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ABSTRACT:

In this case study, an approach for finding regions endangered by extreme rain is presented. The approach is based on the assumption
that sinks in the surface are more endangered than their surroundings. The surface data, which are the source for the classification,
are generated using a Cartosat stereo scene. The classification is performed by using an algorithm for retrieving the terrain positioning
index. Different classification schemes are possible, therefore a set of input parameters is iteratively computed. The classification
results are then evaluated. For validating the classification stock data of an insurance are used. We compare the position of the reported
damages caused by extreme rain with our classification. By doing so we got the confirmation of the assumption.

1. INTRODUCTION

Human made objects face in general several types of dangers,
which are related to small scale weather events, like storms, vol-
ley and extreme rain. The orography of a location strongly deter-
mines the influence of an extreme weather event on the human
entities placed at the location. Finding indexes for spatial re-
gions based on the orography which indicate the probability of
being affected by an extreme weather event is therefore essential.
Such indexes would enable decision makers to develop strategies
where structures like roads, bridges and settlements can be placed
with an minimal risk of being damaged by extreme weather phe-
nomena.

There has been a lot of work done in the field of automated ter-
rain classification. A broad range of indexes and classification
algorithms is already developed, which take the presence of dis-
crete regions like watersheds (Tagil and Jenness, 2008), or re-
gions which can be described as geomorphological enclosed ar-
eas (Reu et al., 2013). These indexes describe the surface as is.
This serves as entry point to our application, where we investigate
the influence of orography to the relationship between extreme
weather events and the probability of damage to human entities
located on earth surface. This is a quite complex task, due to the
differing dependencies of spatial exposition and damage event for
various weather events. For example a short distance to a river
may be a good indicator for a high risk of floods, but for a storm
event the influence is probably negligible. We want to show the
impact of the spatial exposition of entities on the probability of
being affected by extreme rain events.

Insurance companies already have zoning systems which classify
the risk of locations being affected by extreme rain and flooding.
These existing systems work quite well for floods. But analysis
of damage and stock data have shown that for backwater and ex-
treme rain existing zoning systems don’t deliver reliable results.
This can be explained by the methodology used for zoning the
space . In general the systems take the euclidean distance to the
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next streaming water body into account. By doing so, in case of
an flooding event which affects this water body for every point
on the surface an estimation can be made about the probability of
being affected by this flooding.

Extreme rain events in contrast are not bounded to streaming wa-
ter bodies. They occur at almost every place on earth surface,
and the risk of a damage on the ground is mainly related to the
exposition of a body on the ground. In this paper we prove the
assumption that sinks on the surface are higher endangered than
hilltops. This assumption is based on the nature of fluids to follow
the gradient of surfaces to minimize their potential.

2. DATA BASE

2.1 Digital Elevation Model

As source data for the classification algorithm a digital elevation
model retrieved from an Cartosat stereo scene is used, which is
shown in figure 1. The parameters describing the spatial extent,
resolution and the projection of the DEM are listed in table 1.

Datum WGS 84 / UTM zone 32 N
Spatial resolution [m] 5
Min/Max height [m] 31.89, 372.23

Corner Easting [m] Northing [m]
Upper Left 348100.00 5725430.00
Lower Left 348100.00 5687255.00

Upper Right 386055.00 5725430.00
Lower Right 386055.00 5687255.00

Table 1: Description of DEM

For determining the influence of the spatial resolution on the clas-
sification process and the final geo-product, also downsampled
versions of this DEM were used. For downsampling bilinear in-
terpolation (algorithm from Scipy (Jones et al., 2001–)) with a
downsampling factor of two and four were used.
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Figure 1: Digital Elevation Model

Furthermore we took an digital terrain model aquired by the Shut-
tle Radar Topography Mission (Farr et al., 2007), to compare
the influence of spatial resolution but moreover the influence of
different acquisition systems. By doing so, we can determine
whether surface models retrieved by radar systems deliver at least
comparable results to models retrieved from optical systems.

2.2 Geocoded insurance data

The data provided by the insurance are divided into stock data
and damage event data, where only damage events caused by ex-
treme rain were taken into account. The stock data contain infor-
mation about all households who own an elementary insurance
for extreme rain, the damage dataset lists households who were
affected by an damage event in the time span from 2003 to 2013.

The stock data table has five attributes, which are described in
table 2. Each dataset represents a household which is specified
by an unique insurance number, 3D coordinates (UTM), the in-
sured sum and auxiliary data. The stock data table contains 24997
households which own an elementary insurance.

attribute type meaning
VSNR int unique insurance id, primary key

x double easting [m]
y double northing [m]
z double height [m]

vers summe int insurance sum [e]

Table 2: Description of Stock Data attributes

The damage data table has six attributes, three for the location
of the damage, one for the contract id, one for the costs of the
damage and one for the date when a damage occurred. Table 3
gives an overview of the attributes. The number of households
which were affected by a damage is 735.

Figure 2 depict the distribution of the households in the test area.
Cyan dots mark households which own an insurance, red dots
mark the households which were affected by an damage event.

attribute type meaning
SCHDAT date date of damage

VSNR int unique insurance id, primary key
auf String costs (’aufwand’) [e]
x double easting [m]
y double northing [m]
z double height [m]

Table 3: Description of Damage Data attributes

Figure 2: Distribution of households in test areal

3. TERRAIN CLASSIFICATION ALGORITHM

3.1 Theoretical Background

The TPI (1) is the basis of a classification system and is simply
the difference between a cell elevation value z0 and the average
elevation z of the neighbourhoodR around the cell (Weiss, 2001)
(Wilson and Gallant, 2000).

TPI = z0 − z (1)

z =
1

nR

∑
i∈R

zi (2)

There are two situations for a kernel map moving over a surface,
which can be distinguished easily. On the one side the height
value at a point pt is greater than the mean elevation µ in the
neighbourhood of this point. Therefor the TPI value is also pos-
itive. On the other side the mean elevation µ is greater than the
elevation at point pt, because of this the TPI value is lower than
zero.

To distinguish between flat areas and points on slopes, the slope
angles, described in (Zevenbergen and Thorne, 1987) are also
taken into account. Such situations occur for example at hillside
situations. For computing the slope angles, the following equa-
tions 3 and 4 are used.

sx,y =

√(
∆z

∆x

)2

+

(
∆z

∆y

)2

(3)
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s◦x,y =
arctan(sx,y)

π ∗ 180
(4)

In the project the DEV index is used which is based on the TPI.
DEV (5) measures the topographic position as a fraction of local
relief normalised to local surface roughness (Reu et al., 2013),
the equations are given in 5 and 6.

DEV =
z0 − z

SD
(5)

SD =

√
1

nR − 1

∑
i=1

(zi − z)2 (6)

The main influencing factor of the TPI and DEV value are the
two parameters inner radius and outer radius, which define the
resulting kernel map. In figure 3 two different kernel maps are
shown. For both kernel maps, the outer radius is 10 pixels. For
figure 3(a), the inner radius is 5 pixel, for figure 3(b) the inner
radius is zero pixels. Thus the resulting number of height values
taken into account is for the small kernel 252 in contrast to 348
height valus for the big kernel map.

(a) Kernel small (b) Kernel big

Figure 3: Comparison of different kernel sizes

Depending on the kernel size the classified result can diver quite
much. If a small kernel map is used for classifying a DSM, small
landforms can be distinguished in the resulting classification. If
the same DSM is classified using a bigger kernel map, which is
done by using a bigger outer radius, then the small landforms
become generalized. The resulting output image therefore gives
more small scale landforms. Finding the right kernel size is an it-
erative process, depending on the application (Tagil and Jenness,
2008).

The classification schema itself remains the same for different
kernel maps, in most cases the one given in table 4 is used. This
classification schema gives 6 classes, as input a DEV image and
a slope image is needed. It is also possible to combine different
kernel maps and therefor to gain more sophisticated classes.

Naming class DEV Slope
valleys, base 1 x ≤ −1
lower slope 2 −1 < x < 0.5

flat 3 −0.5 < x < 0.5 ≤ 5◦

mid slope 4 −0.5 < x < 0.5 > 5◦

upper slope 5 0.5 ≤ x ≤ 1
ridge, hilltop 6 x > 1

Table 4: Classification rules - 6 classes, adapted from (Jenness,
2006)

Subsequent an overview of different classifications is shown. The
goal is to show the influence of different inner and outer radii on
the resulting classification. For outer and inner radius, the three
tupels [300,100] m, [600, 200] m and [900, 300] m are used. Like
already in section 2.1 mentioned, we also want to analye the in-
fluence of different spatial resolutions of the input DSM on the

classification results. Grohmann (Grohmann et al., 2009) already
showed that for surface roughness the influence of the spatial res-
olution can be neglected to some extent. To get a first clue, the
source DSM with five metres resolution and a downsampled ver-
sion with 20 metres resolution is used. Figure 4 shows the classi-
fication results based on the original DSM with five metres spa-
tial resolution. In figure 4(a) as algorithm parameters the radii
tupel [300, 100] m is used, this means the kernel is specified with
an outer radius of 300 metres and an inner radius of 100 metres.
With increasing radii in figure 4(b) and figure 4(c) the scale of the
landforms classified decreases. Especially the river network gets
very general in figure 4(c). The colour legend is given in table
4(g).

The same classifications were done on the downsampled DSM
with an spatial resolution of 20 metres, the results are depicted
in figure 4(d), 4(e) and 4(f) respectively. Compared to the classi-
fication results gained with the high resolution DSM, almost no
difference can be detected visually. This supports the observa-
tions done by (Grohmann et al., 2009).

3.2 Proposed Algorithm

This classification algorithm is implemented as XDibias (Triendl
et al., 1982) modul using Python (G. van Rossum and F.L. Drake,
2001) and Cython (Behnel et al., 2011) programming language.
The idea of the algorithm consists of three steps.

1. The classification algorithm is applied to the three source
DSMs with different combinations for the two parameters
specifying the kernel map, inner and outer radius.

2. The classified raster dataset is merged with the point data
from the insurance, for each single point in the two datasets
the corresponding class is stored. Therefore a script based
on the PointSampling Tool from Quantum GIS (QGIS De-
velopment Team, 2009) is implemented.

3. An grading matrix is computed to compare the classifica-
tion results. The hypothesis is that households in valleys
are more probable affected by damages than households on
hilltops. This means the probability of being affected by an
damage based on extreme rain should be higher for house-
holds in valleys. The structure of such a grading matrix is
described in detail in the following.

The grading matrix, shown in equation 7, consists of the results
from the mentioned three steps. There are 6 rows, which corre-
spond to the total number of land form classes. The first column
gives the name of the class ax, for example a1 is valley. Second
and third column give the total distribution of households bx with
contract and of damaged households cx. Column four and five
give the total costs for each class dx and the total insured sum for
each class ex in euro. Column six gives the claims rate fx for
each class, which is computed with equation 8. Column seven
gives the number of damaged households gx in percent per class,
which is computed with equation 9 .

M =

∣∣∣∣∣∣∣∣∣∣

a1 b1 c1 d1 e1 f1 g1
a2 b2 c2 d2 e2 f2 g2
a3 b3 c3 d3 e3 f3 g3
a4 b4 c4 d4 e4 f4 g4
a5 b5 c5 d5 e5 f5 g5
a6 b6 c6 d6 e6 f6 g6

∣∣∣∣∣∣∣∣∣∣
(7)

fx =
dx

ex
∗ 1000 (8)
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(a) TPI, 300 100, retrived from original DSM (b) TPI, 600 200, retrived from original DSM (c) TPI, 900 300, retrived from original DSM

(d) TPI, 300 100, retrived from or DSM (e) TPI, 600 200 (f) TPI, 900 300

class valley lower slope flat mid slope upper slope hilltop
color

(g) Color legend

Figure 4: Comparison classification results for different kernel masks and spatial resolutions of DSM

g[%] =
cx
bx
∗ 100 (9)

4. RESULTS AND DISCUSSION

Four DSMs were processed, having a spacial resolution of 5,10
and 20 and 66 meters respectively. The parameter for the inner
kernel radius ranges from 50 to 700 meters with a step length
of 50 meters, the parameter for the outer radius ranges from 100
to 900 meters, step length is also 50 meters. This leads to 441
classified images for each of the four DSMs, all of them linked to
a grading matrix.

The main objective is to answer the question, whether house-
holds in depressions are more affected by extreme rain, and if
yes, which kernel radii fit best for the land form classification.
To answer both questions, four descriptors are computed for the
different surface models and the different radii combinations, and
then stored in the four matrixes F,G,H, I .

1. The difference between class one and six for the claim rate,
computed with equation 10.

2. The difference between the percentage of affected house-
holds for class one and six, computed with equation 11.

3. The variance in the claim rates over the six classes, see equa-
tion 12.

4. The variance in the percentage of affected households over
the six classes, see equation 13.

Fi,j =

15∑
i=1

18∑
j=2

fi∗50,j∗50,6 − fi∗50,j∗50,1 (10)

Gi,j =

15∑
i=1

18∑
j=2

gi∗50,j∗50,6 − gi∗50,j∗50,1 (11)

Hi,j =

15∑
i=1

18∑
j=2

∑6

k=1
(fi∗50,j∗50,k − f̄)2

6
(12)

Ii,j =

15∑
i=1

18∑
j=2

∑6

k=1
(gi∗50,j∗50,k − ḡ)2

6
(13)

Figure 5 gives an overview for the range of the difference be-
tween the claim rate in class one and class 6. The maximum
difference in the claim rate is achieved using the downsampled
surface model with 10 meters spatial resolution, which is shown
in figure 5(b). Both the original surface model and the down-
sampled with 20 meter spatial resolution don’t reach such a high
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difference. The claim rate differences resulting from the process-
ing with SRTM data are smallest, not reaching values higher than
7. In Figure 6 a detailed view is given for the variance in the claim
rates. It is shown that the variance reaches also it’s maximum val-
ues when using the Cartosat data downsampled with factor two.

The same evaluation was made for the damage probabilities, fig-
ure 7 depicts the difference between the number of affected house-
holds per class [%] in class one and class six. Figure 8 shows the
variance in the single number of affected households per class
[%].

We see that the observation from the claim rates is somehow mir-
rored into this plots. Also for the probabilities a big outer radius
and a small inner radius seems to be a good advice. And also here,
the influence of the spatial resolution of the input DSM seems al-
most negligible for the Cartosat DSMs. Probably the point that
the downsampled DSM with 10 m spatial resolution delivers the
best results can be explained when taking into account, that veg-
etation and other error sources for land form classification are
filtered by the downsampling. On the other hand taking the radar
data from SRTM does not deliver that good results, probably be-
cause of the lower spatial resolution. Furthermore when it comes
to find the maximum difference for the number of affected house-
holds between hilltops and valley, a small outer radius of 450 m
and an inner radius of 50 m seems to deliver also reliable results.

Exemplary we compare the classification result retrieved with us-
ing 900 meters as outer radius and 150 meters as inner radius
for optical data and 450 meters as outer radius and 50 meters
as inner radius for SRTM data. These combinations give us the
most promising results in the previous investigations. Figure 7(a)
shows the decrease of the percentage of affected households from
the valley to the hilltop. This trend is shown, no matter whether
the classification is based on optical or radar data. In the claim
rates this trend is depicted even stronger. This means that not
just more households in valleys are affected by extreme rain than
on hilltops, but also that the costs of the single damages are in
general higher in valleys.

Figure 9: Percentage of affected households per class

5. CONCLUSIONS AND FUTURE WORK

By combining the outcomes from claim rate differences and claim
rate variance, we come to the conclusion that big outer radii in
general suite best for reaching good classification results. The in-
ner radius in contrast should be quite small, not bigger than 300
meters. An outer radius of 900 meters and an inner radius of 150
meters seem to deliver the most satisfying results for high resolu-
tion optical data. The influence of the spatial resolution is at least
not that big - this can be explained with keeping in mind that the

Figure 10: Claims Rate for different resolutions

lower resolution DSMs are retrieved by downsampling the high
resolution DSM using linear interpolation.

For low resolution radar data the inner radius was taken as low
as possible, the outer radius was not bigger than 450 m. More
investigations should be done on the influence of the different
data record methods, here radar and optical systems. For example
the degree of soil moisture and vegetation cover at record time
have different influences on the resulting surface model - which
influences the land form classification.

The results showed that the spatial exposition of houses has great
on the claim rate and probability of the occurence of an damage
caused by extreme rain. By using more sophisticated algorithms
for land form classification and taking more spatial descriptors
like curvature and land cover into account, probably the model
could be even more accurate.
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(a) resolution = 5 m (b) resolution = 10 m

(c) resolution = 20 m (d) resolution = 90 m

Figure 5: Claim Rate Difference Class 1 - Class 6 for different resolutions
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(a) resolution = 5 m (b) resolution = 10 m

(c) resolution = 20 m (d) resolution = 90 m

Figure 6: Variance in Claim Rates for different resolutions

(a) resolution = 5 m (b) resolution = 10 m

(c) resolution = 20 m (d) resolution = 90 m

Figure 7: affected households [%] Class 1 - Class 6 for different resolutions
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(a) resolution = 5 m (b) resolution = 10 m

(c) resolution = 20 m (d) resolution = 90 m

Figure 8: Variance in number of affected households per class [%] for different resolutions
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