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ABSTRACT:

The goal of this paper is to estimate a denoised phase image from the observed noisy SAR interferogram. We proposed a linear model
to obtain a sparse representation of the interferomteric phase image. The main idea is based on the smoothness property of the phases
inside interferometric fringes which leads to get a sparse image when applying the gradient operator twice, along = or y direction,
on the interferogram. The new sparse representation of the interferometric phase image allows to transform the denoising problem
to an optimization one. So the estimated interferogram is achieved using the approximate message passing algorithm. The proposed

approach is validated on different cases of simulated and real interferograms.

1. INTRODUCTION

The SAR interferogram (InSAR) filtering is a fundamental step
before phase unwrapping process. Several filters have been pro-
posed last decades, many of them are spatial filters (Lee et al.,
1998), (Baran et al., 2003), (Abdallah and Abdelfattah, 2013) or
filters opertaed in wavelet domain (Lopez-Martinez and Fabre-
gas, 2002), (Bian and Mercer, 2011) and (Chang et al., 2011).
Since the compressed sensing (CS) technique was invented by
Donoho in 2006 (Donoho, 2006), it has been used in the SAR
images context. Most of the proposed appraoches were intended
to the polarimetric SAR data such as (Si et al., 2009), (Lin et al.,
2010) and (Li et al., 2012). Other approaches are dedictaed to
the object detection in the SAR images (Anitori et al., 2013) and
(Ahmad et al., 2013). In the case of the InSAR denoising, few fil-
tering algorithms are proposed and they are mostly based on the
sparsity context rather than the CS technique. For example, mary
et al. proposed a sparse denoising approach of the interferomet-
ric data by extracting geometrical features of the images (Mary
et al., 2010). In (Hao et al., 2013), the authors used a sparse
representation and a generated dictionary to estimate the noise
free phase from a noisy InSAR. In this paper, we propose a new
approach for interferometric phase image denoising using sparse
coding. Our idea is based on the fact that the original phase image
without noise should be smooth within the fringes. This property
allows us to obtain a sparse representation of the image to esti-
mate if we apply the gradient operator. The elements of the result
image will be close to 0 except the pixels in the edges of fringes.
Next, the filtered interferometric image can be estimated by solv-
ing the [y minimization problem of the obtained sparse represen-
tation. This minimization problem is achieved using the approx-
imate message passing algorithm (Vila and Schniter, 2012). The
rest of this paper is organised as follows. Section 2 is dedicated
to present the proposed sparse model and the formulation of the
optimization problem, section 3 presents the experimental results
and discussions and we finish by concluding in section 4.

2. THE PROPOSED SPARSE MODEL FOR
INTERFEROGRAM DENOISING

In this section we present a model of the interferometric phase
image based on a sparse representation. The observed noisy in-
terferogram ¢ can be considered as a M x N image as following
(Lee et al., 1998):

p=0¢+n (€))

where ¢ denotes the interferometric phase image without noise
and n is the noise. The denoising problem aims to estimate the
phase ¢ from the observed one ¢. Our goal is to rewrite the ex-
pression of ¢ with a sparse representation. For this reason, we as-
sume that the phase image ¢ should be smooth inside the fringes
i.e the difference between two neighbours phases in the same
fringe should be small. In fact, the phase stationarity in homoge-
neous areas of the interferogram is ensured by the removal of the
orbital component from the phase images before the generation
of the interferometric phase image (Deledalle et al., 2011). But,
in case of almost reliefs, the variation of the phase within a given
interferometric fringe could be important and our hypothesis is
not necessary valid. For this reason, and in order to insure the
applicability of the sparse representation we apply the gradient
operator twice. So we use the gradient operators twice along x or
y direction to compute the phase difference between neighbours
pixels as follows:

0264, 5) = (i, §) — 26(i — 1,5) + (i — 2,5)

We obtain the second order derivative (9°) of the interferometric
phase image ¢ using a simple linear formulation:

Pp = S, = ¢G7
{ 026 = S, = G )
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Figure 1: Flowchart of the proposed approach for SAR interferometric denoising via sparse recovery.
where G is a M x M matrix having the following structure: According to (3) we can write:
1 0 0 0 0
—12 12 ? 0 5 8 ¢col - ‘I}Scol (7)
G = - @
0 1 -2 10 And the final sparse representation of (1) becomes:
0 0o 1 -2 1
An alternative of this sparse representation could be the Laplacien
of the interferometric phase. However, the linear expression of Peot = WSeol + Necol )

that is very complicated.

So, as mentioned above S, and S, can be considered as sparse
matrices whose almost of their elements are close to 0 except the
pixels located at the edges of the fringes. Since the treatments
along two directions are symmetric to each other, in the rest of
this paper we will interested only on y direction.

So now we can express the unknown phase image ¢ with a sparse

According to (7), the estimate of the noise free phase ¢ is given
by ¢cor = WScor When Sco; is the solution of the following lo
minimization problem with constrain:

representation using I' = G~! which is expressed as a lower
triangular matrix: N . . 2
Scol = ISI'ICIUILI ”Scol”O SUbJeCt to HSDcol - \I]Scol ”2 S € (9)
1 0 0 0
2 1 0 0
'=(3 2 1 0 (5)  where ||Scot||o denotes the norm [o that gives the number of nonzero
M 3 2 1 elements of s and € is a given parameter to control the error rate.

The next step is to construct the vectors ¢.o; and ¢.o; containing
respectively the elements of ¢ and ¢ arranged column by column.
By the same way, we generate the vectors Sco; and nco from Sy
and n respectively. So the size of these vectors is M N x 1. Also,
we define the diagonal matrix ¥ € RMN*MN a5 following:

r o ..o
0o T .. 0

v=1. . . . (6)
0 0 r

By minimizing the number of nonzeor of S¢.;, the homogeneous
regions in the interferogram are filtered and only the phase jumps
between different fringes are taken into account. The minimiza-
tion problem (9) is NP-hard meaning that it is very difficult to
reach the exact solution. But the problem can be solved using /1
approximation or if we use a greedy algorithm such as the Match-
ing Pursuit (Mallat and Zhang, 1993) or the Basis Pursuit (Chen
et al.,, 2001). In this paper we used a recent greedy algorithm
called Approximate Message Passing (AMP) algorithm proposed
by Vila et al. (Vila and Schniter, 2012) to solve the /|y minimiza-
tion problem in (9). The choice of AMP is based on the fact that it
is a fast algorithm with high probability to find a sparsest solution
(Mohimani et al., 2010).
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Figure 2: Simulated interferograms filtering results. From top to bottom: cone, pyramid, Gaussian variation, first meshgrid function
and second meshgrid function. From left to right: the original interferograms without noise, the corresponding noisy interferograms

with 0% = 0.8 and the filtered results with the proposed approach.

3. EXPERIMENTAL RESULTS AND DISCUSSIONS

3.1 Results from simulated interferograms

We begin our validation tests with five different simulated inter-
ferograms with 512 x 512 pixels size representing respectively a
cone, a pyramid, a Gaussian variation and two phase images gen-
erated using meshgrid function in MATLAB as shown in Fig. 2.
First, we filtered the simulated interferograms affected by a white
Gaussian noise with 02 = 0.8. Fpr ¢, we assume that the error
rate between the estimated phase g?) and the observed one ¢ for
one pixel should not exceed 1J55- So for the whole phase image
with size N x N the global error rate e will be compute as the
sum of local error rate

N2 T 10
€ 1000 (10)

note that more details about the relationship between the noise
variance and the estimaton error threshold is given in (Hongxing

et al., 2013).

For the filtering results, we notice that the proposed approach
reduce noise inside fringes very well. It denoise perfectly the
homogeneous areas of the interferograms and therefore it gives
lower Mean Square Error (MSE) values with respect to noise
level as shown in Table 1. Thus, the great advantage of the pro-
posed algorithm is that it preserves the edges of the fringes forms.
As quantitative comparison, we compute the MSE between the
original phase image without noise and the filtered interferograms
using FAMM (Abdelfattah and Bouzid, 2008), EWMF (Abdallah
and Abdelfattah, 2013), WInPF (Lopez-Martinez and Fabregas,
2002), NL-InSAR (Deledalle et al., 2011) and the proposed algo-
rithm. Table 1 shows the different MSE values when varying the
noise level. We notice that the proposed filtering approach gives,
globally, the best MSE values except in few cases.

3.2 Results from real interferograms
For the real SAR interferograms, we used four different phase im-

ages produced from SLC pairs of Radarsat-2, ERS-2, Envisat and
Cosmo-SkyMed satellites respectively. All informations about
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Figure 3: Real interferograms filtering results. The first column using Radarsat-2 interferogram and the second column using ERS
satellite and from top to bottom: the original interferogram produced from ASTER DEM, the observed noisy interferogram, filtered
with the proposed approach and the filtering error with respect to column 1.

these four InNSAR are available in (Ben Abdallah and Abdelfattah,
2013). All tested real images are 512 x 512 pixels size. Similar
to the simulated data, we consider the interferogram generated
by wrapping the Digital Elevation Model (DEM) provided by
ASTER Global DEM available in the Land Processes Distributed
Active Archive Center website (Land Processes Distributed Ac-
tive Archive Center, 2013) as the original interferogram without
noise. Note that since the four satellites, mentioned above, having
different spatial resolutions, we should make under or over sam-
pling to their InSARs to obtain the same resolution of ASTER’s
interferogram (30 x 30 meters). Next, we compare the filtering
results of the four InSARs with the reference one generated from
ASTER’s DEM. In Fig. 3, we illustrate our estimation result and
the corresponding error map. For the statistical comparison, the
second part of the Table 1 shows that the proposed approach gives
lower error rate for the four real InSAR except in the case of ERS
satellite data.

4. CONCLUSION

The main idea of the interferometric phase filter proposed in this
paper is to smooth the homogeneous regions within the interfro-
gram’s fringes. The low phase difference between pixels located
in the same fringe of the interferogram leads to obtain a sparse
signal when we applying the gradient operator. This transform
the denoising problem to a lp minimization problem which can
be solved using greedy algorithm. We used in this paper the
Approximate Message Passing (AMP) algorithm. The proposed
approach is tested and validated on simulated and real interfero-
grams and compared with two recent filters FAMM and EWME.
As future work, we will apply this approach to estimate the true
unwrapped phase value from the observed noisy interferogram.
This will be done by twice applying the gradient operator and the
Laplacien simultaneously.

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-7-37-2014 40



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7, 2014
ISPRS Technical Commission VII Symposium, 29 September — 2 October 2014, Istanbul, Turkey

Table 1: Mean Square Error (MSE) computed using different fil-
tering algorithms. The first part of table: MSE of simulated inter-
ferograms with different noise variances. The second part: MSE
between interferograms obtained using ASTER’s DEM and the
filtered ones.
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Hongxing, H., Bioucas-Dias, J. M., Katkovnik, V. and Wu, L.,

Image 0?2 | FAMM EWMF WInPF NL Proposed
0.5 0.462 0.417 0.781 1.249 0.450
Cone 0.8 0.722 0.616 1.541 1.334 0.581
1 1.205 1.027 2.047 2.249 0.929
0.5 0.672 0.694 0.719  0.755 0.542
Pyramid 0.8 1.233 1.031 1.520 1.244 1.147
1 1.654 1.651 2214 2.876 1.578
0.5 0.510 0.518 0.801 0.834 0.501
Gaussian 0.8 0.875 0.781 1.077 1.192 0.757
1 1.293 1.102 1.789  2.097 1.068
0.5 0.621 0.575 0.738  0.593 0.617
Meshgrid 1 | 0.8 0.887 0.789 1.387 1.702 0.783
1 1.267 1.083 2.831 2.333 1.035
0.5 0.424 0.413 0.780  0.739 0.377
Meshgrid 2 | 0.8 0.669 0.594 1.339 1.330 0.522
1 1.087 0.945 2.955 2.831 0.817
Radarsat-2 - 2.349 2.127 2.945 2.871 2.061
ERS - 0.999 2.272 2349  2.089 1.938
Envisat-2 - 3.000 2.553 3.066  2.967 2.476
Cosmo-SM - 2.603 2.174 3.498 3.231 2.169
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