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ABSTRACT: 
 
Space borne sensors have limited capability to acquire images at high spatial and high temporal resolutions with larger swath 
simultaneously. In this paper, we propose alternatives to overcome this limitation by emulating such images at ground data processing 
system. Resourcesat-2, one of the Indian Space Research Organization’s (ISRO) mission carries Linear Imaging Self-Scanners (LISS 
III and LISS-IV) and an Advanced Wide-Field Sensor (AWiFS) onboard.  The spatial and temporal resolutions of LISS III are 23.5 m 
and 24 days, and those of AWiFS are 56 m and 5 days, respectively. The 141 km swath of LISS III data is overlapped with the 740 km 
swath of AWiFS data at centre portion in simultaneous acquisition. Two novel approaches are proposed to emulate the LISS III image 
with 740 km swath at 23.5 m spatial and 5-days temporal resolutions. First approach is to emulate the synthetic LISS III images at 23.5 
m spatial and 5-days temporal resolutions. Mosaic such images to cover the full 740 km swath of AWiFS for a given date. First 
approach is achieved through a spatio-temporal data fusion technique which depends on the previously acquired single AWiFS-LISS III 
image pair. Second approach assumes that the non-overlapping region of AWiFS contains similar Earth’s surface features of LISS III 
overlapping region; then it is possible to enhance the spatial resolution of AWiFS to the spatial resolution of LISS III in the non-
overlapping region. It is achieved through a single-image-super resolution technique over Non-sub sampled Contourlet Transform. First 
approach is computationally efficient but it requires prior knowledge of a single AWiFS-LISS III image pair for each emulated LISS III 
image. That image pair is acquired before or after the prediction date. Also, first approach faces radiometric issues in the mosaic 
process. Second approach has high computational complexity. But it works well for the data sets which are satisfying the above basic 
assumption. An accuracy of both methods is validated with originally acquired LISS III data sets. Experimental results demonstrated 
that the accuracy of first approach is around 92% and the second approach is around 87%.  In the second approach, only the 
overlapping regions of AWiFS and LISS III in simultaneous acquisition are used as prior knowledge. The accuracy of this method can 
be improved by increasing the database of the relevant prior knowledge.    
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1. INTRODUCTION 

The Earth Observation (EO) satellites images are used to map 
and monitor the natural resources. The map precision increases 
with an increase in the capabilities of remote sensing (RS) 
sensors technology. High spatial resolution improves the 
accuracy of the thematic maps (Mumby and Edwards 2002). If 
spectrally heterogeneous classes contain fine spatial resolution 
data, classification accuracy will be increased (Lillesand and 
Kiefer 1994). The high temporal resolution data is used to 
monitor the biodynamic nature of the Earth’s surface features 
(Hilker et al. 2009). There is a trade-off between high spatial and 
high temporal resolutions in designing the space borne sensor. It 
is either necessary to find a compromise between the spatial and 
temporal resolution according to the requirement of an 
application or to utilize an alternative method of data acquisition. 
 
Data fusion combines the information from multiple sensors to 
make inferences which are not possible with a single sensor (Hall 
and McMullen 1992). Image fusion combines the data 
synergistically from different sensors to achieve the best 
information (Pohl and Van Genderen 1998). Therefore, multiple 
applications are depending on the multi sensor data fusion to 
derive and analyze the information (Rao et al. 2014c). 
 
Image-super-resolution constructs the high-spatial resolution 
image by combining the sequence of low-spatial-resolution 
images which are having sub-pixel shifts (Joshi et al. 2004). But 
single-image-super resolution image learns the high-spatial-
resolution image from the training database of low and high-
spatial-resolution image patches for a given low-spatial 
resolution image (Gajjar et al. 2010). 
 
The main objective of the current study is to create a synthetic 
LISS III image at 23.5 m spatial and 5-days temporal resolutions 
at 740 km swath. In this paper, we achieve the objective with 
spatio-temporal image fusion and single-image-super-resolution 
techniques developed by Rao et al. (2014a, 2014b).  
 
 

2. BACKGROUND 

2.1 Spatio-temporal Image Fusion 

Generally spatial-spectral fusion methods are traditionally in use. 
Spatial-spectral fusion methods improve the spatial resolution of 
low resolution multispectral image while preserving the spectral 
information. In contrast, spatio-temporal fusion method improves 
repetitiveness of LISS III images, and the resultant pixel values 
estimated for better temporal resolutions simultaneously while 
retaining all other characteristics 
 
Gao et al. (2006) uses MODIS and Landsat images in Spatial and 
Temporal Adaptive Reflectance Fusion Model (STARFM). This 
method predicts the synthetic Landsat image at MODIS temporal 
resolution and it uses one or two input pairs of MODIS-Landsat 
images as prior knowledge. Hilker et al. (2009a) analyzed the 
potentiality of STARFM and generated synthetic Landsat images 
at MODIS temporal resolution. Hilker et al. (2009b) proposed a 
Spatial and Temporal Adaptive Algorithm for mapping 
Reflectance Change (STAARCH) which reconstructs the 
changes in land cover with the help of Tasseled Cap 
transformations of both Landsat and MODIS reflectance data. 
The STARFM and STAARCH methods face difficulty in 
detecting and delineating the land-cover-type changes in 
synthetic Landsat imagery (Huang and Song 2012). 
 

Sparse representation based Spatial Temporal Reflectance Fusion 
Model (SPSTFM) has developed recently which uses two input 
pairs of MODIS-Landsat images as prior knowledge (Huang and 
Song 2012). This method establishes a correspondence between 
structures within high spatial resolution (HSR) image and their 
corresponding low spatial resolution (LSR) image using sparse 
representation. Song and Huang (2013) developed a 
spatiotemporal data fusion based on the dictionary learning (DL) 
with one input pair of MODIS-Landsat images. The results show 
a better performance in comparison with STARFM method. 
However, the methods proposed by Huang and Song (2012, 
2013) have more computational complexity because of the 
training and learning the dictionary. Hence, these two methods 
(Huang and Song 2012, Song and Huang 2013) are tested on 
smaller size images. There is a scope to develop a 
computationally efficient spatiotemporal data fusion method in 
operation mode for larger study areas. In this paper, we 
demonstrated the effect of computationally efficient spatio-
temporal image fusion method of Rao et al. (2014a) for AWiFS 
and LISS III sensor images.  
 
2.2 Non-sub-sampled contourlet transform (NSCT) 

Do and Vetterli (2005) proposed contourlet transform (CT) to 
represent two dimensional singularities of an image. The CT 
composed with Laplacian pyramid (LP) and directional filter 
bank (DFB). Although CT transform represents curves sparsely 
due to its directionality and anisotropy, there is a frequency 
aliasing in the process of decomposition and reconstruction of an 
image in the CT. To reduce the frequency aliasing, enhance 
directional selectivity and shift-invariance, Cunha et al. (2006) 
proposed Non-Sub-sampled Contourlet Transform (NSCT) based 
on non-sub-sampled pyramid decomposition and non-sub-
sampled filter banks (NSFB). NSCT is the shift-invariant version 
of CT. NSCT uses iterated non-separable two-channel NSFB to 
obtain the shift-invariance and to avoid pseudo-Gibbs 
phenomena around singularities.  
 
The NSCT not only provides multi-resolution analysis, but also 
contains geometric and directional representation. Figure 1 
shows the overview of the NSCT and Figure 1(a) shows non sub 
sampled filter banks structure. The NSCT structure is composed 
of a filter banks which split the 2-D frequency plane into sub 
bands. Frequency partitioning is illustrated in Figure 1(b). NSCT 
get the perfect reconstruction through reconstructing filter banks.  
NSCT is more efficient than other multi-resolution analysis in 
image de-noising and image enhancement due to its multi-scale, 
multi-direction, anisotropy and shift-invariance (Cunha et al. 
2006). Therefore, we perform multi-resolution decomposition on 
remote sensing images by NSCT to enhance the spatial resolution 
through Contourlet Coefficients Learning (CCL).  
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Figure 1. Nonsubsampled contourlet transform, (a) Non sub sampled filter 
banks structure that implements the NSCT, (b) Frequencuy partitioning 
obtained with the filter banks shown in (a) . 
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2.3 Support Vector Regression (SVR) 

The support vector machines (SVM), originally proposed as a 
learning algorithm with the ability to provide function estimation 
(Chang and Lin. 2011). By using a mapping,	߶ ∶ ࣲ → ℱ, where 
ࣲ is the domain and	ℱ is usually a high-dimensional feature 
space, support vector regression (SVR) work in feature space to 
approximate unknown functions in an output space. And then 
non linear functions are used to linearly estimate an unknown 
regression.  
Suppose that we have a training set with	ܰ input-output pairs as 
in (1) 

Ω = {(࢞૚,ݕଵ), (࢞૛,ݕଵ), (࢞૜,ݕଵ), … ,             (1)															{(ேݕ,ࡺ࢞)
 
Where ࢞࢏	 ∈ ࣲ	and	ݕ௜ ∈ ℱ . Then, we can estimate the 
function ݂:࢞	 →  ߶		by utilizing the feature space through ݕ
by the following optimization. In this manner, SVR 
provides a model to generalize unseen inputs to the 
observed inputs in the training set as the following 
optimization problem 

									݁ݏ݅݉݅݊݅݉
1
2
‖࢝‖ଶ + ෍	ܥ ൫ߦ௜ + ξመ ୧൯

௟

௜ୀଵ
																							   (2)  

〉)																	݋ݐ	ݐ݆ܾܿ݁ݑݏ			 +〈࢏࢞࢝. ܾ) 	− 	௜ݕ ≤ ߝ	 + ௜ߦ 	,													(3) 
 

	௜ݕ																													 − +〈࢏࢞.࢝〉) ܾ) 	≤ ߝ	 + ξመ ୧,																(4) 
 

,	௜ߦ ξመ ୧ 	≥ 0	, ݅ = 1,2, … , ݈ 
 
Where		࢝ is the vector realising a functional margin of 1. By 
converting this primal problem into its dual problem, we can 
estimated the function݂(࢞) = 	 ∑ ݈∗݅ߙ

݅=1 (࢞,࢏࢞)ܭ	 + ܾ∗, where 
ܾ∗ is chosen so that  ݂(࢞࢏)− 	݅ݕ = 0	for any ݅ with ߝ− < ∗௜ߙ <
(࢞,࢏࢞)ܭ	Here.ܥ = ∗ߙ  and ,〈(࢞)߶,(࢏࢞)߶〉 = ∗ଶߙ,∗ଵߙ) , …  ௟∗) isߙ,
the solution vector of the dual problem. The parameter ܥ runs 
through a range of values, the norm ‖࢝‖ଶ varies smoothly 
through a corresponding range and minimising the norm of the 
slack variables ‖ߦ௜‖ଶ and ฮߦመ௜ฮଶ for the size of	࢝. Here  ߝ is the 
error threshold. 
 
2.4 Single-Image-Super Resolution 

The objective of Super-Resolution (SR) methods is to recover a 
high resolution image from one or more low resolution images 
(Rao et al. 2011). SR methods are broadly classified into two 
types (i) the classical multi-image super-resolution, and (ii) 
single-image super-resolution. In the classical multi-image SR   a 
set of low-resolution images of the same scene are taken at sub-
pixel shifts. Each low resolution image imposes a set of linear 
constraints on the unknown high resolution intensity values. If 
sufficient number of low-resolution images is available at sub 
pixel shifts, the set of equations can be solved to recover the 
high-resolution image.  This approach is numerically limited only 
to small increases in the spatial resolution. 
 
In a single-image SR, correspondences between low and high 
resolution image patches are learned from a database of low and 
high resolution image pairs (usually with a relative scale factor of 
2). The learned image patches are used to recover its most 
probable high-resolution version for a given new low-resolution 
image. In a single-image SR, missing high-resolution 
information is assumed to be available in the high-resolution 
database patches, and learned from the low-resolution and high-
resolution pairs of examples in the database. In this paper we 
demonstrated the single-image-super resolution for swath 
expansion through the NSCT and an SVR. 

 
3. METHODOLOGY 

3.1 Creation of HSHT Images at a Wider Swath through 
Spatio-temporal Image Fusion 

A synthetic LISS III image for time ݐ௞ is predicted from an 
AWiFS image at time ݐ௞ and a single AWiFS-LISS III image 
pair at time ݐ଴, where ݐ଴ 	≠  ௞ (Rao et al. 2014a). High frequencyݐ
details were injected into an AWiFS image at time ݐ௞ by 
modulating the derived high frequency details from previously 
AWiFS-LISS III image pair at time	ݐ଴ as shown in Equation (5) 
 
௞ݐܮ						 = ଴ݐܮ		 + 				 ൣ4 ∗ ൫ܽ(݅, ݆, (௞ݐ − ܽ(݅, ݆, ∗	଴)൯൧ݐ ܹ						(5)							 
 
The size of the AWiFS image			a  and LISS III image	ܮ is 
m × n		and    2m × 2n respectively. Where ݐܮ଴ is the 2 × 2	pixel 
block corresponding to the AWiFS pixel ܽ(݅, ݆,  .	t଴	଴)  at timeݐ
Similarly ݐܮ௞ and ܽ(݅, ݆,  ௞. Equation (5) givesݐ	௞) for the timeݐ
the 2 × 2		pixel blocks of LISS III image for 
time	ݐ௞ 	corresponding to a pixel	(݅, ݆) of AWiFS image.  
 
The 2 × 2 weight matrix  ܹ	 is computed for every AWiFS pixel. 
This weight matrix is derived by considering the temporal 
changes from AWiFS images at time ݐ଴ and ݐ௞ and the spatial 
information from the LISS III image at time	ݐ଴. The weight 
matrix W determines the proportional weights of the spatial 
details to predict 2 × 2	LISS III pixel block for the time	ݐ௞	. The 
complete details to derive the weight matrix ܹ is illustrated in 
Rao et al. (2014a) 
 
To cover the full 740 km swath for a particular date, we have to 
mosaic 25 LISS III scenes approximately as shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Full AWiFS scene approximately covered by the 25 
LISS III images which are acquired in different dates 
 
For example, an AWiFS image is acquired on 11-3-2014 in the 
path 93 row 52 at 740 km swath. In simultaneous acquisition, 
LISS III image on 11-3-2014 is also acquired at 141 km swath in 
the same path and row at the centre portion of the full AWiFS 
scene as shown in Figure 2.To create a synthetic LISS III image 
at 740 km swath for 11-3-2014; we need to emulate other LISS 
III images for 11-3-2014.   
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The proposed spatio-temporal data fusion requires previously 
acquired single AWiFS-LISS III image pair as prior knowledge.  
In path 91, LISS III images are acquired on 1-3-2014, but we 
require these LISS III images for 11-3-2014. Originally, in this 
path, there is no LISSS acquisition on 11-3-2014. In this work, 
we emulated the LISS III images for 11-3-2014 in the path 91 by 
using a AWiFS image on 11-3-2014 in that path and previously 
acquired single AWiFS-LISS III image pair on 1-3-2014 in that 
path. Therefore, we can predict similarly for the other paths 92, 
94, 95. Here LISS III image in the path 93 is originally acquired 
on 11-3-2014. Hence the all the LISS IIII images in paths 91, 92, 
93, 94 and 95 are emulated for the date 11-3-2014. Mosaicking 
of all such images forms a synthetic LISS III image at 740 km 
swath. 
 
3.2 Creation of HSHT Images at a wider swath through 
Single-Image-Super Resolution 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Overlapping and non-overlapping regions of AWiFS 
and LISS III images in a simultaneous acquisition. Light gray 
colour represents the non-overlapping region and dark gray 
colour rectangle represents the overlapping region.  
 
The main objective is to enhance the spatial resolution of AWiFS 
image to the spatial resolution of LISS III image in the non-
overlapping region. Consequently the swath of LISS III image 
expands to the swath of AWiFS image. Assume that the non-
overlapping region AWiFS contains the similar Earth’s surface 
features of LISS III overlapping region. Then it is possible to 
enhance the spatial resolution of AWiFS to the spatial resolution 
of LISS III in the non-overlapping region. With this assumption, 
in this paper, we demonstrated the swath expansion with single-
image–super resolution technique through the NSCT and an 
SVR. 
 
3.2.1 Single-Image-Super Resolution through NSCT 

3.2.1.1 Training Phase 
 
An AWiFS image is rectified to maintain the identical geometry 
of LISS III image through the process of the geometric 
correction. Consequently, pixels in the overlapping region of 
AWiFS and LISS III images are in one-to-one correspondence. 
Training data for each sub band was created by applying the 
Non-Sub sampled Contourlet Transform (NSCT) to the 
overlapped LISS III and its corresponding interpolated AWiFS 
image.  
(a). Extract the sub scene of AWiFS image corresponding to the  

overlapped LISS III from the full AWiFS scene. 
(b). Apply the NSCT to the overlapped LISS III and its 

corresponding AWiFS image. The 2-level decomposition 
was applied in the NSCT. Middle level frequencies were 
decomposed into two directions and high level frequencies 

were decomposed into four directions. The remaining 
frequencies were in low-pass sub-band.  

(c). Extract 5 × 5 patches with 5 × 5 moving window, this 
window moves towards right side by one column. After 
end of the columns, it moves down by one row. Repeat 
the same procedure until to cover the whole sub band. 
The training data was created for each sub band in each 
level and direction 

Each row in training data contains pixels of 5 × 5 LISS III patch 
and its corresponding pixels of 5×5 AWiFS patch of the 
overlapping region. These 5 × 5 patches are rearranged into 
1 × 25 arrays to simplify the searching and identifying the 
desired 5 × 5 LISS III patch corresponding to a given 5 × 5 
AWiFS patch.  

3.2.1.2 Prediction Phase 
 
Interpolated full AWiFS image contains both overlapping and 
non-overlapping regions. The interpolated full AWiFS image is 
taken as input image to enhance the spatial resolution of the non-
overlapping.  
 
(a)  Apply NSCT to the interpolated full AWiFS scene. The 

number of levels and directions are same as in training phase. 
(b) Extract a 5 × 5 patch from a sub band. Identify the best 

matched 5 × 5 AWiFS sub band patch in the training data 
where the root mean squared error is minimum between the 
given 5 × 5 AWiFS patch and all 5 × 5 AWiFS patches in 
the training data. 

(c) The corresponding 5 × 5 LISS III patch of the best matched 
5 × 5 AWiFS patch is the desired 5 × 5 LISS III patch. 
Move this 5 × 5 window with one pixel overlap and repeat 
the same procedure until to cover the whole sub band. An 
average was taken between the pixels of one pixel overlap.  

(d) Apply inverse NSCT to the predicted sub bands.  The HR 
LISS III image is created for both the overlapping and non-
overlapping regions. Hence the spatial resolution of non-
overlapping region is enhanced to the spatial resolution of    
LISS III. 

 
3.2.2 Single-Image-Super Resolution through SVR 
 
In SVR method, the 5×5 neighbourhood pixels of an AWiFS 
pixel at location I is converted into a column vector 
{x1, x2,…, x25} which was used as an SVR training input vector. 
The SVR prediction output corresponding to this input vector is a 
LISS III pixel at location I. The overlapping regions of the 
simulated AWiFS image and the LISS III image were used to 
create the training data. In prediction step of the SVR method, for 
a given AWiFS pixel at location J, neighbourhood window of 
5×5 is used to create the input vector.  For this input vector, 100 
best training sample were selected from the training data. An 
SVR model was trained with these 100 training samples. The 
trained SVR model was used to predict the LISS III pixel at 
location J for a given AWiFS pixel at location J. We have trained 
the SVR model with the same set of parameters for the whole 
image. Radial basis function was used as the kernel function. A 
grid-search was performed to optimize the kernel parameters 
gamma and the cost of constraint constant. The grid-search 
resulted in values of 10 for gamma and 50 for the cost. The 
epsilon value is set as 0.1. However, an SVR model is a data 
driven method, different data sets may have different parameter 
settings. In our experiments, we have developed an SVR super 
resolution tool with MATLAB using a library for support vector 
machines (LibSVM) (Chang and Lin. 2011). 
 

 LISS III at 23.5 m 
spatial, 24-days 
temporal resolutions 
 at 141 km swath 

 AWiFS at 56 m 
spatial, 5-days 
temporal resolutions 
at 740 km swath 
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4. EXPERIMENTAL RESULTS AND ANALYSIS 

4.1  Results of spatio-temporal image fusion approach  

We consider the original LISS III data along the centre path of 
the AWiFS full scene i.e. 93 path as shown in the Figure 2. The 
remaining paths 91 and 92 on the left side, the 94 and 95 paths 
on the right side of the centre path 93 were considered to predict 
LISS III images for 11-3-2014.  
 
Along the path 93, LISS III data is acquired on 11-3-2014, but 
the data in the preceding path 92 is acquired on 6-3-2014. For the 
path 92, we have AWIFS-LISS III image pair acquired on 6-3-
2014 and an AWiFS image acquired on 11-3-2014. By using 
these data sets, we predicted the LISS III image for 11-3-204 in 
the path 92. Therefore, now in 92 and 93 paths, we have LISS III 
images for 11-3-2014.  To cross-validate the predicted image in 
the path 92 for the 11-3-2014, we have an opportunity to use the 
overlapping region between the paths. Here 93 path LISS III 
image is originally acquired image. But 92 path LISS III image is 
predicted image. These two images have 20 to 30% overlap. 
Figure 4 shows the 70 km swath strips in 92 and 93 path. The 
yellow colour polygon is the overlapping region between the two 
images. We have tested the accuracy of the overlapping region 
for predicted LISS III image with the original LISS III image. 
Quantitative results are shown in Table 1.  
 
Spatial quality of the predicted images were evaluated with the 
root mean squared error (RMSE) and structural similarity index 
map (SSIM) (Wang et al. 2004).  Spectral quality is evaluated 
with the spectral angle mapper (SAM).  An average RMSE of 
four bands is 0.0093 in reflectance values. The SAM value is 
2.785 in degrees. The SSIM provides the local structural 
information of an image. An average SSIM of the four bands is 
0.89. The prediction accuracy is evaluated with the statistical 
parameter	ܴଶ. The prediction accuracy for each band is shown in 
Figure 5. An average 	ܴଶ of four bands is 0. 92 i.e. the prediction 
accuracy of the spatio-temporal data fusion approach is 92% for 
this experimental data set. 
 

 
  
 
Figure 4.  (a) Orignal LISS III image on 11-3-2014 along the 
path 93 and predicted LISS III for 11-3-2014 along the path 
92.The yellow color polygon is the overalpping region, (b) 
zoomed original LISS III image , (c) zoomed predicted LISS III 
image of  black colour box in the yellow colour polygon. 

 Table 1. Quantitative results of the spatio-temporal data fusion 
approach   
 

 
 
Figure 5.  Scatter plots of the original LISS III reflectance values 
against the predicted LISS III reflectance values for each band 
(where scale factor is 1000). 
 
In a similar manner, we can predict LISS III images for 11-3-
2014 in other paths 91, 94 and 95 also.  The predicted LISS III 
images for the row 52 in paths 91 to 95 are shown in Figure 6.  
By predicting LISS III images for 11-3-2014 in other rows, we 
can obtain an emulated LISS III image at 740 km swath at 
AWiFS revisit cycles. 
 
 

 
 
 
Figure 6. Predicted LISS III images for 11-3-2014 along the path 
91, 92, 94 and 95 in the row 52 overlaid on the full AWiFS 
scene.  The image in the path 93 is the original LISS III image of 
11-3-2014. 
 

 
B2 B3 B4 B5 

RMSE(reflectance) 0.0072 0.0111 0.0085 0.0107 
SSIM 0.9232 0.9510 0.8745 0.8512 

(a) 

(b) 

(c) 

93 92 
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52 
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4.2 Results of single-image-super-resolution through NSCT 

We evaluated the effect of the proposed method on the spatial 
resolution difference only. We created a simulated AWiFS image 
by degrading the LISS III image of size 300 × 300. Then the size 
of the simulated AWiFS image is 300 × 300. A sub scene of 
	150	× 150 image at the centre of 300 × 300	LISS III image was 
used as overlapped LISS III on the simulated AWiFS image. 
Therefore the simulated AWiFS and the centre 	150 ×	150 LISS 
III image have no radiometric, geometric, spectral and bi-
directional reflectance distribution function (BRDF) differences. 
They have only the spatial resolution difference. The overlapping 
150 ×	150	 regions of LISS III and AWiFS are used for training. 
The non-overlapping-region of AWiFS is used for testing.  
 
Figure 8(a) is the simulated AWiFS image with overlapped LISS 
III image in yellow colour box, Figure 8(b) is the swath 
expanded LISS III using CCL and Figure 8(c) is the original 
LISS III image. Quantitative results are shown in Table 2.  An 
average RMSE of four bands is 0.0069 in reflectance values. The 
SAM value is 2.541 in degrees. The SSIM provides the local 
structural information of an image. An average SSIM of the four 
bands is 0.91. The prediction accuracy is evaluated with the 
statistical parameter	ܴଶ. The prediction accuracy for each band is 
shown in Figure 7. An average 	ܴଶ of four bands is 0. 92 i.e. the 
prediction accuracy of the single-super-resolution approach 
through NSCT for the simulated data sets is 92%.  
 

 
Table 2. Quantitative results of single-image-super resolution 
approach through the NSCT. 
 
 

 
 
Figure 7. Scatter plots of the original LISS III reflectance values 
against the predicted LISS III reflectance values for each band 
(where scale factor is 1000). 
 
 

 
 

 
 

 
 
 

 
 
 
Figure 8. Enhancement of AWiFS spatial resolution to the spatial 
resolution of LISS III in the non-overlapping region by the CCL. 
 
 
 
 
 

 
B2 B3 B4 B5 

RMSE (reflectance) 0.0040 0.0084 0.0085 0.0070 
SSIM 0.9102 0.9256 0.8941 0.9152 

Bands 
Quality 
parameter 

(a) (b) 

(c) (d) 

(a) Simulated AWiFS scene with overlapped LISS III 
image in yellow colour box 

(b) Swath expanded  LISS III image through NSCT 

(c) Original  LISS III image 
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In practical, the input data sets contain geometric, radiometric, 
spectral and BRDF differences between AWiFS and LISS III 
images. The Counterlet Coefficients Learning (CCL) method 
works well for the data sets which do not have these differences. 
The CCL method follows the shift invariance property of the 
NSCT in multi-scale decomposition. If there is any small 
geometric bias between AWiFS and LISS images, the CCL 
method faces the difficulty in learning the correspondence 
between the AWiFS and LISS image patches in the overlapping 
regions. For real data sets of AWiFS and LISS III images an 
alternative methods are required.  
 
4.3 Results of single-image-super-resolution through SVR 

Support vector regression is a data driven method to predict the 
unknown data with a prior knowledge. It predicts the high 
resolution data in pixel-wise. So that it takes high computational 
time to train the database of high resolution pixels and its 
corresponding low-resolution patches. However, our 
experimental results demonstrated that SVR predicts 
appropriately for real AWiFS and LISS III data sets. It has been 
observed that SVR predicts proper high resolution pixels for a 
given low-resolution patches even for the sub-pixel geometric 
bias in the overlapping region of AWiFS and LISS III images. 
 
Figure 10(a) is the simulated AWiFS image with overlapped 
LISS III image in yellow colour box, Figure 10(b) is the swath 
expanded LISS III using CCL and Figure 10(c) is the original 
LISS III image. Quantitative results are shown in Table 3.  An 
average RMSE of four bands is 0.0118 in reflectance values. The 
SAM value is 2.841 in degrees. The SSIM provides the local 
structural information of an image. An average SSIM of the four 
bands is 0.91.  
 

Table 3. Quantitative results of single-image-super resolution 
approach through an SVR. 
 

 
 
Figure 9. Scatter plots of the original LISS III reflectance values 
against the predicted LISS III reflectance values for each band 
(where scale factor is 1000). 
 

 
 
 
 

 
 
 

 
(c) 
 
Figure 10. Enhancement of AWiFS spatial resolution to the 
spatial resolution of LISS III in the non-overlapping region by an 
SVR. 
 
The prediction accuracy is evaluated with the statistical 
parameter	ܴଶ. The prediction accuracy for each band is shown in 
Figure 9. An average 	ܴଶ of four bands is 0. 87 i.e. the prediction 
accuracy of the single-super-resolution approach through SVR 

 
B2 B3 B4 B5 

RMSE(reflectance) 0.0097 0.0143 0.0163 0.0070 
SSIM 0.90102 0.8956 0.8741 0.8552 

(a) Real AWiFS scene with overlapped LISS III 
image in yellow colour box 

(b) Swath expanded LISS III image through SVR 

(c) Original LISS III image 

Quality 
parameter 

Bands 

(a) (b) 

(c) (d) 
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for the real AWiFS and LISS III data sets is 87% for this 
experimental data. 
 

5. CONCLUSION 

In this paper, we propose two novel approaches to emulate the 
LISS III images at 740 km swath, 23.5 m spatial and 5-days 
temporal resolutions. First approach is to emulate the synthetic 
LISS III images at 23.5 m spatial and 5-days temporal 
resolutions. Mosaic such images to cover the full 740 km swath 
of AWiFS for a given date. First approach is achieved through 
the spatio-temporal data fusion technique which depends on the 
previously acquired single AWiFS-LISS III image pair. Second 
approach assumes that the non-overlapping region of AWiFS 
contains the similar land-cover features of LISS III overlapping 
region. Then it is possible to enhance the spatial resolution of 
AWiFS to the spatial resolution of LISS III in the non-
overlapping region. It is achieved through a single-image-super 
resolution technique over contourlet coefficients learning and 
support vector regression. The effect of second approach is 
evaluated for simulated and real data sets of AWiFS and LISS III 
images. But it works well for the data sets which are satisfying 
the above basic assumption. First approach is computationally 
efficient but it faces radiometric issues in the mosaic process. 
Second approach has high computational complexity. An 
accuracy of both methods is validated with originally acquired 
LISS III data sets. Experimental results demonstrated that the 
accuracy of first approach is around 92%, the second approach is 
around 87% for real datasets, and 92% for the simulated data 
sets.  In second approach, only the overlapping regions of 
AWiFS and LISS III are used as prior knowledge. The accuracy 
of this method can be improved by increasing the database of the 
relevant prior knowledge.    
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