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ABSTRACT: 
 

Fresh water is a necessity of the human civilization. But with the increasing global population, the quantity and quality of available 
fresh water is getting compromised. To mitigate this subliminal problem, it is essential to enhance our level of understanding about 
the dynamics of global and regional fresh water resources which include surface and ground water reserves. With development in 
remote sensing technology, traditional and much localized in-situ observations are augmented with satellite data to get a holistic 
picture of the terrestrial water resources. For this reason, Gravity Recovery And Climate Experiment (GRACE) satellite mission was 
jointly implemented by NASA and German Aerospace Research Agency – DLR to map the variation of gravitational potential, 
which after removing atmospheric and oceanic effects is majorly caused by changes in  Terrestrial Water Storage (TWS). India also 
faces the challenge of rejuvenating the fast deteriorating and exhausting water resources due to the rapid urbanization. In the present 

study we try to identify physically meaningful major spatial and temporal patterns or signals of changes in TWS for India. TWS data 
set over India for a period of 90 months, from June 2003 to December 2010 is use to isolate spatial and temporal signals using 
Principal Component Analysis (PCA), an extensively used method in meteorological studies. To achieve better disintegration of the 
data into more physically meaningful components we use a blind signal separation technique, Independent Component Analysis 
(ICA).  
 
 

1. INTRODUCTION 

 
India has a population of around 1.25 billion, which is around 
17 % of the global population but has only about 4% of the 
global fresh water reserves. These reserves are fast 
deteriorating due to lack of proper management. The pressing 
problems of water resources in India are the uncontrolled 
pumping of ground water, constantly polluted surface water 
reserves, improper use and storage of rainfall often resulting in 
floods and droughts. A UNICEF report in 2013 also said that 

the time bomb of increasing water pollution is ticking. 
 
Tackling a problem of this dimension requires effective 
management which in turn requires efficient monitoring of 
water resources. In an era of advanced satellite technology, in-
situ measurements are augmented by remotely sensed 
observations. One such technique is Gravity Recovery and 
Climate Experiment (GRACE), a twin satellite system that has 

been measuring the gravity field of the Earth (Tapley et al., 
2004a,b) for more than a decade now. 
  
GRACE has helped identify many problems and the respective 
sources which were not detectable or explainable before. 
Ramillien et al. (2006) used GRACE data to estimate time 
series of basin scale regional evapotranspiration rate and 
associated uncertainties. Sun (2013) tried to downscale 

GRACE data for prediction of ground water level changes. 
Water storage interannual variability over West Africa was 
determined by GRACE data by Grippa et al. (2011). Reager et 
al. (2009) tried to quantify the global terrestrial water storage 
capacity and flood potential. Alsdorf et al. (2010) used GRACE 
data along with other satellite observations to quantify the 
amounts of water filling and draining from the mainstem 
Amazon floodplain. 

 

Very few studies have used GRACE data to access the water 
problems in India. Rodell et al. (2009) and Tiwari et al. (2009) 
unraveled the alarming rate of depletion of ground water in the 
north western states of India. They clearly stated that if the 
problem is not controlled immediately, it may result in acute 
shortage of water in this region. GRACE data also provided 
insight into the water storage dynamics of Himalayan and 
Tibetan region (Moiwo et al. 2011), evapotranspiration over the 
Ganga river basin (Syed at al. 2014) and seasonality and trend 

in groundwater storage associated with intensive groundwater 
abstraction in the Bengal basin of Bangladesh (Shamsudduha et 
al. 2012). There is a scope to explore the valuable and 
unprecedented GRACE data to estimate the major water 
reservoirs in India, their spatial and temporal dynamics and try 
to solve major water crisis. In the present study we try to 
understand the dynamics of the Terrestrial Water Storage 
(TWS) by isolating prominent and physically meaningful 

spatio-temporal signals. 
 
An extensively used method in meteorology for isolation of 
spatial patterns was first introduced by Lorentz (1956) as the 
Empirical Orthogonal Function (EOF), more commonly known 
as Principal Component Analysis (PCA).  This is a very useful 
technique for data reduction and extraction of prominent 
temporal or spatial patterns of variability from a statistical 

field, e.g. a random vector. PCA is a linear transformation of 
the original data to derive a set of orthogonal vectors that spans 
the same space and hence forms an orthogonal basis of the 
vector space. But the problem with PCA is that the orthogonal 
components derived may not necessarily represent some 
physically meaningful signal. Awange et al. (2011) evaluated a 
regional solution using the PCA and multi-linear regression 
analysis methods. The PCA method used to extract the large 

scale spatial and temporal TWS patterns, however, resulted in a 
clustered behavior of its derived orthogonal components. To 
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overcome this problem, a blind signal separation technique is 
generally used called the Independent Component Analysis 
(Hyvärinen, 1999a,b; Hyvärinen & Oja, 2000). In this study, 
ICA is shown as an extension of PCA, i.e. a linear 
transformation of principal components (PCs) where the 

independent components (ICs) derived are statistically 
independent and not merely orthogonal. Statistical 
independence is ensured by using the fourth order statistic or 
cumulant also known as kurtosis instead of second order 
statistic i.e. variance-covariance. Forootan and Kusche (2012) 
showed that ICA works well as compared to PCA for isolation 
of prominent spatial and temporal patterns of GRACE TWS.  
Consequently ICA has been used for extracting dominant 

patterns of TWS changes over Australia (Forootan et al. 2012), 
Iran (Forootan et al. 2014) and in Nile basin (Awange et al. 
2014). In this paper we use both PCA and ICA for spatio-
temporal signal separation of TWS changes. In the subsequent 
sections we discuss about the data used for the study, details 
about the PCA and ICA techniques, results of the analysis and 
finally the outcomes.  
  

2. DATA AND METHODS 

2.1 Data 

In the present work we have used the Global data set publicly 
available at the Jet Propulsion Laboratory’s TELLUS website 
(available at http://grace.jpl.nasa.gov). This is a third level 
GRACE data set represented in terms of centimeters of 
equivalent water height at a spatial resolution of 1ox1o and a 
temporal resolution of a month with some data gaps. The 

second level data set of GRACE is a set of spherical harmonic 
coefficients. The TELLUS data set is derived from RL05 
version of all the three available sources of second level data, 
ie.  GFZ (GeoForschungsZentrum Potsdam), CSR (Center for 
Space Research at University of Texas, Austin) and JPL (Jet 
Propulsion Laboratory). The second level data is processed by 
two filters (Landerer and Swenson, 2012). The first filter 
removes systematic errors manifested as north-south-oriented 
stripes in maps of GRACE TWS. The second filter is a 

Gaussian averaging filter that reduces random errors in higher 
degree spherical harmonic coefficients not removed by the 
previous filtering operation (Swenson and Wahr, 2006). Out of 
the three data sets derived from three different sources we use 
the CSR data for a period of 90 months starting from July 2003 
to December 2010. An areal extent of the data extracted for the 
study covers 65o E to 90o E and 37o N to 4o N. 

 

2.2 Principal Component Analysis 

PCA is a linear transformation of the original data to derive a 
set of orthogonal vectors that spans the same space and hence 
forms an orthogonal basis of the vector space. The principal 

components of a multivariate set of data are computed from the 
eigenvalues and eigenvectors of either the sample correlation or 
sample covariance matrix. Let us define a data matrix X ' of 
dimension n x p where p are the grid-points and n is the 
sampling dimension, i.e., the number of months of record. Each 
row contains all the grid points representing a particular month 
and each column contains a time series of a particular grid. The 
matrix X' is then centered by subtracting the temporal means of 

each time series respectively to obtain a matrix X. We use 
singular value decomposition to obtain the PCs (temporal 
modes) and empirical orthogonal functions or EOFs (spatial 
patterns). The decomposition is done according to the 
following equation. 

 

T
X P E       (1) 

 

where  P  contains the PCs 

   contains the singular values in descending order 

 E contains the EOFs 

Out of the n spatial and temporal components extracted using 
PCA analysis, we retain only j of them such that it explains 
most of the variance of the data. Hence eq. (1) can be rewritten 
as  

T

j j j
X P E      (2) 

2.3 Independent Component Analysis 

ICA is a computationally efficient blind signal separation 
technique explored as a tool in many disciplines of science and 
engineering. A general mathematical model used to represent 
ICA can be written as follows. 
 

x A s      (3) 

 
where  x is a vector representing observed signals 
 s is a vector representing  source signals 
 A is the mixing matrix 

 

 The two major assumptions of ICA are (i) the signal sources 
are statistically independent and (ii) the observations have non-
Gaussian distribution. Here we define measure of non-
gaussianity by kurtosis of a time series as  

 
4

2 2

( )
3

( ( ) )

E x

E x
       (4) 

 

where  x is aparticular time series (columns of X) 
  E is the expectation function  
 
For our time series with a length of more than 90 months, a 
kurtosis greater than 0.5 indicates a non-Gaussian distribution 
(Westra et al., 2007). PCA is considered as a pre-processing of 
ICA, where the first few orthogonal components are analyzed 
to obtain independent components. In this study ICA is 

considered as an extension of PCA, as considered by Forootan 
and Kusche, 2011. The leading PCs and EOFs are rotated to 
independence to obtain temporal and spatial independent 
components respectively. This can be represented as follows. 
 

T T

j j j j j
X P R R E      (5) 

 

 Hence a rotation matrix R has to be defined, such that it 
maximizes the non-gaussianity of the observed signals. In this 
study we use the JADE (Joint Approximate Diagonalisation of 
Eigen-matrices) algorithm in form of an R-package to obtain 
the independent components.  
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Figure 1 Variance and cumulative percentage of variance 

described by the first 20 principal components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. RESULTS 

We start our analysis with the construction of the centered data 
matrix X. Principal component analysis is performed by solving 
the eigenvalue problem, which gives the eigenvectors or 
principal components and the associated eigenvalues or 
variances. The principal components are ordered in decreasing 
order of variance. Figure 1 show the variance associated with 

the first 20 PCs out of a total of 90. We retain the first 6 PCs 
which represent 34.5, 13.2, 9.3, 8.1, 4.5 and 3.1 percent of 
variance with a total of 72.9 percent. 

 Figure 2 and 3 shows the temporal and spatial components or 

the PCs and EOFs respectively. The PCs are represented in 
normalized form and the normalized EOFs are multiplied to the 
respective variance and then plotted as temporal patterns. The 
first component which describes the maximum variability can 
be interpreted as the seasonal component, with a cycle of one 
year. The spatial pattern shows that the areas showing most of 
the seasonality cover the major river basins in India. Most 
prominent seasonal variation is observed in the lower reaches 

of river Ganga, where the seasonal variation peaks around the 
month of August and touches the minimum around December. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This temporal pattern is similar for most of the river basins in 

India which enjoys the Indian monsoon as a major source of 
water.  As there are many different sources of water and varied 
characteristics of a river basin which dictates its response, the 
seasonal pattern has varying intensity across space. The 
northern most parts show an opposite seasonality peaking in 
December and reaching the minimum around August. It can 
also be observed from the first PC that the coastal regions show 
almost no seasonal variation of water storage. The second PC 

represents a trend and seasonality in some sense but it is not 
very obvious and interpretable. Rest of the PC’s, which 
describe very less variability, are noisy and hence not at all 
interpretable. 
 
As the next step of analysis, we first find the kurtosis of the 
grid-point time series derived according to Eq. 2 shows. We 
find that 63% of the grid points have absolute value of kurtosis 

more than 0.5 and hence exhibit a non-Gaussian distribution. 
Now we perform independent component analysis, using the 
temporal and spatial components obtained from PCA as 
whitened observations. First we perform temporal ICA and 
then find its projection to get the corresponding spatial pattern. 
Although not very significant but an ambiguity exits in 
magnitude and scaling of ICA, hence the magnitudes 
represented in the figures do not have physical meaning in 
itself, but has comparative implication. Figure 4 and 5 shows 

the result of temporal ICA. The very first observation is that the 
ICA works better than PCA in extracting the prominent 
patterns. IC1 shows the dominant signal of seasonality.  

Figure 2 Performance of PCA in extracting dominant temporal 
patterns. First six principal components or temporal patterns in 

decreasing order of magnitude of variance associated 

Figure 3 Performance of PCA in extracting dominant temporal 
patterns. First six empirical orthogonal functions or spatial 

pattern in decreasing order of magnitude of variance associated 
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Figure 4 Performance of temporal ICA. First six dominant 
temporal patterns in decreasing order of magnitude of variance 

associated 

Figure 5 Performance of temporal ICA. First six dominant 
spatial patterns associated with the temporal modes of Fig. 4 

Figure 7 Performance of spatial ICA. First six dominant spatial 
patterns in decreasing order of variance associated 

Figure 6 Performance of spatial ICA. First six dominant 
temporal modes associated with the spatial patterns of Fig. 7 
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The spatial pattern shows that this seasonal component is 
predominant in north eastern part of India peaking in around 
August. There is also an opposite behavior notices in 
peninsular India. IC2 also indicates another seasonal 
component which peaks in the month of July and is a 

significant signature of almost whole of India. IC3 is some sort 
a noisy trend, which is predominant in the north western part of 
India. A very similar observation was done by Rodell et al. 
(2009) and Tiwari et al. (2009). The other components are 
majorly noisy and it is difficult to associate any physical 
meaning with them.  

Next we perform spatial ICA using the EOFs as the whitened 
observations. The results show more spatially localized patterns 
and 4 clearly distinguishable temporal modes. IC1 and IC2 are 
dominant features of the north eastern parts of India and lower 
reaches of Ganga basin respectively, where TWS peaks around 
the month of August, attributable to the Indian monsoon. An 

opposite behavior, featuring lowest TWS in August is observed 
in the central and southern parts and western parts for IC1 and 
IC2 respectively. IC3 shows a significant decreasing trend in 
northern and north western India, whereas an increasing trend 
in peninsular India. 

CONCLUSION 

We have successfully implemented PCA and ICA techniques 
for the extraction of prominent spatial and temporal patterns of 

GRACE TWS over India. A major observation is the 
seasonality of TWS over large parts of the country comfortably 
attributable to the Indian monsoon which is one of the major 
source of water for all purposes, ranging from agricultural to 
domestic, industrial to commercial. Another dominant feature 
ICA has captured unlike PCA is the decreasing trend of TWS 
in the northern and north-western parts of the country. Rodell et 
al. (2009) have attributed this loss to the alarmingly fast rate of 

depletion of ground water in these areas. Also, the coastal areas 
show almost no change in TWS throughout the whole study 
period of 90 months. More detailed reasons of the spatio-
temporal patterns of TWS will be evident only when compared 
with other observations like precipitation and 
evapotranspiration fluxes, soil moisture and surface water 
storage changes.     
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