
AUTOMATIC TRAINING SAMPLE SELECTION FOR A MULTI-EVIDENCE BASED 

CROP CLASSIFICATION APPROACH 
 

 

Menaka Chellasamy a, *, Ty P.A. Ferré b, Mogens Humlekrog Greeve a 

 
a Dept. of Agroecology, Aarhus University, Denmark- 8830 - (Menaka.chellasamy, MogensH.Greve)@agrsci.dk 

b Dept. of of Hydrology and Water Resources, University of Arizona, Tuscon, Arizona 85721-0011 - tyferre@gmail.com 

 

Commission VII, WG VII/4 

 

 

KEY WORDS: Crop, Classification, Training, Vector, Neural, Satellite, Imagery, Learning 

 

 

ABSTRACT: 

 

An approach to use the available agricultural parcel information to automatically select training samples for crop classification is 

investigated. Previous research addressed the multi-evidence crop classification approach using an ensemble classifier.  This first 

produced confidence measures using three Multi-Layer Perceptron (MLP) neural networks trained separately with spectral, texture 

and vegetation indices; classification labels were then assigned based on Endorsement Theory. The present study proposes an 

approach to feed this ensemble classifier with automatically selected training samples. The available vector data representing crop 

boundaries with corresponding crop codes are used as a source for training samples. These vector data are created by farmers to 

support subsidy claims and are, therefore, prone to errors such as mislabeling of crop codes and boundary digitization errors. The 

proposed approach is named as ECRA (Ensemble based Cluster Refinement Approach). ECRA first automatically removes 

mislabeled samples and then selects the refined training samples in an iterative training-reclassification scheme. Mislabel removal is 

based on the expectation that mislabels in each class will be far from cluster centroid.  However, this must be a soft constraint, 

especially when working with a hypothesis space that does not contain a good approximation of the targets classes. Difficulty in 

finding a good approximation often exists either due to less informative data or a large hypothesis space. Thus this approach uses the 

spectral, texture and indices domains in an ensemble framework to iteratively remove the mislabeled pixels from the crop clusters 

declared by the farmers. Once the clusters are refined, the selected border samples are used for final learning and the unknown 

samples are classified using the multi-evidence approach. The study is implemented with WorldView-2 multispectral imagery 

acquired for a study area containing 10 crop classes. The proposed approach is compared with the multi-evidence approach based on 

training samples selected randomly and border samples based on initial cluster centroids within agricultural parcels without any 

refinement. The results clarify the improvement in overall classification accuracy to 82.3% based on the proposed approach from 

74.9 % based on random selection and 71.4% on non-refined border samples. 

                                                                 
*  Corresponding author.  This is useful to know for communication  

with the appropriate person in cases with more than one author. 

1 INTRODUCTION 

Providing training samples for supervised classification is still a 

very critical, expensive, and time consuming task (Foody, 1999; 

Ozdarici Ok and Akyurek, 2011). It must be emphasised that 

the nature of the training samples has a major impact on the 

ability of the classifier to generalize, which in turn affects the 

classification accuracy (Perumal and Bhaskaran, 2010). Hence, 

there is increased interest in developing automated approaches 

for collecting training samples that may not require intensive 

field work, data analysis, experience, and time (Colditz et al., 

2008; Jia et al., 2014; Ozdarici Ok and Akyurek, 2011). While 

different methods are available, recently vector data such as 

thematic maps, cartographic data, and agricultural parcels have 

been used extensively to support the automatic selection of 

training samples (Feitosa et al., 2001; Ostermann, 2012; Ruiz et 

al., 2009). Because these vector data are liable to suffer from 

errors (mislabelling, error in boundary digitization, changes in 

landscapes), removal of outliers or incorrect samples is always 

necessary as a part of automated classification approaches (Jia 

et al., 2014; Ostermann, 2012).  

 

Classification approaches based on ensemble learning is a way 

to combine weak learners to produce a strong learner (Chandra 

and Yao, 2006). In such cases, handling of small inaccuracies in 

the training data is not crucial for ensemble classifiers (when 

comprised of advanced non-parametric classifiers such as 

neural networks and Support Vector Machines)(Colditz et al., 

2008). But, in an ensemble framework, individual learners that 

are trained on a large component of incorrect or non-

representative samples will result in inaccurate classification; 

this is common when using manually created vector data.  

 

The available vector data for this study is created by Danish 

farmers to apply for the subsidies from the Danish Ministry of 

Food, Agriculture and Fisheries. We propose an approach to use 

this vector data for selecting training samples with automated 

removal of mislabels to develop an automatic multi-evidence 

based ensemble classification approach for crop discrimination.  

We refer to this approach as ECRA (the Ensemble based 

Cluster Refinement Approach). 
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1.1 Related Work 

1. The regular availability of high resolution aerial and 

satellite imagery has increased through support from public 

administrations at regional and national levels in several 

countries. This has allowed for the creation and maintenance of 

different types of cartographic and geospatial databases (Ruiz et 

al., 2009). An important concern is how to use these databases 

in introducing automation for training sample collection. A 

simple approach to select the training samples automatically by 

random/systematic sampling with vector overlay on input 

imagery is reported in (Zhen et al., 2013). Blocks of pixels from 

the center parts of the referenced land parcels are selected as 

training samples for parcel based crop mapping in (Arikan, 

2004). (Feitosa et al., 2001) modelled linear relationships 

between the spectral responses of classes acquired in two 

different dates for collecting training samples using thematic 

layers. (Cazes et al., 2002)  improved the method addressed by 

(Feitosa et al., 2001) with sub-optimal selection of samples 

among automatically selected training samples.  (Ozdarici Ok 

and Akyurek, 2011) proposed a method using mean-shift 

segmentation and selecting homogeneous segments within 

vector data as potential training samples for agricultural crop 

classification. These approaches only meet the need of 

automation in classification and selecting informative samples, 

whereas removal of mislabels from automatically selected 

training dataset remains an unmet and crucial need.  

2.  

Only a few studies have proposed methods to remove outliers 

or incorrect training pixels in the field of Remote Sensing. 

Edition of training samples from vector data using k-nearest 

neighbor and the k-means algorithm is proposed in (Hajahmadi 

et al., 2013). A method of training a classifier using initial 

reference samples and removing mislabels from border samples 

that create high uncertainty in membership is presented in 

(Ostermann, 2012).  In a study proposed by (Brodley and 

Friedl, 2011), a consensus voting scheme is employed to filter 

results from an ensemble of classifiers to eliminate mislabeled 

samples. Other methodologies to remove mislabels using 

predicted membership in other fields, like computer vision and 

machine learning, can be seen in (Chandola et al., 2009; 

Escalante, 2005; Hodge and Austin, 2004).  

 

1.2 Contribution 

The methods cited above either focus on selecting informative 

samples or on mislabel elimination. We propose an approach to 

achieve both goals jointly.  Furthermore, the cited methods for 

removing mislabels use a single hypothesis space/domain. Only 

a few studies have explored the concept of using multiple 

datasets separately (multiple hypothesis space) in predicting the 

class labels for unknown samples (Aitkenhead et al., 2008; 

Aitkenhead and Aalders, 2011). In our approach, inspired from 

our previous research, we use multiple hypothesis space to 

identify mislabels rather using a domain created by stacked 

multiple datasets. We contend that multiple hypothesis space 

will be more robust because each space offers different 

discrimination ability between certain crops.  Also, existing 

methods that remove mislabels based on uncertainty in class 

membership employ thresholds fixed by the user (Jia et al., 

2014; Ostermann, 2012).  We replace this subjective approach 

with an approach based on heuristic reasoning of uncertainty as 

proposed by  (Cohen, 1985). 

 

The study demonstrates: i) the technique that removes mislabels 

in an iterative fashion from the training sets selected based on 

agricultural parcels in an ensemble frame work (ECRA - the 

Ensemble based Cluster Refinement Approach); ii) use of 

multiple hypothesis space for mislabel removal; and iii) use of 

prediction probability from neural networks as a measure of 

uncertainty to remove mislabels. 

   

2. MULTI-EVIDENCE BASED CLASSIFICATION  

Classification using an ensemble of learners includes the 

following categories: i) a single classifier trained with different 

sets of samples; ii) different classifiers trained on the same 

training set; iii) a single classifier with different attribute sets; 

4) classifiers with different architectures (like the topology of 

an ANN); 5) classifiers with different parameter choices 

(amount of tree pruning, parameters in learning algorithms). 

The multi-evidence classification approach (also called 

Endorsement Theory based classification) falls in the third 

category. Our previous research developed a classification 

approach that consists of three MLP neural networks each 

trained with different attributes (Spectral, texture and vegetation 

indices). The three networks are trained with common training 

datasets and their prediction probabilities are combined using 

Endorsement Theory to classify the unknown samples/pixels.  

 

Endorsement Theory (ET) gathers the evidences from different 

classifiers and provides support for a particular 

hypothesis/class. The prediction probabilities from a neural 

network are categorised into different types of evidence 

according to their strength (Aitkenhead et al., 2008). Five types 

of evidence combined for testing hypothesis are: conclusive-

belief (positive: [0.9-1], negative: [0-0.1]), prima-facie 

(positive: [0.8-0.9], negative: [0.1-0.2]), strong (positive: [0.7-

0.8], negative: [0.2-0.3]), weak (positive: [0.6-0.7], negative: 

[0.3-0.4]) and no evidence (any other values). The various 

strengths of evidence are integrated according to a set of rules 

described in (Aitkenhead et al., 2008). The evidence against 

each hypothesis is combined to create conclusions called: 

definite (conclusive evidence), confident (prima facie evidence), 

likely (strong evidence), indicated (weak evidence) and no 

evidence (equally balanced). Finally, the class with highest 

strength of conclusion is assigned as the output class to the 

pixel. 

3. ECRA  

The above mentioned multi-evidence based classification has 

been proven to produce accurate results in comparison to a 

traditional classification method based on stacked input 

datasets. The objective of ECRA is to automatically feed this 

multi-evidence approach with the training samples that do not 

have any mislabels. ECRA is based on an ensemble framework 

whose workflow is shown in Figure 1 and the components 

involved are described below.    

 

3.1. Ensemble Framework 

 

The individual classifiers in an ensemble framework should 

have high diversity and produce independent errors. It is proven 

that the three attribute domains used here (spectral response, 

Gabor textures, and vegetation indices from WorldView-2 

imagery) show better crop discrimination abilities (Novack et al., 

2011; Upadhyay et al., 2012). Thus, our proposed approach filters 

mislabels by using MLP networks trained in the three different 

domains. All pixels inside the farmers’ parcels of each crop 

class are considered to form an initial cluster. Therefore, the 

number of different crop classes declared by the farmers 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-7, 2014
ISPRS Technical Commission VII Symposium, 29 September – 2 October 2014, Istanbul, Turkey

This contribution has been peer-reviewed.
doi:10.5194/isprsarchives-XL-7-63-2014 64



 

Endorsement Theory 

Identification of most probable class 

Classification 

output 

Testing Testing Testing 

MLP 

training 

MLP 

training 

MLP 

training 

Border 

samples 

Border 

samples 

Border 

samples 

Cluster 

centre 

Cluster 

centre 

Cluster 

centre 

Training 

samples 

Re-

classification 

Removal of 

mislabels 

Update 

Training 

samples 

Gabor 

texture 

Spectral 

response 

Vegetation

Indices 

Satellite 

imagery 

Farmers’ 

Parcel 

* 

 

Figure 1. Work flow of ECRA for Endorsement Theory 

based classification (* denotes the stopping criteria of the 

loop. The re-classification process is stopped once the 

cluster centres in three domains remains same as cluster 

centres in the previous iteration) 
 

determines the number of different clusters. Each MLP 

classifier is trained with border samples obtained from 

corresponding attribute domain. The initial clusters are re-

classified by the three classifiers. Mislabels are removed based 

on the reclassification output from three classifiers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Border Samples 

 

Support Vector Machines initially take all of the training 

samples. But, near the end of training it uses only the border 

samples for learning. Neural networks learn based on all of the 

training samples provided (Duch, 2005). Therefore, it is 

necessary to feed the MLPs with the border samples. A set of 

border training patterns/mislabels in a cluster would ideally 

contain patterns from different classes that are close together in 

feature space and thereby expected to lie near the classification 

decision boundary. It is to be noted that, the border pixels in 

one attribute domain may not be border pixels in other domains.  

  

Class membership in this study is calculated using Mahalanobis 

Distance (MD) (Foody, 1999). The cluster centroids are 

calculated initially based on the samples collected from 

farmers’ parcels in three attribute domains. MD is calculated for 

all of the pixels in each cluster with respect to the centroid of its 

own cluster and all other clusters. Pixels for which the 

difference in the MD between the two most likely classes of 

membership is small are considered border training pixels. 

Hundred pixels with the lowest difference between the highest 

and second highest MD are taken as border samples in the 

iteration. 

 

3.3 Re-classification 

 

The previously described step results in three sets of border 

training pixels calculated based on three attribute domains. 

Each neural network is trained with each set of samples. Next, 

clusters are reclassified by three networks and their prediction 

probabilities are obtained. Then, all the pixels are analysed to 

determine whether they are mislabels or correct labels as 

described below.  

 

3.4 Removal of mislabels  

 

MLP neural networks learn the training pattern of various 

classes and predict the probability of a test pattern to fall under 

each class. Class with highest probability is assigned finally to 

the test pattern. This probability value is called prediction 

probability (ranging 0 to 1) and used for removing mislabels.  

 

For each pixel in initial clusters, there are three prediction 

probabilities (one from each of the three networks) towards 

each crop classes. Pixels whose class labels are correctly 

predicted as labelled by farmers by all the three classifiers are 

retained in the clusters. Other pixels are removed from the 

clusters. In addition among the correctly classified uncertain 

samples are also identified removed from the clusters. 

 

When a pixel is said to be identified as correct sample, it should 

have high prediction probability towards its corresponding crop 

cluster in three attribute domains. In other words, pixels that are 

with high prediction probability towards a declared crop cluster 

are said to have high certainty to belong to that cluster. On 

other hand pixels that have low prediction probability are said 

to have high uncertainty towards its corresponding cluster.  

 

However, sometimes the pixels are predicted to its correct class 

with low value of probability in a domain that has poor 

discrimination ability between the classes. Hence it is crucial to 

fix a prediction probability threshold to define high and low 

demarcation in probability values. This situation is handled by 

following heuristic reasoning on uncertainties given in (Cohen, 

1985). As mentioned in section 2, the prediction probabilities 

are considered as evidence and categorised in to five types: 

conclusive-belief, prima-facie, strong, weak and no evidence. 

The evidence with probability greater than 0.7 are consider as 

positive. Though the value ranging 0.6 to 0.7 is consider to be 

positive, still they are named as weak positive. Remaining 

values are considered to be non-evidence or negative evidence.  

 

Based on these definitions, the criteria for a pixel being 

uncertain sample based on prediction probability is fixed.  
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Quantitatively, we let ‘P’ be the prediction probability defined 

by one network on re-classification. Pixels for which ‘P’≥ 0.7 

are termed certain pixels and remaining samples are termed as 

uncertain pixels. The value of P is defined for all three 

networks.  Pixels that are identified to be certain by all the three 

networks are retained in the clusters and other samples are 

removed. 

 

3.5 Refined training samples  

 

Pixels that are identified as uncertain samples are due to one of 

the two reasons. Either they can be mislabels or border samples 

(since border samples lie closer to the decision boundary 

between two classes they most likely to belong to both, 

producing weak evidence or no evidence). When the uncertain 

samples are removed, there is a chance for the loss of 

informative samples also. But this may not affect the final 

classification as the classification is done in ensemble 

framework (producing strong classifier with weak classifiers).  

 

The border samples derived before the first iteration are based 

on the cluster centroids that are calculated with the inclusion of 

mislabels. After removal of uncertain pixels, the new cluster 

centroids are calculated with the remaining pixels.  New border 

samples are selected and all cluster pixels are re-classified.  

Then the process of removing mislabels is repeated.  Iteration 

continues until the cluster centroids remain the same. Once the 

cluster centroids are stable, the border samples are used as the 

final training samples. 

 

3.6 Classification 

 

Once the three networks are trained with the final training 

samples, testing is done for the satellite imagery. The prediction 

probabilities from three networks are integrated using multi-

evidence approach (explained in section 2) to produce the 

classification results.  

 

4. IMPLEMENTATION AND RESULTS 

4.1 Study Area 

The study area is located in Vennebjerg, Denmark, covering 

approximately 650 hectares, centered on the geographical 

coordinates 57°27’N (latitude) and 9°52’E (longitude) and 

consists of 10 different crop classes: 5 types of grains, 3 

types of grasses, berries and barren land. The area of interest 

is covered by a WorldView-2 (WV2) image with spatial 

resolution of 2m, acquired on 11th June.  

4.2 Input Dataset 

Three different datasets/attributes derived from WV2 imagery 

to form three hypothesis spaces and the vector data used for 

selecting training samples are explained below. 

 

4.2.1 Spectral Dataset 

WV2 imagery brings fine spatial details and aids reliable 

discrimination of crops (DigitalGlobe, 2010; Elsharkawy et 

al.; Marchisio et al., 2010). It has been providing a great 

value in agricultural applications, e.g. for discriminating and 

monitoring of crop species, vegetation health and mapping of 

moisture content (Elsharkawy et al.; L. Nunez-Casillas 2012; 

Upadhyay et al., 2012). All eight bands (visible to near infra-

red (NIR)) of WV2 imagery acquired on early summer is 

used as the spectral dataset.  

 

4.2.2 Gabor Texture 

Crop textures are characterized by extracting spatial details 

from each spectral band of WV2 imagery using Gabor filters 

(Unser, 1995). The texture features extracted using Gabor 

filters are invariant while capturing the spatial details that are 

influenced by frequency and orientation. In this research 

work, 8 orientations used to implement the filters ranges 

from 0º to 315º with 45º separation. Five radial frequencies 

with values of 2√2, 4√2, 8√2, 16√2 and 32√2 and scaling 

parameter of 0.5 are used for generating filters of different 

scales. In total 40 Gabor features are extracted from each 

spectral band. In order to reduce the data dimensionality, first 

two principle components of 40 Gabor features explaining 

approximately 76% of variable information are considered as 

a texture representation of each spectral band. 

 

4.2.3 Vegetation Indices 

 

Spectral indices, derived from a combination of two or more 

spectral bands have widely benefited numerous studies to 

characterize the type, amount and condition of vegetation 

(Jackson and Huete, 1991). Based on review of various spectral 

indices (Jackson and Huete, 1991; Shamsoddini et al., 2011; 

Wolf, 2010), indices namely: Normalized Difference 

Vegetation Index (NDVI) using two near infra-red bands, 

Yellow NDVI, Green NDVI, NIR NDVI, Normalized Pigment 

Chlorophyll Index (NPCI) and Normalized Difference Soil 

Index (NDSI) are derived and stacked to use as third attribute 

domain. 

4.2.4 Vector data 

In Denmark, to obtain subsidies farmers have to send 

applications to Directorate of Food, Fisheries and Agro business 

(DFFE) with information about producer, crop type and its area 

of coverage and boundary of the filed (drawn on the color 

orthophoto in the application at 1:10,000 scale). All the data 

were are stored in GAR/CHR register as vector layer managed 

by Danish Ministry of Food, Agriculture and Fisheries 

(Pedersen, 2005). The field boundary each containing single 

crop types inside a polygon with its corresponding crop code 

forms the source to select the training samples. Figure 2 shows 

the orthophoto of the study area overlaid with agricultural 

parcels (yellow polygons).  

 

Figure 2. Study area covered by the orthophoto and agricultural 

parcels 
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4.3 Results of ECRA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Class A Class B 

(a) (b) 

(c) 
(d) 

Figure 3. False color composite of WorldView-2 

imagery of two crop fields used for training, (a) 

winter rape, class A and (b) grass below normal 

yield, class B while (c) and (d) represents pixel 

labels inside respective crop fields  

Class A 

(a) (b) 

(c) (d) 

Class B 

Figure 4. Certainty of pixels in spectral domain 

to class A ((a) and (b)) and class B ((c) and (d)). 

Values ranges from uncertainty (0, black) to 

certain (1, white)   

(a) (b) 

(c) (d) 

(b) (a) 
(a) (b) 

(a) 
(b) 

(c) (d) 

Figure 7. Result of ECRA (Black are invalid 

regions removed from training samples. Samples 

from other regions are used for learning in next 

iteration)  

Figure 8. Result of multi-evidence based 

classification approach (Black are misclassified 

pixels. Other region represents pixels that are 

correctly classified)  

Figure 5. Certainty of pixels in texture domain to 

class A ((a) and (b)) and class B ((c) and (d)). 

Values ranges from uncertainty (0, black) to 

certain (1, white)   

 

Figure 6. Certainty of pixels in indices domain to 

class A ((a) and (b)) and class B ((c) and (d)). 

Values ranges from uncertainty (0, black) to 

certain (1, white)   
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Figure 9. Classification output based on training 

samples selected by a) border samples from ECRA b) 

Random selection c) Non-refined border samples  

 

The results of major steps involved in ECRA are shown in 

Figure 3 to Figure 7 for two crop fields: winter rape (class A) 

and grass with low yield (class B). The rape field consists of 

piece of land occupied by grass, Figure 3(a). Figure 3(c) and 

3(d) shows the labels declared by the farmers and it could be 

seen that grass region within winter rape field is also given 

same label as winter rape. The cluster centre to obtain border 

samples are estimated with the inclusion of grass pixels with 

rape pixels.  The other field, class B (showing moisture content 

in few places, Figure 3(b)) is without mislabels.  

 

Figure 4 to Figure 6 shows the prediction probability obtained 

during re-classification in three domains. Ideally the correct 

pixels in field with class A should show certainty towards class 

A and uncertainty towards class B. Similarly the pixels in class 

B should show certainty towards class B and uncertainty 

towards class A. Mislabels inside class A should show 

uncertainty towards class A. 

 

Figure 4(a) and (b) shows the certainty value of pixels in class 

A and B towards class A in spectral domain. Maximum number 

pixels in class A are found to be certain to class A. Grass region 

inside rape field are found to be uncertain towards rape (Figure 

4(a)). Figure 4(c) and (d) shows the certainty of pixels towards 

class B in spectral domain. It is noted that pixels with high 

moisture content inside the field found to be uncertain towards 

its correct class and certain towards wrong class meaning the 

attribute domain offers poor generalization of classes. But the 

certainty of these pixels said to be different in other two domain 

(texture, Figure 5 and indices, Figure 6). Most of the pixels 

containing higher moisture content also found to be certain 

towards its correct class meaning texture domain offers better 

generalization than spectral and indices domain. Mislabelled 

region inside rape field are found to be uncertain towards class 

A in texture (Figure 5(a)) and indices domain (Figure 6(a)) 

meaning they offer better identification of mislabels in 

comparison to spectral domain. The trend may vary in case of 

other crop types and hence ensemble framework is found to 

exploit this different discrimination ability of three domains. 

 

ECRA keeps the pixels that are identified to be certain towards 

its crop cluster by all three networks. Figure 7 shows the refined 

clusters with removed uncertain pixels (black). The cluster 

centre based on this refined samples are used to derive final 

border samples for learning.   

 

4.4 Classification results 

 

Figure 8 shows the predicted label of class A (green) and class 

B (magenta) by multi-evidence based classifcation. The labels 

are predicted correctly except few pixels (misclassified pixels in 

black).  

 

The classified outputs based on different training samples are 

shown in Figure 9 (a, b and c) for the study area. The multi-

evidence based classification approach trained with the border 

samples selected by ECRA gives the results with less noisy 

compared to that of with randomly selected and non-refined 

border samples. For validation, considering the rule of thumb 

(every class at least should have 50 reference samples) 50 

samples are manually chosen for measuring the accuracy of 

classification. The multi-evidence approach with the refined 

border samples produced highest overall classification accuracy 

of 82.3% in comparison to classification based on random 

selected (74.9%) and non-refined border training samples 

(71.4%). From the proposed approach, highest Producer 

Accuracy (PA) for crops obtained. (PA: spring barley: 85.3%, 

winter rape: 91.2%, Grass above normal yield: 86.5%, Grass 

below normal yield: 89.5%, not cultivated: 79.1%: winter 

barley: 72.3%, Fodder maize: 87.2%, winter wheat: 88.4%, 

permanent grass: 79.6%, Fruits: 96.5%). 

4 CONCLUSIONS 

In this paper, we presented an approach for automatic selection 

of refined border training samples to train the multi-evidence 

based classifier. Refinement was done in an ensemble 

framework to make use of the discrimination ability of WV2 in 

three attribute domain without working with large hypothesis 

space. The vector data declared by farmers are used as source 

for training samples. We have used the prediction probability 

generated by MLP networks to remove outliers iteratively with 

heuristic reasoning on uncertainty. The proposed classification 

rate was improved from 74.9% and 71.4% to 82.3% and the 

approach found to be promising to perform automatic 

classification of remotely sensed images for crop 
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discrimination. The accuracy of classification can be further 

increased if input datasets incorporates the multi-temporal 

information which is highly recommended in the literatures for 

crop mapping. 
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