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ABSTRACT

Coastal waters, in particular, are the regions of high productivity and biodiversity. Detailed investigations of the variability within
them can aid in understanding many biogeochemical processes. With the advent of hyperspectral remote sensing having large
number of closely spaced channels and highly improved signal-to-noise ratio (SNR), the coastal applications are expected to increase
and improve. In India, very less work is done in the field of coastal studies, let alone using hyperspectral remote sensing. HICO,
onboard ISS, is the most recent addition to this family of instruments. So, a pilot study was conducted to assess HICO data for
coastal studies especially in deriving the shallow water bathymetry estimates. The methodology for deriving bathymetry estimates is
based on the different responses of shallow-water reflectance on depth and substrate type because with decreasing water depth in
case 2 waters, the spectral contributions arriving from pure water reduce while from other OCAs increase. This variability is
typically higher in the wavelength range 480 to 610nm. Using this wavelength range, bathymetric estimates were made at pixel
level. Bathymetry estimates were found to vary from 1m to >12m. Spectral variability is clearly observed in the continuum removed

spectral plots from waters of different depths and is reported in this paper.
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INTRODUCTION

Coastal waters, in particular, are the regions of high
productivity and biodiversity. Detailed investigations of the
variability within them can aid in understanding many
biogeochemical processes such as primary productivity (Cullen
et al., 1997), carbon cycle etc and thus in coastal zone
management (Nayak et al, 1996). They carry various optically
active materials like phytoplankton, NAP, and CDOM. The
incident light over water is absorbed and scattered by these
materials. Hence, their varied concentration leads to the
variability of natural as well as coastal waters and their
apparent optical properties (AOPs).

In Case | waters, the optical properties are controlled by
phytoplanktons and their associated degradations while in Case
Il waters which includes inland and coastal waters, their
spectral characteristics are influenced by phytoplankton and
other OCAs (Morel and Loisel, 1998) including varying
proportions of sediments. With decreasing water depth, the
spectral contributions arriving from pure water reduce while
from other OCAs increase. Using this spectral information,
gradients relating to biogeochemical concentrations of various
types within water spread may be derived. In the past, many
studies related to coastal applications have been done using
broad band data. But, the hyperspectral data use for coastal
studies is still in the nascent stage in India. With this purview in
mind, space-borne hyperspectral data, HICO was investigated
for coastal applications.

One of the primary requirements in the field of coastal studies
is the bathymetry. Bathymetric or hydrographic charts usually

prepared for case 1 waters are suitable for navigation purpose
and for oceanic modelling. Presently, deep water bathymetry
has a large amount of datasets available with varying coverage,
resolutions, and accuracies like ETOPO5 (National
Geophysical Data Centre (NGDC) 1988) and the ETOPO2v2
(NGDC 2006) bathymetric grids, both of which are now in
wide use. ETOPO2 is based on satellite altimetry and works
best in deep-water regions. In shallow waters ETOPO?2 is not
always reliable (http://www.ngdc.noaa.gov/mgg/global/
relief/ETOPO2/ETOPO2-2001). Hence, it is important to have
shallow water bathymetry estimates not only for deriving the
spectral characteristics of optically complex waters having
variable benthic environment but also for other oceanic
applications like studies related to tidal circulation and tsunami
propagation. However, shallow water bathymetry is still not as
coordinated and standardized as is deep water bathymetry in
India as well as internationally. Satellite data based models for
shallow water bathymetry mapping have their unique
advantages of repetitive and quick quantitative estimation with
fewer efforts over large spatial scales (Conger et al, 2006).
With the advent of hyperspectral remote sensing having large
number of closely spaced channels and highly improved signal-
to-noise ratio (SNR), coastal studies are going to be more
informative. Shallow water bathymetric estimates are expected
to improve. Ma et al (2014) have developed a method that can
estimate clear shallow-water depth (0-30 m) from
hyperspectral data. In this paper, this method is investigated for
deriving coastal bathymetric estimates and thereupon spectral
characteristics of waters of varying depths.
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STUDY AREA

The study was conducted over a coastal part of the Arabian Sea
region. The data analyzed was of 16" December 2013. Cloud
patches were observed at many places within the scene,
however, coastal regions, typically where this study was
conducted, were largely cloud free. Figure 1 shows the FCC of
the study area.

Figure 1: FCC of the study area (Bands selected are band
97, 60 and 42 corresponding to central wavelength
547.28nm, 650.38nm and 862.32nm respectively)

MATERIALS AND METHODS

In order to carry out this study, hyperspectral data was obtained
from Hyperspectral Imager for Coastal Ocean (HICO). HICO
sits over the International Space Station (ISS) and is largely
meant for scientific research related to the coastal studies,
though it may be very well used for terrestrial applications.
Table 1 briefly describes the HICO specifications.

Table 1: HICO specifications

Parameter Specification
Spectral Range 350-1080nm
Spectral Channel 5.7nm
width (Normal
mode)
SNR >200:1 for 5% albedo target
Nadir crosstrack 94m@400km
GSD
Nadir along-track 99m
GSD
Scene size 42km x 192 km
Saturation Does not saturate when viewing 95%
albedo cloud

HICO data used in this study was dated 16" December 2013.
As shown in the FCC in figure 1, the image has many patches
of clouds. Moreover, many non-water areas are also present.
Both of these classes have to be removed before further
analysis. So, three methods were investigated. First method was

based on slicing the image based on the radiance, second was
based on Normalized Difference Water Index (NDWI) and the
third on Modified Normalized Difference Water Index
(MNDWI). The most appropriate technique was used to
remove the cloudy pixels and the non-water pixels.

Masking of non-water area

HICO data used for this study was available in DN, so was
converted to radiance units using the specified gain settings.
Since, large portion of the HICO scene had clouds apart from
land mass, so cloud removal as well as removal of terrestrial
parts was done using radiance slicing by applying a proper
threshold. Also, NDWI and MNDW!I were evaluated (Eq 1 and
1b). MNDWI (Xu, 2006) was particularly developed for
removing the noise due to built-up land apart from background
soil and vegetation effects.

NDWI= (Green-NIR)/(Green +NIR) (1a)
MNDWI= (Green-MIR)/(Green +MIR) (1b)

Once non-water areas from the image were masked,
atmospheric correction was performed over the image using
FLAASH module of ENVI image processing software. The
reflectance image thus produced was used for bathymetry
retrieval.

Bathymetry retrieval

Lyzenga (1978), in an extension to the Beer’s law of light
attenuation with increasing water depth, showed that the
observed reflectance could be expressed by depth and bottom
albedo as follows:

Rw = (Ad — R-) exp (=02) + R~ @)

Where R. is the water column reflectance if the water were

optically deep, Ay is the bottom albedo, z is the depth, and g is a
function of the diffuse attenuation coefficients for both
downwelling and upwelling light (Stumpf et al, 2003). It
implies that both the water depth as well as change in benthic
type affects the reflectance spectrum in the range 480 to 610
nm (Loomis, 2009). Ma et al (2014) showed that if the
influence of bottom albedo on the observed spectrum is
removed, the remaining changes will all be caused by water
depth variation. Pearson correlation coefficient (CC) and
similarity coefficient (SC) can be used to derive bathymetry
data from hyperspectral observations as follows (Ma et al
2014):

First, the reference spectrum coming from water depth closest
to zero is selected. Then, the CC and SC at pixel level (i) are
calculated as follows:

N R R
cC i = j=1 R;j—R; (Ro,; Ro) +1 (3)

N — 2 N —_— 2
j=1 Rij=Ri * j—; Ro,j=Ro
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In equations 3 and 4, N is total number of bands between 480
and 610 nm. R; ; is the spectral reflectance of band j at pixel i ,
Ry, j is the reference spectral reflectance of band j. A constant in
the formulae is added to ensure that the values are always
positive.

From the above, water depth may be retrieved as:

7i = In(nSC i)
- In(nCC i)

— ko ®)
Where k1 is a tuneable constant to scale the ratio to depth, n is
a fixed constant that ensures the natural logarithms remain
positive for every condition, and kO is the offset.

After the bathymetry estimates, the image was density sliced as
per the variations in water depth. The spectra for each class was
then retrieved and analyzed.

RESULTS AND DISCUSSIONS

HICO data was provided in the ISS format which is not
compatible with the generally used image processing software
like ENVI IDL. Hence, the data was converted to geotiff
format using SeaDas software. The data was provided in the
digital counts, so radiance image was generated using the
provided scaling factors. The radiance image and
corresponding spectral plots for major land-cover types is
shown in Figure 2 below.
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Figure 2: Radiance image of the study area with
corresponding spectral plots. Note that unit of radiance is
W/sg m/micrometer/steradian

Radiance plots for all the classes come in consensus with the
observations from other sensors. A large amount of scattering
in blue region is observed leading to an overall increase in
radiance in the initial bands. Note that in both case 1 and case 2
waters not much spectral variability is observed in the radiance
domain, although both the classes have immense difference in
their constitution otherwise. The reflectance domain is
expected to show the marked variability between the two
classes. However, the prerequisite is masking of non-water
regions before attempting reflectance retrieval. Hence, the

radiance image was density sliced and NDWI and MNDWI
maps were generated (figure 3).

Water Land-mass Clouds

Figure 3: Density sliced radiance, NDWI and MNDWI
images respectively

Broadly speaking, all the three methods of cloud making are
able to mask out clouds an terrestrial areas. But, radiance based
masking is highly subjective to the band slected for density
slicing. So, this technique was dropped from comparison.
When NDWI and MNDWI are carefully analyzed, it is
observed that MNDWI outperforms the other two techniques of
cloud masking as shown in figure 4.

Clouds

Water Land-mass

Figure 4: Cross Comparison of NDWI and MNDWI in
segregating non-water regions

Note that in figure 4, FCC of first set of images show water
body, which is shown as clouds in NDWI image while
MNDWI suitably classifies it as non-clouds. Also, in second set
of images, NDWI is not able to identify thin cloud patches but
MNDWI classifies them suitably. Consequently, MNDWI
based non-water masking was selected in this study. Xu (2006)
aslo showed better performance of MNDW!I over NDWI in
cases where background noise is large.

As the sensor detected radiance is contaminated by solar
backscatter from air molecules and aerosol, the procedure for
atmospheric correction is necessary. Atmospheric correction
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was performed using FLAASH module of ENVI image
processing software. Figure 5a shows the atmospherically
corrected image of the study area while figure 5b shows the
MNDWI masked reflectance image of the study area.
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Figure 5: (a) Atmospherically corrected image of the study
area (b) MNDWI based masked reflectance image
displaying ‘only water’ regions

Corresponding to figure 5, reflectance spectra were retrieved
for case 1 as well as case 2 waters (shown in figure 6).
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Figure 6: Reflectance plots for water

The reflectance goes to a high value of 0.4 or 40% in blue
region, drops down to less than 5% and further low in higher
wavelengths side.

In the two kinds of water, remarkable difference in magnitude
as well as the pattern of the spectra is expected to be more
pronounced in the wavelength region between 480 and 610nm.
As a result, spectral plots within the same range are shown in
figure 7 below. It may be noted that continuum removal was
carried out to observe the distinct spectral variability between
the two types of water.
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Figure 7: Continuum removed reflectance plots for case 1
and case 2 waters within the wavelength range of 480 and
610nm

As was expected, the reflectance for case 2 waters is higher
than case 1 waters primarily due to the dissolved optically
active substances in them. Note that case 2 waters show high
reflectance in ~550nm region as is shown by green vegetation.
This indicates the presence of phytoplanktons.

Bathymetry Retrieval

Bathymetry retrieval requires computations for the parameters
CC and SC as per equations 3 and 4. Upon computing the two
parameters and integrating them as in equation 5, bathymetry is
retrieved (figure 8). Bathymetry map was density sliced into six
classes showing water depth of ~-2m (shown in yellow colour)
to <-10m (shown in magenta colour).
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Figure 8: Density sliced bathymetry image

In order to observe the variability in depth on moving from
inland water towards initiation of deep ocean, a horizontal
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transect was chosen and corresponding bathymetric plot was
obtained (Figure 9). Inland waters and coastal areas appear to
be shallow (~1-3m) than a sharp gradient in depth is observed
followed by almost uniform depth.

Horizontal
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Figure 9: Bathymetry profile across the scene shown in
inset

For each class of water the spectral plots were obtained and are
shown in figure 10 below. It is evident that waters having
variable depths show differences in their spectra also.
Concurrent sample observations for chlorophyll content and
suspended matter may be used to derive quantitative
information from these spectra.
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{a) Continuum removed spectra of various classes
within 400-900nm range

{b) Continuum removed spectra of various classes
within 400-610nm range

Figure 10: Continuum removed reflectance spectra of the
various classes of density sliced bathymetric image

CONCLUSION

In this study, hyperspectral data from HICO instrument is
assessed for coastal studies. In this direction, the data was first
processed for removing the terrestrial and clouds components
by using three techniques. MNDW!I was found to be the best
when compared with the other two techniques. The radiance
plots for different target types were extracted and were found to
fall in consensus with the standard observations. The data was
then used for retrieving shallow water bathymetry. Bathymetry
estimates were found to vary from ~1m to ~12m in depth. The
spectra of case 1 and case 2 waters obtained from the density
sliced bathymetry image showed large variability in reflectance
domain especially in the 480-610nm range. However, the
reflectance values match well with the standard observations.
This implies that both in radiance and reflectance domain, the
spectral characteristics of water in term of pattern and

amplitude show that HICO data can be very well used for
quantitative coastal applications. The data can also be used for
deriving shallow water bathymetry estimates useful for many
navigation and climatic applications.
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