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ABSTRACT 

Coastal waters, in particular, are the regions of high productivity and biodiversity. Detailed investigations of the variability within 

them can aid in understanding many biogeochemical processes. With the advent of hyperspectral remote sensing having large 

number of closely spaced channels and highly improved signal-to-noise ratio (SNR), the coastal applications are expected to increase 

and improve. In India, very less work is done in the field of coastal studies, let alone using hyperspectral remote sensing. HICO, 

onboard ISS, is the most recent addition to this family of instruments. So, a pilot study was conducted to assess HICO data for 

coastal studies especially in deriving the shallow water bathymetry estimates. The methodology for deriving bathymetry estimates is 

based on the different responses of shallow-water reflectance on depth and substrate type because with decreasing water depth in 

case 2 waters, the spectral contributions arriving from pure water reduce while from other OCAs increase. This variability is 

typically higher in the wavelength range 480 to 610nm.  Using this wavelength range, bathymetric estimates were made at pixel 

level. Bathymetry estimates were found to vary from 1m to >12m. Spectral variability is clearly observed in the continuum removed 

spectral plots from waters of different depths and is reported in this paper. 

 

KEYWORDS 

Hyperspectral, HICO, Bathymetry, Spectra, Optically Complex Water,  

 

INTRODUCTION 

Coastal waters, in particular, are the regions of high 

productivity and biodiversity. Detailed investigations of the 

variability within them can aid in understanding many 

biogeochemical processes such as primary productivity (Cullen 

et al., 1997), carbon cycle etc and thus in coastal zone 

management (Nayak et al, 1996). They carry various optically 

active materials like phytoplankton, NAP, and CDOM. The 

incident light over water is absorbed and scattered by these 

materials. Hence, their varied concentration leads to the 

variability of natural as well as coastal waters and their 

apparent optical properties (AOPs). 

In Case I waters, the optical properties are controlled by 

phytoplanktons and their associated degradations while in Case 

II waters which includes inland and coastal waters, their 

spectral characteristics are influenced by phytoplankton and 

other OCAs (Morel and Loisel, 1998) including varying 

proportions of sediments. With decreasing water depth, the 

spectral contributions arriving from pure water reduce while 

from other OCAs increase. Using this spectral information, 

gradients relating to biogeochemical concentrations of various 

types within water spread may be derived. In the past, many 

studies related to coastal applications have been done using 

broad band data. But, the hyperspectral data use for coastal 

studies is still in the nascent stage in India. With this purview in 

mind, space-borne hyperspectral data, HICO was investigated 

for coastal applications. 

One of the primary requirements in the field of coastal studies 

is the bathymetry. Bathymetric or hydrographic charts usually 

prepared for case 1 waters are suitable for navigation purpose 

and for oceanic modelling. Presently, deep water bathymetry 

has a large amount of datasets available with varying coverage, 

resolutions, and accuracies like ETOPO5 (National 

Geophysical Data Centre (NGDC) 1988) and the ETOPO2v2 

(NGDC 2006) bathymetric grids, both of which are now in 

wide use.  ETOPO2 is based on satellite altimetry and works 

best in deep-water regions. In shallow waters ETOPO2 is not 

always reliable (http://www.ngdc.noaa.gov/mgg/global/ 

relief/ETOPO2/ETOPO2-2001). Hence, it is important to have 

shallow water bathymetry estimates not only for deriving the 

spectral characteristics of optically complex waters having 

variable benthic environment but also for other oceanic 

applications like studies related to tidal circulation and tsunami 

propagation. However, shallow water bathymetry is still not as 

coordinated and standardized as is deep water bathymetry in 

India as well as internationally. Satellite data based models for 

shallow water bathymetry mapping have their unique 

advantages of repetitive and quick quantitative estimation with 

fewer efforts over large spatial scales (Conger et al, 2006). 

With the advent of hyperspectral remote sensing having large 

number of closely spaced channels and highly improved signal-

to-noise ratio (SNR), coastal studies are going to be more 

informative. Shallow water bathymetric estimates are expected 

to improve. Ma et al (2014) have developed a method that can 

estimate clear shallow-water depth (0–30 m) from 

hyperspectral data. In this paper, this method is investigated for 

deriving coastal bathymetric estimates and thereupon spectral 

characteristics of waters of varying depths. 
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STUDY AREA 

 

The study was conducted over a coastal part of the Arabian Sea 

region. The data analyzed was of 16th December 2013. Cloud 

patches were observed at many places within the scene, 

however, coastal regions, typically where this study was 

conducted, were largely cloud free. Figure 1 shows the FCC of 

the study area.  

 
Figure 1: FCC of the study area (Bands selected are band 

97, 60 and 42 corresponding to central wavelength 

547.28nm, 650.38nm and 862.32nm respectively) 

 

MATERIALS AND METHODS 

 

In order to carry out this study, hyperspectral data was obtained 

from Hyperspectral Imager for Coastal Ocean (HICO). HICO 

sits over the International Space Station (ISS) and is largely 

meant for scientific research related to the coastal studies, 

though it may be very well used for terrestrial applications. 

Table 1 briefly describes the HICO specifications. 

 

Table 1: HICO specifications 

Parameter Specification 

Spectral Range 350-1080nm  

Spectral Channel 

width (Normal 

mode) 

5.7nm 

SNR >200:1 for 5% albedo target 

Nadir crosstrack 

GSD 

94m@400km 

Nadir along-track 

GSD 

99m 

Scene size 42km x 192 km 

Saturation Does not saturate when viewing 95% 

albedo cloud 

 

HICO data used in this study was dated 16th December 2013. 

As shown in the FCC in figure 1, the image has many patches 

of clouds. Moreover, many non-water areas are also present. 

Both of these classes have to be removed before further 

analysis. So, three methods were investigated. First method was 

based on slicing the image based on the radiance, second was 

based on Normalized Difference Water Index (NDWI) and the 

third on Modified Normalized Difference Water Index 

(MNDWI). The most appropriate technique was used to 

remove the cloudy pixels and the non-water pixels.  

 

Masking of non-water area 

HICO data used for this study was available in DN, so was 

converted to radiance units using the specified gain settings. 

Since, large portion of the HICO scene had clouds apart from 

land mass, so cloud removal as well as removal of terrestrial 

parts was done using radiance slicing by applying a proper 

threshold. Also, NDWI and MNDWI were evaluated (Eq 1 and 

1b). MNDWI (Xu, 2006) was particularly developed for 

removing the noise due to built-up land apart from background 

soil and vegetation effects.  

 

NDWI= (Green-NIR)/(Green +NIR)                                   (1a) 

 

MNDWI= (Green-MIR)/(Green +MIR)                              (1b) 

 

Once non-water areas from the image were masked, 

atmospheric correction was performed over the image using 

FLAASH module of ENVI image processing software. The 

reflectance image thus produced was used for bathymetry 

retrieval. 

 

Bathymetry retrieval 

Lyzenga (1978), in an extension to the Beer’s law of light 

attenuation with increasing water depth, showed that the 

observed reflectance could be expressed by depth and bottom 

albedo as follows:  

 

                RW = (Ad − R∞) exp (−gz) + R∞                               (2) 

 

Where R∞ is the water column reflectance if the water were 

optically deep, Ad is the bottom albedo, z is the depth, and g is a 

function of the diffuse attenuation coefficients for both 

downwelling and upwelling light (Stumpf et al, 2003). It 

implies that both the water depth as well as change in benthic 

type affects the reflectance spectrum in the range 480 to 610 

nm (Loomis, 2009). Ma et al (2014) showed that if the 

influence of bottom albedo on the observed spectrum is 

removed, the remaining changes will all be caused by water 

depth variation. Pearson correlation coefficient (CC) and 

similarity coefficient (SC) can be used to derive bathymetry 

data from hyperspectral observations as follows (Ma et al 

2014):   

First, the reference spectrum coming from water depth closest 

to zero is selected. Then, the CC and SC at pixel level (i) are 

calculated as follows: 

 

                        (3) 
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                                  (4) 

 

In equations 3 and 4, N is total number of bands between 480 

and 610 nm. Ri, j is the spectral reflectance of band j at pixel i , 

R0, j is the reference spectral reflectance of band j. A constant in 

the formulae is added to ensure that the values are always 

positive. 

From the above, water depth may be retrieved as: 

                                         

                                              (5) 

 

Where k1 is a tuneable constant to scale the ratio to depth, n is 

a fixed constant that ensures the natural logarithms remain 

positive for every condition, and k0 is the offset.   

 

After the bathymetry estimates, the image was density sliced as 

per the variations in water depth. The spectra for each class was 

then retrieved and analyzed. 

 

RESULTS AND DISCUSSIONS  

 

HICO data was provided in the ISS format which is not 

compatible with the generally used image processing software 

like ENVI IDL. Hence, the data was converted to geotiff 

format using SeaDas software. The data was provided in the 

digital counts, so radiance image was generated using the 

provided scaling factors. The radiance image and 

corresponding spectral plots for major land-cover types is 

shown in Figure 2 below.  

 

. 

 
Figure 2: Radiance image of the study area with 

corresponding spectral plots. Note that unit of radiance is 

W/sq m/micrometer/steradian 

 

Radiance plots for all the classes come in consensus with the 

observations from other sensors. A large amount of scattering 

in blue region is observed leading to an overall increase in 

radiance in the initial bands. Note that in both case 1 and case 2 

waters not much spectral variability is observed in the radiance 

domain, although both the classes have immense difference in 

their constitution otherwise. The reflectance domain is 

expected to show the marked variability between the two 

classes. However, the prerequisite is masking of non-water 

regions before attempting reflectance retrieval.  Hence, the 

radiance image was density sliced and NDWI and MNDWI 

maps were generated (figure 3). 

   

 
Figure 3: Density sliced radiance, NDWI and MNDWI 

images respectively 

 

Broadly speaking, all the three methods of cloud making are 

able to mask out clouds an terrestrial areas. But, radiance based 

masking is highly subjective to the band slected for density 

slicing. So, this technique was dropped from comparison. 

When NDWI and MNDWI are carefully analyzed, it is 

observed that MNDWI outperforms the other two techniques of 

cloud masking as shown in figure 4.  

 

 
Figure 4: Cross Comparison of NDWI and MNDWI in 

segregating non-water regions 

 

Note that in figure 4, FCC of  first set of images show water 

body, which is shown as clouds in NDWI image while 

MNDWI suitably classifies it as non-clouds. Also, in second set 

of images, NDWI is not able to identify thin cloud patches but 

MNDWI classifies them suitably. Consequently, MNDWI 

based non-water masking was selected in this study. Xu (2006) 

aslo showed better performance of MNDWI over NDWI in 

cases where background noise is large. 

As the sensor detected radiance is contaminated by solar 

backscatter from air molecules and aerosol, the procedure for 

atmospheric correction is necessary. Atmospheric correction 
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was performed using FLAASH module of ENVI image 

processing software. Figure 5a shows the atmospherically 

corrected image of the study area while figure 5b shows the 

MNDWI masked reflectance image of the study area. 

 

 
Figure 5: (a) Atmospherically corrected image of the study 

area (b) MNDWI based masked reflectance image 

displaying ‘only water’ regions 

 

Corresponding to figure 5, reflectance spectra were retrieved 

for case 1 as well as case 2 waters (shown in figure 6).  

 

 
Figure 6: Reflectance plots for water 

The reflectance goes to a high value of 0.4 or 40% in blue 

region, drops down to less than 5% and further low in higher 

wavelengths side.  

In the two kinds of water, remarkable difference in magnitude 

as well as the pattern of the spectra is expected to be more 

pronounced in the wavelength region between 480 and 610nm. 

As a result, spectral plots within the same range are shown in 

figure 7 below. It may be noted that continuum removal was 

carried out to observe the distinct spectral variability between 

the two types of water.  

 

 
 

 Figure 7: Continuum removed reflectance plots for case 1 

and case 2 waters within the wavelength range of 480 and 

610nm 

 

As was expected, the reflectance for case 2 waters is higher 

than case 1 waters primarily due to the dissolved optically 

active substances in them. Note that case 2 waters show high 

reflectance in ~550nm region as is shown by green vegetation. 

This indicates the presence of phytoplanktons. 

 

Bathymetry Retrieval 

Bathymetry retrieval requires computations for the parameters 

CC and SC as per equations 3 and 4. Upon computing the two 

parameters and integrating them as in equation 5, bathymetry is 

retrieved (figure 8). Bathymetry map was density sliced into six 

classes showing water depth of ~-2m (shown in yellow colour) 

to <-10m (shown in magenta colour). 

 

 
Figure 8: Density sliced bathymetry image 

 

In order to observe the variability in depth on moving from 

inland water towards initiation of deep ocean, a horizontal 
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transect was chosen and corresponding bathymetric plot was 

obtained (Figure 9). Inland waters and coastal areas appear to 

be shallow (~1-3m) than a sharp gradient in depth is observed 

followed by almost uniform depth. 

 

 
 

Figure 9: Bathymetry profile across the scene shown in 

inset 

 

For each class of water the spectral plots were obtained and are 

shown in figure 10 below. It is evident that waters having 

variable depths show differences in their spectra also. 

Concurrent sample observations for chlorophyll content and 

suspended matter may be used to derive quantitative 

information from these spectra. 

 

 
Figure 10: Continuum removed reflectance spectra of the 

various classes of density sliced bathymetric image 

 

    

CONCLUSION 

 

In this study, hyperspectral data from HICO instrument is 

assessed for coastal studies. In this direction, the data was first 

processed for removing the terrestrial and clouds components 

by using three techniques. MNDWI was found to be the best 

when compared with the other two techniques. The radiance 

plots for different target types were extracted and were found to 

fall in consensus with the standard observations. The data was 

then used for retrieving shallow water bathymetry. Bathymetry 

estimates were found to vary from ~1m to ~12m in depth. The 

spectra of case 1 and case 2 waters obtained from the density 

sliced bathymetry image showed large variability in reflectance 

domain especially in the 480-610nm range. However, the 

reflectance values match well with the standard observations. 

This implies that both in radiance and reflectance domain, the 

spectral characteristics of water in term of pattern and 

amplitude show that HICO data can be very well used for 

quantitative coastal applications. The data can also be used for 

deriving shallow water bathymetry estimates useful for many 

navigation and climatic applications. 
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