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ABSTRACT: 

 

Hyperspectral image enhancement has been a concern for the remote sensing society for detailed end member detection. Hyperspectral remote 

sensor collects images in hundreds of narrow, continuous spectral channels, whereas multispectral remote sensor collects images in relatively 

broader wavelength bands. However, the spatial resolution of the hyperspectral sensor image is comparatively lower than that of the 

multispectral. As a result, spectral signatures from different end members originate within a pixel, known as mixed pixels. This paper presents 

an approach for obtaining an image which has the spatial resolution of the multispectral image and spectral resolution of the hyperspectral 

image, by fusion of hyperspectral and multispectral image. The proposed methodology also addresses the band remapping problem, which arises 

due to different regions of spectral coverage by multispectral and hyperspectral images. Therefore we apply algorithms to restore the spatial 

information of the hyperspectral image by fusing hyperspectral bands with only those bands which come under each multispectral band range. 

The proposed methodology is applied over Henry Island, of the Sunderban eco-geographic province. The data is collected by the Hyperion 

hyperspectral sensor and LISS IV multispectral sensor. 

 

  

1. INTRODUCTION 

Remote sensing is the science of acquiring reflected energy from an 

object by sensors, without the sensor being in contact with it. It 

provides us with data covering various spectral and spatial 

resolutions. In this study, hyperspectral data is acquired by the 

Hyperion sensor on board EO-1 satellite and multispectral data by the 

LISS-IV sensor, covering Henry Island of the Sunderbans province, 

West Bengal. The hyperspectral spectrum is split into 242 channels 

or bands with a spectral range of 0.4 to 2.5 mm, covering from 

visible to SWIR region. LISS-IV multispectral image comprises of 3 

bands, the green band (0.52 to 0.59 mm), red band (0.62 to 0.68 mm) 

and the NIR band (0.76 to 0.86 mm) respectively of the 

electromagnetic spectrum. The spatial resolution of the multispectral 

image is 5.8m and hyperspectral image is 30m.   

 

 Due to the low spatial resolution of hyperspectral image, mixed 

pixels originate in hyperspectral pixel and classification of 

endmembers is difficult, which is a major issue and it has been 

studied extensively. Pixels which contain spectral signature of only 

one endmember is known as pure pixels and pixels with more than 

one endmember is known as mixed pixels (Duran et.al. 2004). We 

apply algorithms such as spectral unmixing to the data for better 

endmember detection.  

However spectral unmixing does not locate the end members 

spatially. Therefore we fuse the multispectral and hyperspectral 

image to obtain an image of higher spatial and spectral resolution, 

which would result in more accurate end member detection, which is 

also our motivation for this study.  

 

In the recent past, advanced analytical techniques have been studied 

for enhancing the hyperspectral spatial resolution. Some of which are 

non fusion based and some fusion based. In non-fusion based 

methods the spectral resolution is enhanced by analysing the  

 

 

 

 

hyperspectral data or the pixel reflectance value. Each hyperspectral 

pixel is divided into subpixels and the fractional abundance of end 

members are calculated and rearranged (Gary et. al. 2003). The main 

advantage in this process is, this technique does not require any 

further information apart from the data available in the hyperspectral 

image but this method is not efficient when it comes to detailed study 

of the image or provision for spatially extracting information of 

objects. The fusion based methods required information from various 

sensors. Eismann and Hardie, 2002 proposed a maximum a posteriori 

estimation method. It enhances the spatial resolution of hyperspectral 

images by applying the features of panchromatic or multispectral 

images, but in this technique the spatial enhancement is limited to 

several principal components of the hyperspectral image. Most of the 

initial research was based on Pan sharpening like PCA based 

techniques (Licciardi et. al. 2012), CN sharpening, Gram-Schmidth 

Sharpening (Maurer, 2013 ). These methods basically improve the 

photo interpretation of the image but they are not efficient for image 

analysis and spatial study. There also other algorithms based on 

frequency for enhancement of spatial resolution such as wavelets 

(Krista, 2007), purely statistical based methods such as spatial 

distortion optimization (Khan 2009), vector Bi-lateral filtering (Peng, 

2009). However the above stated techniques do not consider the band 

remapping issues of image fusion of hyperspectral and multispectral 

sensors. 

 

Since the multispectral and hyperspectral sensors works in different 

regions of the electromagnetic spectrum, there arises another major 

problem of band mapping (Khandelwal and Rajan, 2011). The 

multispectral LISS-IV image contains green, red and near infrared 

region of the electromagnetic spectrum, whereas the hyperspectral 

image contains bands from Visible to Short Wave Infra Red region. 

The spectrum range of the hyperspectral image is wider than that of 

the multispectral. While fusion there are extra hyperspectral spectrum 

regions, ideally which should not be mapped to the multispectral 
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bands. Most of the analytical methods do not consider this issue and 

ignore this concept. Ignoring this fact may lead to modification of 

spectral signatures of the fused hyperspectral data due to addition of 

spectral information from different spectral regions. This study tries 

to overcome these shortcomings and obtains an image which has 

spectral signature of the original hyperspectral image and spatial 

resolution of the multispectral image. 

 

2.  OBJECTIVE 

 

This study deals with end member (mangrove species) in the 

Sunderbans Delta of West Bengal, India by spectrally unmixing the 

mixed pixels by applying N-FINDR and Linear Spectral Unmixing 

algorithms to the hyperspectral image and therefore injecting only the 

spectral sensitive hyperspectral bands into the multispectral band for 

fusion for accurate retrieval of spectral signatures. The main 

objective of this study is to fuse the high spatial resolution pixels of 

the multispectral image with high spectral resolution of the 

hyperspectral image which would enhance the spatial details of the 

imagery while preserving its spectral details. The mangrove forests of 

Sunderbans comprise of highly mixed mangrove species and for its 

proper mapping and monitoring fused data would enable spatial 

mapping of pixel locations (mangrove species) of mixed pixels 

(mixed mangrove patches) with more accuracy.   

 

3. STUDY AREA 

As a case study, the pristine mangrove habitats of Henry island 

(approximately 10 sq.km. in area, extending between 21o36′00″N to 

21o34′00″ N latitude and 86o16′30″ E to 88o18′30″ E longitude) of 

the Sunderban Biosphere Reserve of West Bengal have been selected 

for the present study. The selection of the study area is based 

considering the fact that this island is rich in bio-diverse mangrove 

community with a wide variety of mangrove species that are rare and 

also endangered.  

 

  4.  METHODOLOGY 

4.1 Acquisition of Data  

An EO-1 Hyperion (hyperspectral) image of the study area has been 

procured from the USGS Earth Resources Observation and Science 

(EROS) Center through Data Acquisition Request (DAR) on the 27th 

of May, 2011. A Resourcesat-2, LISS-IV (multispectral image) of the 

study area (Henry Island, Sunderbans, West Bengal) is also acquired 

from National Remote Sensing Center(NRSC), ISRO. 

 

4.2 Pre-processing of Data 

 

Atmospheric correction was done on hyperspectral and multispectral 

data using MODTRAN based FLAASH (Fast Line-of-Sight 

Atmospheric Analysis of Spectral Hypercubes) algorithm available in 

the ENVI software.  It is observed that FLAASH was highly efficient 

for atmospheric correction (Chakravortty and Chakrabarti, 2011) of 

data captured by the Hyperion and LISS-IV sensors. Accurate geo-

registration of the hyperspectral and multispectral image has been 

done with the help of topographic sheets of the study area. Co-

registration of hyperspectral and multispectral data was done using 

the ENVI software for further processing. Minimum Noise Fraction 

(MNF) has been applied for dimensionality reduction of the 

hyperspectral data which sufficiently retains the requisite information 

for successful unmixing in the lower dimension.  

 

4.3 Data Fusion 

 

The accuracy of the end member classification depends on the no. of 

pure and mixed pixels present in the image (Villa et.al. 2010). The 

lesser the no. of mixed pixels, better is the accuracy. Unfortunately, 

most of the hyperspectral pixel are mixed pixels. Therefore, we apply 

Linear Spectral Unmixing (LSU) (Keshava and Mustard, 2002) on 

the imagery and derive fractional abundances of the end members. 

However unmixing does not provide us with information in spatially 

locating the end members. Hence, we fuse the multispectral and 

hyperspectral image, to obtain an image having the high spectral 

resolution of hyperspectral image and high spatial resolution of the 

multispectral image. 

 

The architecture of the proposed method is discussed as follows: 

Firstly, we apply the concept of channels remapping or band 

selection for hyperspectral data, which is discussed in this section 

further. After selecting hyperspectral channels, we select the end 

members using NFINDR (Winter,1999) and unmix the endmember 

pixel using LSU. We obtain a matrix ‘M’, which is composed of the 

‘n’ end member pixel reflectance for each hyperspectral band. The 

matrix ‘M’ is derived for the hyperspectral image, which is to be 

resampled into multispectral channel model. The resampling process 

is also discussed in this section further below.      

 

 
 

Figure 1. End member selection on the hyperspectral image 

 

Next we apply LSU followed by FCLS, to the resampled spectrum 

and calculate the endmember abundances. Finally a new high 

resolution hyperspectral image is retrieved using the result of 

multispectral unmixing and hyperspectral unmixing (using Eq.1 

mentioned below).  

 
Excoecaria Agallochha, Avicennia Alba, Avicennia Marina, Ceriops 

Decandra, Aquaculture1, Sea Water1, Sea Water 2, Aquaculture 2, 

Beach  

Figure 2. Spectral profile for 10 endmembers from 400 to 2400nm. 

 

The linear spectral unmixing  model for mixed pixel of hyperspectral 

image is the linear combination of the endmembers (Dimitris et. al, 

2001).  
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To obtain the fused image (f), we apply the linear mixing model 

again:  

                                       Xf = Mh  am                                                      (1) 

 

The matrix Mh (end member matrix of hyperspectral image) is 

multiplied by the abundance matrix from the multispectral image, and 

as a result we obtain a new pixel am with l bands. The fused image 

has the same spatial resolution as the multispectral image. 

 

4.3.1     Band Selection:  

 

As mentioned earlier, the original hyperspectral data has channels 

covering electromagnetic spectrum range from blue region to SWIR 

region, whereas multispectral covers just a part of this spectrum, 

which is green, red and infrared region. While resampling the 

hyperspectral channels to multispectral channels, extra regions of 

hyperspectral region gets mapped to the multispectral region. This 

leads to overlapping of spectrum and the obtained image loses its 

core aspect. For example, in the NIR region, it is generally observed 

that the vegetation region of the image is highlighted. In this study 

we have observed that, on overlapping the entire hyperspectral bands 

with the multispectral bands, the vegetation region is not very well 

highlighted and the result has low correlation with the original 

hyperspectral image. Hence, the multispectral channels fuse details 

into only those hyperspectral channels which come into the sensitive 

range of the hyperspectral channels. The fused image has spatial 

details of the multispectral image while maintaining spectral 

characteristics of the original hyperspectral data.  

 

4.3.2      Spectal unmixing :  

 

It has been observed that NFINDR algorithm and LSU have shown 

(Chakravortty, 2013) good results for the study area. We have 

applied fully constrained linear spectral unmixing to obtain the 

endmember spectral abundances.  

 

1.1.3 Spectral Resampling  :  The hyperspectral channels are 

resampled to the multispectral channel to obtain the resampled 

spectral response given by S(ωi): 

                                          (5) 

where, S(ω) is the value of radiance  from the hyperspectral sensor at 

the specific wavelength 'ω' and Ri(ω) response of the ith  channel at a 

wavelength 'ω' (J. Bieniarz , D. Cerra, J. Avbelj, P. Reinartz , R. 

Muller, 2011). If we discretize these equations then ‘ ω’ will be the 

wavelength of the hyperspectral band and ' ωi' for multispectral band. 

We assume the spectral response function Ri(ω)  to be Gaussian 

distributed for the multispectral sensor, and we model it as: 

                                               (6) 

Where, ‘ω’ is the continuous spectrum of hyperspectral image, while 

'µi'  and 'σ' are the central wavelength and the standard deviation 

respectively for the ith channel of the multispectral sensor. Hence we 

calculate the Ri(ω) each ith channel of the multispectral sensor. 

5.  RESULTS 

We tested the above methodology with Hyperion sensor (242 bands 

before band reduction, 155 subsequently). After band mapping we 

have 66 bands, i.e., green region has 10 bands, red region has 10 

bands, and IR region has 46 bands, according to the multispectral 

band (green, red and NIR) of the electromagnetic spectrum. We 

selected 10 types of end members for the hyperspectral image (which 

includes soil, aquaculture area, apart from the mangrove species). 

After applying NFINDR, resampling, LSU and FCLS, we obtain an 

image which has the spectral characteristics of hyperspectral channels 

(66 channels) and   spatial resolution of the multispectral bands (5 

meter). Figure 3 shows the fused image (Wavelength ~ 1130 nm) 

with spatial resolution of the multispectral image. 

 

                 
Figure 3. Original Hyperspectral image (1153nm) 

 

 
Figure 4. Original Multispectral Image (815 nm) 

 

 
 Figure 5. Fused Image having spatial resolution of 

multispectral image and spectral resolution of hyperspectral 

image ( 1130 nm) 
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Excoecaria Agallochha, Avicennia Alba, Avicennia Marina, Ceriops 

Decandra, Aquaculture1, Sea Water1, Sea Water 2, Aquaculture 2, 

Beach  

 

Figure 6. Spectral profile of fused image for 10 endmembers 

from 500 to 1200 nm 

 

Figure 6 shows the spectral profile of end members identified from 

the fused image. The end members comprise of mangrove species, 

water and soil. The spectral profile for the original image starts from 

400 nm to 2300nm wavelength range (Figure 2.), whereas the fused 

image’s range is from 500 to 1200 (Figure 7.). When we compare the 

spectral profile of the two images from the range 500 to 1200nm, we 

find similarity in the curves. Hence the spectral signature of the 

image is maintained. 

 We have meticulously verified the spectral profile and the fused 

image. Now we measure the accuracy of the resultant image by 

computing the normalized cross correlation (Kai Briechle et.al,2001) 

between each pixel in the original hyperspectral image and in the 

fused image. The processed image is first normalised from external 

factors such as variation in brightness by subtracting the mean and 

diving by the standard deviation and then finding the cross 

correlation between the two images. Normalised cross correlation is 

given by: 

     (7) 

Where, 'h' is the original hyperspectral pixels', 'f' is the fused image 

pixels. 'n' is the no. of measurements or no. pixels. 'h‾' and '‾f' are the 

mean of h and f. 'σh' and 'σf' are the standard deviation of the 

hyperspectral and fused image pixels. The normalized cross 

correlation was calculated in spectral domain. The spectrum of 

original hyperspectral image was compared with the spectrum of the 

fused image. The figure below shows the band vs normalized cross 

correlation of the fused vs the original pixels. 
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Figure 7. No. of bands vs Normalized cross correlation between the 

fused and hyperspectral pixels (for 66 bands) 

 

The above figure shows the normalized cross correlation between the 

fused pixels and the original hyperspectral pixels. The 10 selected 

hyperspectral pixel coordinates are the same as that of the fused 

pixel. The values of normalized cross correlation is always lesser than 

1. When the normalized cross correlation values is nearer to 1, it 

means that the pixels in the band are ideally cross correlated and the 

values towards 0 means that the pixel are not correlated. Hence 

ideally the value of normalized cross correlation should be on the 

higher side of 0.5. Our result (Figure 4.) shows that, all the bands 

greater than the 15th band, there is precision in the correlation and 

the bands which are below 15 are still on the greater side of the 

correlation. 
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Figure 8. No. of bands vs Normalized cross correlation between the 

fused and hyperspectral pixels (for 146 bands) 

 

Figure 8 shows the normalised cross corelation between all the bands 

of the original hyperspectral pixels and the fused image. In this 

technique we have ignored the band selection process depeding of 

the multispectral range and we have added various spectrum regions 

from the hyperspectral bands which is not available on the 

multispectral sensors. As we can observe the normalised cross 

correlation for the bands is very less and not as accurate as the fused 

image with 66 bands. The curve for Figure 9 is not smooth when 

compared to the Figure 8. Hence it is advisable to consider proper 

selection of bands and band mapping according the multispectral 

range for precise result. In order to measure the similarity between 

the images for each band, we computed a normalized cross 

correlation in the spatial domain. In Figure 9, we have plotted band 

vs reflectance of the pixels. There are selected pixels in the image. 

We have observed that pixels where vegetation is high, the cross 

correlation between those pixels is high and there is very less 

variation. The pixels which have soil and water bodies also present in 

them will have comparatively lesser correlation.  The spatial 

correlation for 66 bands is better than that of fused image with 146 

bands.  

A single band from the restored image was compared to the same 

band from the original image using equation 7. The cross correlation 

in the spatial domain has value above 0.89 in the spatial domain, 

where 0 and 1 represent respectively uncorrelated measurements and 

total correlation. From this we can observe that even when that, even 

when the cross correlation is lower, the main absorption features are 

preserved and remain clearly distinguishable. 
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Figure 9: Spectral Profile of Fused Hyperspectral-Multispectral Data 

and Original Hyperspectral  

 

6. Conclusion 

 

In this work a method for image fusion of hyperspectral and 

multispectral data based on spectral unmixing has been proposed. An 

image with high spatial resolution of 5m and high spectral resolution 

of 66 bands has been restored from a 30m resolution hyperspectral 

image with 155 bands and a 5m resolution multispectral image with 3 

bands. The hyperspectral bands are selected with respect to the 

particular band range of the multispectral sensor. Hence the spectral 

signature of the image is preserved. High values of cross correlation 

between the images show that both the spectral and the spatial 

information are well preserved. The algorithm is easy to use and 

could be employed to increase the spectral information of a 

multispectral image, given a co-registered hyperspectral image. This 

procedure can work for sensor with more than one band. In future we 

can modify the technique to fuse a panchromatic with a hyperspectral 

image.  
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