduce the application of discrimination

functions (e.g. directed acyclic graph SVM) were proposed (Platt
et al., 1999).

3.1.2 One-vs.-all SVM The one-vs.-all approach consists of
discrimination functions which separate one class from all other
classes, wherefore it is also called one-vs.-the-rest approach. The
discriminant functions are determined by separating the training
samples of one class from the aggregated training samples of all
other classes. An example of the decision boundaries for the
simulated data set is shown in Fig. 5. The model is more com-
pact as only n discriminant functions are needed to separate n
classes (Duan and Keerthi, 2005). The classification is based on
the winner takes all principle, where the instance is assigned to
the class with the maximum probability (Platt, 1999) or, alterna-
tively, the highest classification score (normalized distance to the
discriminant function). Using posterior probabilities, a stochastic
interpretation is enabled and in some applications accuracy im-
provements are possible. On the other hand, the determination
of the sigmoid functions is computational expensive and addi-
tional parameters are required. Therefore, the use of the classi-
fication score is preferred in this study focusing the prediction
performance.
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Figure 5: Decision boundaries of the one-vs.-one SVM classifi-
cation model for the simulated data set

The one-vs.all multiclass approach is less common than the one-
vs.-one. It is less robust against outliers because a single mis-
leading discriminant function can impair the result quality sig-
nificantly (Duan and Keerthi, 2005). However, using well-tuned
SVM classifiers comparable result qualities are achievable (Ritkin
and Klautau, 2004). Each of the binary discriminant functions
suffers from a class imbalance since one class is separated from
all the others. Moreover, the usage of all training data for each op-
timization can reduce the performance in the training step (Duan
and Keerthi, 2005). Whereas in the one-vs.-one approach only
two classes contribute to a discriminant function, in the one-vs.-
all approach all classes contribute to all discriminant functions.
However, the number of SVM evaluations is lower than in the
one-vs.-one approach: each of the discriminant functions has to
be evaluated for a prediction but the number of functions is lower,
especially for higher numbers of classes.

3.2 Support Vector Regression

The main difference between Support Vector Regression (SVR)
and SVM is the type of target variable. Regression algorithms
predict continuous, real-valued labels in contrast to the discrete
classes of classification models (Smola and Scholkopf, 2004).
This is reflected in the optimization algorithm which adapts the
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Figure 6: Decision boundaries of the Support Vector Regression
model at the simulated data set. The continuous predictions are
rounded to an integer to extract the decision boundaries.

basic principle of the binary SVM and results in similar formulas
(Vapnik et al., 1997). The formulation is generalizable to non-
linear applications by the well-known kernel trick which implic-
itly maps the feature vectors x; to a higher dimensional feature
space and determines their distance K (x;, x;) in this space.

The regression function is parameterized by the support vectors
(SVs) x;, the Lagrangian coefficients o and «; and the offset b
to

1

y=f(,a,0")=> (af —a)K(z,z:)+b. ()

1=1

The primal optimization function shows the regression approach
of the SVR. It is searched for a function that deviates up to a
distance € for most of the trainings samples and is as flat as pos-
sible (Smola and Scholkopf, 2004). The flatness maximizes the
robustness against variations of single features of the input vector
z;. The complexity of the regression model is controlled by the
parameters: tolerance e, error weight C' and potentially additional
kernel parameters.

The SVR was designed to find a regression function based on
training instances which are continuously distributed in the fea-
ture values as well as the labels (Smola and Scholkopf, 2004).
The discrete classes of the ordinal data sets aggregate a high num-
ber of instances to a single label value and request a step function.
The SVR may approximate the function but its smoothness condi-
tion will smooth out the step borders. The SVR is able to model
also ordinal data sets but the approximation errors will reduce
the prediction quality for ordinal classification data sets. On the
other hand, the smooth transition between the classes can be used
to represent the uncertainty at the class borders without explicit
probability modeling.

The kernels provide linear and non-linear model types. The linear
SVR is an extremely compact model but achieves an inferior ac-
curacy for both data sets. Therefore, we applied the SVR with a
radial basis function (rbf) kernel. This model is able to represent
the ordinal transition with a competitive accuracy (Fig. 6). The
increased accuracy is accompanied by a higher model complexity
due to the non-linear kernel function.

3.3 Ordinal classification

The ordinal classification is applicable in scenarios with discrete
labels and known class order (Dembczynski et al., 2008). As it

is a special case of the general multi-class scenarios, the intro-
duced general prediction methods can be used. Prediction meth-
ods which are more adapted to the ordinal structure utilize the
additional knowledge about the data set (Behmann et al., 2014)
and achieve higher performance measurements. In general, the
information about the ordinal data structure is used to reduce the
model size by omitting model parts which are not required (Chu
and Keerthi, 2007). Different approaches were developed which
differ in specific assumptions on data characteristics and the ro-
bustness against non-ordinal aspects.

3.3.1 Support Vector Ordinal Regression Support Vector Or-
dinal Regression (SVORIM) was developed by (Chu and Keerthi,
2007) in an explicit and an implicit formulation. Both formula-
tions determine ¢ — 1 parallel hyperplanes that separate c classes
and preserves the natural ordinal ordering. The parallelism of
the hyperplanes reduces model size and complexity significantly.
The linear model comprises only a single weight vector w for
the whole model and a threshold b; for each of the ¢ — 1 hyper-
planes. The optimization is conducted by an adapted sequential
minimal optimization (SMO) algorithm, optimizing the ranking
of the training instances (Chu and Keerthi, 2007).
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Figure 7: Support Vector Ordinal Regression is characterized by
parallel discriminant functions resulting in a very compact model.

Fig. 7 shows the position and the orientation of the discriminant
functions for the simulated data set. In this context, it becomes
apparent that the model is limited regarding non-linear ordinal
processes or non-ordinal aspects. However, the SVORIM pre-
diction step is extremely efficient and comprises only a multi-
plication with the weight vector and the application of the ¢ — 1
thresholds. The Support Vector Ordinal Regression represents the
most compact model with the lowest model complexity but the
low complexity is accompanied by a low adaptability to deviat-
ing data characteristics. This may reduce the prediction accuracy
on real-world data sets.

3.3.2 Linear Ordinal SVM classification The Linear Ordi-
nal classification is defined by discriminant functions between
classes which are neighboring on the ordinal scale like at the Sup-
port Vector Ordinal Regression (Chu and Keerthi, 2007). Deviat-
ing from this approach, the hyperplanes are not forced to be par-
allel but are optimized locally (Dembczynski et al., 2008). The
number of discriminant function remains at ¢ — 1 but the number
of model parameter is significantly higher because each discrimi-
nant function has an individual weight vector w; (Behmann et al.,
2014).

Figure 8 shows the discriminant functions for the simulated data
set. The improved flexibility of the model is apparent but in the
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Figure 8: Decision boundaries of the Linear Ordinal SVM clas-
sification model for the simulated data set. The overlapping dis-
criminant functions are combined by a decision tree for an unam-
biguous result.

regions without training instances, the discriminant functions in-
tersect each other. Without additional information, these regions
of intersections are undefined. Therefore, a tree structure is intro-
duced to unambiguously assign a class for each part of the feature
space (Behmann et al., 2014). In the tree structure a hierarchy
of classes is established by an interval bisection approach. The
discriminant functions can be represented by various classifica-
tion approaches, e.g. SVM, random forests, logistic regression or
naive Bayes.

In this study, we used linear SVMs to enable a reliable compara-
bility to the other approaches. In the training step, each discrimi-
nant function is optimized on its own with its individual SVM pa-
rameter Ci
(Behmann et al., 2014). The Linear Ordinal SVM classification is
represented by the aggregate of all discriminant functions and the
tree structure is used for class prediction. In the prediction, the
number of evaluation steps is reduced by using the tree structure.
Starting from the tree root, the classification is done in log(c)
steps.

The concept of Linear Ordinal SVM lies between the flexible
one-vs.-one multi-class approach and the extreme compact but
inflexible Support Vector Ordinal Regression (Chu and Keerthi,
2007). It is able to represent also non-linear ordinal processes
but it still relies on the ordinal data characteristics. Non-ordinal
aspects cannot be represented due to the reduced number of dis-

criminant functions compared to the generic multi-class approaches.

The Linear Ordinal SVM classification results in much more com-
pact models compared to one-vs.-one classification and may adapt
to real-world data sets with only slight losses in accuracy.

4. RESULTS AND DISCUSSION

We evaluate the presented prediction algorithms on two differ-
ent data sets. The simulated data set contains ordinal classes in
a two-dimensional visualizable feature space. The barley data
set contains pixel values with five VIs as features and a ordinal
senescence class. This real world data may contain minor non-
ordinal aspects and the prediction algorithms have to deal with
significant noise effects.

4.1 Simulated ordinal data

For the simulated data set, the results of the prediction algorithms
are very close with the exception of the one-vs.-all SVM (Fig.

- o0
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Figure 9: Confusion matrix and predicted labels by the Linear
Ordinal SVM for a hyperspectral image of a barley plants

10 and Tab. 2). The visualization in Fig. 5 shows that the un-
derlying linear model is not able to separate a single class from
the remaining classes. As a result, only the classes 1 and 6 are
classified correctly, whereas the remaining classes are classified
at random. This effect appears always, if a class is not linearly
separable from the remaining classes which is in many cases re-
lated to a disproportion between the number of features and the
number of classes (2 against 6 in the simulated data set). Slight
drawbacks are visible at the SVORIM classification which is not
flexible enough to follow the arch-shaped ordinal class distribu-
tion. The limitation to parallel decision functions requires data
with a linear development in each of the features over the whole
ordinal structure. The SVR achieves good results for the simu-
lated data set due to the flexible rbf kernel. However, the model
size increases drastically which impedes the competitiveness to
the other prediction methods regarding prediction efficiency (Tab.
2). The one-vs.-one SVM and the Linear Ordinal SVM are simi-
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Figure 10: Confusion matrix of the prediction algorithms for the
simulated data set with a pure ordinal structure.

lar regarding accuracy and also the positions of class boundaries
(Fig. 4 and 8). This is caused by the characteristic of both meth-
ods to use pairwise discriminant functions. In case of the Linear
Ordinal SVM the unneeded discriminant functions are omitted
whereas the one-vs.-one approach derives discriminant functions
between all pairs of classes. Different characteristics appear in
the overlapping parts of the feature space. Here, the one-vs.-one
approach decides based on class voting whereas the Linear Ordi-
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Method Accuracy [%] MSE  # evaluation functions  # model parameter
one-vs.-one SVM 78 0.22 15 45
one-vs.-all SVM 54 0.49 6 18
Support Vector Regression (rbf) 76 0.18 1 793
Support Vector Ordinal Regression 74 0.26 5 7
Linear Ordinal SVM 78 0.23 5 15

Table 2: Performance overview on the simulated data set
Method Accuracy [%] MSE  # evaluation functions  # model parameter
one-vs.-one SVM 83 0.80 45 270
one-vs.-all SVM 46 1.90 10 60
Support Vector Regression (rbf) 66 0.72 1 43986
Support Vector Ordinal Regression 47 1.02 9 14
Linear Ordinal SVM 70 0.82 9 54

Table 3: Performance overview on the barley data set

nal SVM uses a predefined tree structure.

The simulated data set is suitable to compare the different pre-
diction algorithms and to highlight specific characteristics. As it
shows a pure ordinal process the algorithms are compared under
perfect conditions. In contrast, real world data sets contain noise,
irrelevant processes and non-ordinal aspects. The performance
of the algorithms depends significantly on the robustness against
such deviations from perfect conditions.

4.2 Data set: Senescence in barley

The results for the barley data set represents the performance in
real world applications (Fig. 11). The differences between the
prediction algorithms increase compared to the simulated data
set, presumably due to non-ordinal aspects (Tab. 3).
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Figure 11: Confusion matrices for the described barley data set.

The prediction algorithms can be separated in two groups: a good
accuracy is achieved by the on-vs.-one SVM (83%), the SVR
(66%) and the Linear Ordinal SVM (70%); an inferior accuracy
is achieved by the on-vs.-all SVM (46%) and the Support Vector
Ordinal Regression (47%).

The loss of accuracy of the SVORIM compared to the remain-
ing methods is significant and is related to the data characteris-
tics. The real-world data incorporating non-linear development
of features over the ordinal scale cannot be described by parallel
five-dimensional hyperplanes.

Again, the lowest accuracy is achieved by the one-vs.-all SVM.
This effect is most probably related to the low number of fea-
tures (five features and ten classes). Linear discriminant functions
seem not to be able to separate one of the ten senescence classes
from the others. This effect can be faced by using more features
but this would increase data volume as well as model complexity.

The rbf SVR reaches competitive accuracy comparable to the
one-vs.-one SVM and the Linear Ordinal SVM. The MSE value
is the lowest of all methods related to the continuous predictions.
Such output enables further evaluations like probability extrac-
tion and a more detailed visualization. However, its non-linear
kernel increases the model size up to an factor of 800. Such a
model size prevents a high-throughput prediction as it is required
for the efficient evaluation of hyperspectral images. Therefore,
it is not suited to be applied for the introduced phenotyping sce-
nario.

The one-vs.-one SVM and the Linear Ordinal SVM reach an al-
most identical MSE value. However, the accuracy of the one-vs.-
one approach is 13% higher. The combination of both result qual-
ity measurements reveals the classification characteristics. The
one-vs.-one classifies more test samples correctly but if a test
sample is misclassified it is more likely assigned to a more distant
class. In contrast, the Linear Ordinal SVM assigns the misclas-
sified samples in the most cases to one of the two neighboring
classes. For the detection of disperse drought stress effects, the
overall impression is most important (Fig. 9). It is not or only lit-
tle affected by misclassifications to neighboring classes because
these classes have nearly the same meaning with regard to the
senescence level. Therefore, the higher accuracy of the one-vs.-
one SVM approach has only slight positive effects on real-world
applications but this advantage is at the expense of a five times
higher number of model parameters.

4.3 Prediction efficiency for high-throughput phenotyping

This study focuses the prediction efficiency needed for high through-

put phenotyping systems. Such systems measure continuously
the reflection characteristics of plants generating huge amounts
of data. They require methods to compress quickly the observed
data to valuable information. Fig. 12 opposes the reached accu-
racy to the number of model parameters related to the required
prediction effort. The one-vs.-one method reaches the highest ac-
curacy but needs 5 times more model parameters for 13% more
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accuracy compared to the Linear Ordinal SVM. Therefore, the

user has to choose which characteristic is in the focus. The SVORIM

approach is extremely fast but has significant drawbacks in ac-
curacy whereas the one-vs.one SVM approach reaches the best
accuracy using 20 times more model parameter. The Linear Or-
dinal SVM is a compromise between these extrema using a low
number of model parameters and reaching an accuracy suitable
for many applications (Behmann et al., 2014).
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Figure 12: Accuracy related to model size at the example of the
barley data set.

5. CONCLUSION

We compared the ordinal classification with established algorithms
for classification and regression. The ordinal classification turns
out to be a high performant method for the classification of or-
dinal data. The one-vs.-one multiclass SVM is the only method
with higher accuracy but this is accompanied by a much higher
model complexity resulting in 15 times more evaluation steps.
The linear regression methods do not reach a comparable accu-
racy but they are very compact and fast applied. This example
of ordinal data demonstrates that an adaptation of classification
algorithms to the specific data characteristics improves the per-
formance drastically. Linear Ordinal SVMs have the potential
to be applied in upcoming high-throughput phenotyping facilities
which will observe a higher number of plants with a larger spatial
and temporal resolution. Especially under limited resources like
on unmanned aerial vehicles (UAV) or on mobile devices, it will
demonstrate the advantages of including knowledge for compact
models.
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