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ABSTRACT: 
 
This study focuses on the understanding and mapping of coupling hotspots of LE versus terrestrial and meteorological 
parameters. Single source surface energy balance model was used to derive surface energy balance parameters. Agro climatic 
region wise monthly information of terrestrial, energy balance and meteorological parameters were derived during June-
September from decadal analysis of MODIS data (2003-2012) over India (68–100°E, 5–40°N) at 5 km spatial resolution. 
Information on rainfall was obtained from gridded rainfall data (1°× 1° spatial resolution) from Indian Meteorological 
Department (IMD). The spatiotemporal variability of the parameters such as rainfall, evapotranspiration (ET), evaporative 
fraction (EF), soil water index (SWI), land surface temperature (LST) and air temperature (Ta) showed strong influence on 
seasonal LE fluctuation. LE showed positive linear coupling with ET (0.52 <R2 ≤ 0.91), EF (0.79 ≤ R2 ≤0.96), SWI (0.80 ≤ R2 
≤0.93) and negative exponential coupling with LST (0.63 ≤ R2 ≤0.87), Ta (0.55 < R2

≤0.83). The pixel based knowledge of the 
parameters was incorporated into hierarchical decision rule algorithm and pixel-by-pixel segmentation of monthly coupling of LE 
versus parameters (ET, EF, SWI, LST, Ta) was generated. The rainfall zonations in a spatiotemporal domain were done based on 
the LE couplings that clearly demarcated the highest (West Coast Plains and Hills Region, Himalayan region), moderate 
(Gangetic Plains and Hills Regions, and the Plateau and Hills Regions) and lowest rainfall (Western dry region) areas. The 
transition of zone-wise availability of rainfall (both surplus and deficient) can be very well understood from the seasonal 
dynamics of the LE couplings.  
 

1. INTRODUCTION 
 
Spatiotemporal variations of land surface parameters are 
transformed in to atmosphere through numerous interconnected 
land surface-atmosphere pathways. The paths may be either 
through terrestrial or atmospheric components. The terrestrial 
component deals with the exchange of surface energy fluxes from 
land surface to the atmosphere, which is sensitive to the changes 
of the land surface status and meteorological pattern. The latent 
heat flux (LE), the most dominant terrestrial parameter is the 
indicator of precipitation responds well to the moisture 
availability at the land surface to exert control on the properties of 
the atmospheric boundary layer to cause rainfall. The 
meteorological component which deals with the development of 
the atmospheric boundary layer leading to cloud formation and 
then precipitation is highly sensitive to the exchange of surface 
energy fluxes such as evapotranspiration (latent heat flux) or 
sensible heat flux. All these components are strongly coupled to 
each other and hence, the predictability in the climate system can 
be determined through the interaction of these parameters through 
“Coupling hot spots”, where both terrestrial and meteorological 
components are strongly linked with each other. The sensitivity of 
surface fluxes to soil moisture, evaporative fraction, surface 
temperature and air temperature are indicated by either positive or 
negative correlation (Koster et al., 2004; Guo et al., 2006, 
Choudhury and Ghosh, 2014). With the availability of remote 
sensing sensors at various optical, thermal to microwave spectral 
ranges, estimation of the above parameters are possible to 
understand their spatiotemporal changes and hence, the resulting 
hydrological pattern.     

2. SITE DESCRIPTION AND DATASETS 
 
The present study used MODIS monthly climate model gridded 
global data product (0.05° × 0.05° spatial resolution) on Indian 
subsets (65–95°E,5–40°N) from 2003-2012 during June to 
September. Figure 1 depicts the study area with agroclimatic 
regions (ARCs). The land-surface temperature (LST: MYD11C3), 
normalized difference vegetation index (NDVI: MYD13 C2), 
surface albedo (α: MCD 43C3) obtained from MODIS were used 
to generate energy flux parameters from 2003-2012 through 
surface energy balance model. The MODIS land surface ET 
product (MOD 16; 0.05° × 0.05° spatial resolution) 
(http://modis.gsfc.nasa.gov/data/dataprod) from 2003-2011 was 
used to generate hydrological information. Gridded rainfall data 
(1°×1° spatial resolution) were obtained from the Indian 
Meteorological Department (IMD). These daily gridded rainfall 
data available in binary format  for 365 days were generated using 
Shepard interpolation through measured rainfall data from 1803 
IMD stations in India, which were in a rectangular grid starting 
with 6.5° N and 66.5° E (Rajeevan et al. 2006). The American 
Standard Code for Information Interchange (ASCII) file of daily 
gridded rainfall data were read through Environment for 
Visualizing Images (ENVI) image processing software and 
converted into 1° × 1° pixel size. The daily rainfall data from June 
to September were extracted separately from 2003-2012, and 
were further summed up to produce a monthly total and seasonal 
total for each 1° × 1° grid for each individual year. 
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3. METHODOLOGY 
 
3.1 Surface energy balance model 
 
Single source surface energy balance model (soil-vegetation 
system considered to be single unit) as described in Shuttleworth 
et al. 1989, where surface net radiation (Rn) partitioned in to 
latent (LE), sensible (H) and soil heat flux (G) was used to 
estimate surface energy balance parameters as stated below:  
 
       Rn= LE+ H+G ⇒ LE+H=Rn-G = Q                      (1) 
 
In order to avoid the use of ground information and other 
complicated equations, the estimation of H was avoided. Instead, 
a pixel-by-pixel EF (Λ), which is the ratio of LE to the available 
energy (Q) was estimated using MODIS “LST-albedo” 2D image 
scatter plot (Roerink et al. 2000). LE can be written as: 
 
        Λ = (LE /Q) ⇒ LE = QΛ = (Rn - G) Λ                           (2) 
Where, Q = Net available energy (Wm-2); Λ = EF (dimensionless) 
and Rn, G, LE are expressed in Wm-2. 
 
The estimation of surface energy balance parameters are 
summarized in Appendix 1.  
 
3.2 Estimation of Evaporative Fraction (EF) 
 
The approach as described in Roerink et al. (2000) was used to 
estimate EF using “LST-albedo” 2D image space. Here, EF is 
assumed to be bounded by the dry edge i.e. maximum LST lines 
(TH) and wet edge i.e. minimum LST lines (TLE) as a function of 
surface albedo. The EF at the edges represents relative 
proportioning of total surface heat flux towards LE max or 
negligible H (H ≈ 0) and Hmax or negligible LE (LE ≈ 0), 
respectively. The intermediate pixels between two limiting edges 
are having different proportions of LE and H. The values of EF lie 

between EF ≈0 in oven dry soils and EF ≈1 in saturated soils - if 
advective conditions don't prevail. Higher EF is usually linked to 
higher soil moisture and increased vegetation. In the present 
study, MODIS “LST-albedo” 2D scatter plot was used to compute 
EF using the formula as below: 
 
      EF= (LE /H + LE) ≈ (TH -Ts) / (TH-TLE)                   (3) 
 
TH and TLE were computed as linear function of albedo, Ts is the 
pixel LST. Paired datasets of MODIS “LST-albedo” were plotted 
in 2D scatter plot in ENVI to compute Ts vs minimum albedo and 
Ts vs maximum albedo at different albedo classes to perform 
regression analysis to find out TH  and TLE .  In this way, EF can be 
computed directly from remote sensing observation and thus 
avoiding the use of ground observation.   
 
3.3 Estimation of Air Temperature (Ta) 
 
Ta was calculated using the approach of Nishida et al. (2003) i.e. 
the surface temperature (LST: Ts) of a fully vegetated canopy 
(Tveg) is close to Ta i.e. Tveg = Ta., because of the small 
aerodynamic resistance of the vegetation canopy (Carlson et al., 
1995).  With increasing NDVI, the bare soil becomes masked out 
with vegetation, resulting in decrease in Ts. The maximum 
possible Ts of bare soil (Ts soil max), where NDVI at its minimum 
(NDVI min) can be estimated from the upper left corner of the 
NDVI-T s 2D scatter plot. The same logic is used for the 
derivation of the Ts soil min (T veg ≈ Ta) i.e., the Ts of a fully 
vegetated canopy can be extrapolated from NDVImax. If the line 
representing the warm edge can be expressed as,   

  
   Ts=a*NDVI+b                                              (4)  

Then,         Ts soil max= a*NDVI min+ b                              (5) 
                  T veg ≈ Ta = a*NDVI max+b                             (6) 
 
Where, a and b are the slope and intercept of the line respectively.  
In the present study, from the sorted paired data sets of MODIS 
“NDVI-LST”, the 2D scatter plot was generated and a running 
window of 20×20 array of the MODIS pixels was selected 
throughout the image scene to compute Ta as mentioned above. 
 
3.4 Estimation of Soil Wetness Index (SWI) 
 
SWI, which describes the moisture status at the surface, was 
estimated from the concept of TVDI (Temperature Vegetation 
Dryness Index) as stated in Sandhold et al. (2002). It is assumed 
that the moisture variability varies linearly between dry edge 
(maximum LST line) to wet edge (minimum LST lines). The 
formula is given below:  
 
                 SWI=1-TVDI                                                  (7) 
               TVDI =(LST–LSTmin)/(LSTmax-LSTmin)               (8) 
 
Where, Dry edge ≈ LSTmax  ≈  a-b*NDVI; Wet edge ≈ LSTmin ≈ 
a+b*NDVI, a and b are the intercept and slope respectively. 
 
Paired datasets of MODIS “NDVI-LST” were plotted in 2D 
scatter plot to compute LSTmax and LSTmin as a function of NDVI 
to perform regression analysis to find out dry edge and wet edge 
respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Study area with agro climatic region boundary (Agro 
climatic regions are: WHR: Western Himalayan Region, EH 
:Eastern Himalayan Region  TGP: Transgangetic Plains, UGP: 
Upper Gangetic Plains, MGP: Middle Gangetic Plains, LGP: 
Lower Gangetic Plains, WDR: Western Dry Region, GPH: 
Gujarat Plains & Hills, CPH: Central Plateau & Hills, EPH: 
Eastern Plateau & Hills, WPH: Western Plateau & Hills , SPH: 
Southern Plateau & Hills, ECPH: East Coast Plains & 
Hills,WCPH:West Coast Plains & Hills). 
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From the global product of MODIS, India was extracted. The 
boundary of ACR was prepared through onscreen digitization and 
laid over Indian region to demarcate the different ACRs. After 
generating all the parameters during June to September from 
2003-2012, all the ACR were masked out as the region of interest 
(ROI) using “ENVI image processing software” and information 
regarding all the parameters were retrieved separately for each 
ACR. Decadal mean and its standard deviation were computed for 
all the parameters for each month from each ACR in order to 
study the seasonal and inter annual variation. 
 
3.5 Generation of coupling hot spots of LE 
 
From the pixel based knowledge of all the parameters, a 
hierarchical decision rule algorithm was developed. Pixel wise 
information of the spatiotemporal behavior of the parameters (EF, 
SWI, Ts, Ta) were correlated with the LE dynamics. Lower values 
of LE found corresponding with the lower values of EF and SWI, 
and higher values of Ts and Ta. While studying the seasonal 
dynamics of the parameters during June to September, June 
month was found to be the hottest month with highest Ts and Ta 
along with lowest LE, EF and SWI. Spatiotemporal dynamics of 
the pixel information of the parameters were incorporated into a 
knowledge based classification scheme and thresholds were 
developed for each class that could able to classify the ACRs 
from lowest to moderate to high rainfall zones based on LE 
couplings with terrestrial and meteorological parameters from 
June to September during 2003-2012. 
 

4 RESULTS 
 

4.1. Long-term analysis of hydrological parameters 
 
Hydrology of the study area was assessed by the seasonal total 
(June-September) rainfall obtained from IMD and seasonal 
average (June-September) ET obtained from MODIS ET during 
2003-2011 in 14 agro climatic regions of India (Figure 2).  
 

Figure 2: Long-term hydrological pattern in different ACR in 
India a) Total seasonal rainfall; b) Seasonal average ET. 
 
The hydrological pattern could able to identify the study area 
categorically into low to moderate to high rainfall zones. The long 
term analysis of rainfall and ET showed similar behavior in 
spatial scale with little variation in temporal scales. Among the 
ACRs, the highest rainfall (>1500 mm) was observed in WCPH 
followed by EH (1000-2000 mm) corresponding to highest ET 
(>100 mm/month) and lowest rainfall was observed in WDR 
(100-400 mm) corresponding to lowest ET (15 - <40 mm/month). 
In the WHR, due to the unavailability of ET data, the accuracy of 
ET estimation was poor although the value was found somewhat 
matching with the rainfall information. Both gangetic plains and 
hills regions, and the plateau and hills regions, moderate rainfall 

was observed with large variability (500 > RF <1300 mm; 20 > 
ET <90 mm/month).  
 
ET is a direct input to the rainfall. Figure 3 depicts the seasonal 
variability (June-September) of annual mean and standard 
deviation of MODIS ET during 2003-2011. It is obvious that in 
June, the ET was less. The ET was high in July and August and 
slightly reduces in September. In the standard deviation images 
from June to September, it was observed that in the low rainfall 
areas, the standard deviation was found to be lower in June and as 
the monsoon progresses, those areas tend to show large deviation 
from the mean ET. That means the ET variability is lower in the 
arid region at the initial phase of monsoon and tends to increase 
with the availability of rainfall.  

 

 
 
 
Figure 3: Seasonal distribution of actual MODIS ET a) Mean ET 
(Mean was computed from 2003-2011 for each month) ; b) 
Standard deviation of ET 
 

On monthly to seasonal scales, land surface feedback to ET  is 
dominated by soil moisture (here it is represented by SWI), which 
determines both surface evaporation and plant transpiration as 
plant growth is constrained by the soil moisture availability 
(Nemani et al., 2003). MODIS derived pixel wise seasonal 
transition of mean SWI (2003-2011) is depicted in Figure 4, 
which reveals the availability of soil moisture at different 
locations for ET during June to September.  

 
 
Figure 4: Seasonal distribution of MODIS derived mean SWI 
(Mean was computed from 2003-2011 for each month) 
 
From the spatial and temporal distribution of ET and SWI, the 
areas where both these values are low show the dry conditions in 
the area. The WDR, the lowest rainfall area showed the lowest ET 
and SWI value whereas the WCPH and the Himalayan region 
(EH, WHR) showed the highest ET and SWI (Figures 3 and 4). 
Throughout June to September, the MODIS estimated SWI 
variability was not found much in the Himalayan region (WHR 

a b 

a 

b 
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and EH) and WCPH as those areas are the high rainfall areas. 
Highest seasonal variability of SWI was observed in the EPH, 
GPH and SPH followed by the central part of India mostly in the 
CPH, WPH and gangetic plains and some variability was also 
observed in WDR.  
 
All the three parameters such as rainfall, ET and SWI are the 
primary parameters describing the hydrology of an area. The soil 
moisture-ET-rainfall feedback and its associated variability are 
controlled by the surface energy fluxes, through which anomalies 
in rainfall can be identified in different locations.  
 
4.2. Dynamics of surface fluxes, land surface and 
meteorological parameters  
 
In the climate system, LE and EF are the fundamental 
components linking surface fluxes to the hydrological cycle. 
These components changes periodically due to the variation of the 
land cover changes, vegetation dynamics, surface radiation 
parameters and temperature. Therefore, in order to understand the 
coupling process, it is important to correlate the parameters that 
can describe the coupling “hotspots”, which indicates that there is 
a strong relationship between the parameters. The coupling 
“hotspots” tends to vary region-wise in a spatiotemporal domain 
due to the changes in the surface energy transfer processes from 
land to the atmosphere and causes variability in rainfall.  
 
The seasonal dynamics (June to September) of the decadal mean 
(2003-2012) and standard deviation of the parameters e.g. LE, EF, 
SWI, NDVI, Ts and Ta are depicted in Figure 5. The spatial 
fluctuation of LE (Figure 5a) was found consistent with SWI and 
EF (Figure 5b) and NDVI (Figure 5c), whereas Ts and Ta showed 
opposite behavior (Figure 5d). Both SWI and EF are the direct 
positive input for LE and its associated variability over the land 
surface.  Availability of soil moisture controls the partition of net 
radiation into sensible and latent heat flux, which changes 
significantly after the soil near the surface becomes wet enough 
due to rainfall. Due to the progress of rainfall from June onwards, 
a significant increase in LE was observed in all the sites (Figure 
5a). The increase in LE from June to September with more than 
220 Wm-2 was observed in the ACRs like UGP, WDR, GPH, 
CPH and WPH, where the seasonal variability in SWI was more. 
The lowest seasonal change in LE was found in WCPH where the 
seasonal variability of SWI was found negligible (as evident in 
Figure 4). Among the ACRs, during June to September, LE was 
found highest in WHR (90 Wm-2 ≥ LE< 300 Wm-2). In 
September, the maximum LE (>200 Wm-2) was observed in 
WHR. In that area, the SWI (>0.60) and EF (>0.70) were also 
found highest with lowest Ts (≤ 295 K) and Ta (≤ 297 k) although 
the NDVI was found lowest (<0.30). This is mainly due to the 
accumulated precipitation over snow covered surface that may 
lead to high SWI, hence, high EF and LE. Next to WHR, high LE 
was observed in EH and WCPH (90 Wm-2 ≥ LE<250 Wm-2) 
during June to September that were found corresponding well 
with the high values of SWI (0.4 ≥SWI≤ 0.9), EF (0.7≥EF≤ 0.9) 
and NDVI (EH: NDVI > 0.7; WCPH: NDVI >0.65). The lowest 
LE (20 Wm-2 <LE>70 Wm-2) was observed in WDR during June 
to September as this is an arid region with negligible rainfall (see 
Figure 2) with lowest values of SWI (<0.25), EF (<0.30) and 
NDVI (<0.30). Other ACRs showed moderate LE, SWI and EF 

values with large variability. The seasonal dynamics of NDVI 
(Figure 5c), was found matching with LE for all the sites except 
WHR (where NDVI is not an inducing factor for rainfall to occur) 
and in rest of the ACRs, NDVI showed a major role for rainfall 
variation due to its consistent behavior with LE. Therefore, LE 
can be high either due to snow cover or vegetation growth.  

Figure 5: Seasonal dynamics of terrestrial and meteorological  
Parameters in different ACR : a) LE ; b)SWI and EF; c) NDVI; 
d)LST and air temperature (Mean was computed from 2003-2012 
for each month and error bars represents the standard deviation 
from mean). 
 
Due to the predominant increasing in rainfall during July-
September (varies widely in different ACR), caused the fall of 
both Ts and Ta (as depicted in Figure 5d) that lowered the sensible 
heat flux and also due to the increase of the surface humidity (as 
SWI and EF increased from July onwards) caused more LE fluxes 
to be transferred into the atmosphere by means of turbulent 
processes in land atmosphere interaction. The values of Ts and Ta 

were found decreased gradually from dry to wet months. The 
spatial pattern of both Ta and Ts were found similar in the ACRs 
and Ta was found almost 2K higher than Ts in all the sites 
throughout June to September. June showed the highest value of 
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both Ts and Ta for all the sites, the range varied from 296-322 K 
for Ts, the highest (>320 K) in WPH and WDR, and lowest in 
Himalayan region (≈ 296 K), whereas Ta varied from 298-322 K, 
the highest in WDR (>321 K) and lowest in WHR (≈ 298 K). The 
seasonal variation of EF and SWI in different ACR had shown 
opposite behavior as compared to temperature with the intensity 
of monsoon. Both Ts and Ta were found reducing with the 
increase of EF and SWI. Therefore, the temperature is negatively 
associated with the SWI and EF and hence, LE.  
 
4.3 Prediction of coupling hotspots through LE fluxes  
 
As observed from the earlier sections, hydrological parameters 
typically has wide variability from arid, semiarid to the 
Himalayan region, so are the turbulent energy fluxes such as LE, 
ET and EF. The predictability of the parameters can be further 
quantified with the statistical approach, where LE flux showed 
strong correlation with the terrestrial and meteorological 
parameters. To understand the degree of coupling at different 
ACRs, 2D scatter plots were drawn between LE versus various 
parameters (Figure 6).  

Figure 6: Scatter plot of MODIS derived LE (x-axis) versus 
parameters (y-axis), a) LE vs total seasonal rainfall; b) Seasonal 
mean LE vs seasonal mean ET; c) Seasonal mean LE vs seasonal 
mean EF; d) Seasonal mean LE vs seasonal mean SWI; e) 
Seasonal mean LE vs seasonal mean LST (Ts); f) Seasonal mean 
LE vs seasonal mean Ta. ; Seasonal mean was computed from 
June-September for each year.     
 
Scatter plot (Figure 6a) between the total seasonal rainfall 
obtained from IMD versus seasonal mean LE estimated from 
MODIS (mean computed using observations from June to 
September) over the different ACRs was found to be positively 
linearly coupled with each other although R2 varies. This is 
attributed to the differences between the observed data as LE is 
from MODIS observations and rainfall data is from scattered 
ground station observation. The spatial fluctuations of the 

parameters are mainly attributed to the variability of vegetation 
density, soil moisture and availability of rainfall. ACR wise 
separation was clearly evident along the linear line. But a 
mismatch in WHR between the IMD rainfall and MODIS 
estimated LE was observed. This is because IMD gridded rainfall 
data was obtained from the rain gauge stations, the density of 
which is not uniform throughout the Indian region. The densities 
of the stations are lower in the northern parts of India and WHR 
has negligible stations (Rajeevan et al., 2005). The regions such 
as WCPH and EH were observed as high rainfall areas (total 
seasonal rainfall ≥ 1500 mm) corresponding to highest LE (> 100 
Wm-2). In the gangetic plains, and plateau and hills regions, large 
variability in the total seasonal rainfall was observed (500 mm < 
total seasonal rainfall<1300 mm) and those areas were found 
corresponding to large LE variability (77 Wm-2<LE≥122 Wm-2). 
WDR was observed as the lowest rainfall areas (total seasonal < 
500 mm) corresponding to the lowest LE (LE ≤ 60 Wm-2). The 
deviation of data points within a given cluster was found mainly 
due to the annual variation of rainfall.  
 
The scatter plot of MODIS derived LE versus ET (Figure 6b) was 
found to be positively linearly coupled with each other (0.71 < R2 
≤ 0.91). Here also, a mismatch in WHR was observed. This is due 
to unavailability of data in this region as observed in MODIS ET 
product (see figure 2). WCPH and EH were observed as the high 
rainfall areas with highest value of both LE and ET and WDR 
showed as the lowest value of both LE and ET. 
 
Both LE and EF are the terrestrial links to the atmosphere and 
when they are positively correlated with each other and also with 
soil moisture then a positive feedback of rainfall occurs. This 
feedback is highly variable in spatial and temporal domain. EF, 
which is the dimensionless fraction of available energy at the 
surface, is transmitted to the atmosphere through LE. Hence, the 
relationship of LE and EF is important to understand the 
possibility of rainfall and its anomaly in different locations. 
Scatter plot of MODIS derived LE versus EF (Figure 6c) showed 
a strong linear positive coupling (0.79 ≤ R2 

≤ 0.96). LE versus EF 
coupling at spatial and temporal scales enables to discriminate the 
high and low rainfall zones. Overlapping of the cluster data points 
was observed with EF between 0.50 to 0.72 and LE between 80 to 
130 Wm-2 and was noticed mostly in the gangetic plains and 
plateau and hills regions, whereas the Himalayan region (WHR 
and EH) and WCPH (LE > 100 Wm-2 and EF > 0.6) as well as 
arid region (WDR) (LE ≤ 60 Wm-2 and EF ≤ 0.32), showed a 
clear demarcation of the area with excessive and deficient rainfall 
respectively.  
 
The variability of soil moisture, which has a direct input to the LE 
and EF, strongly influence convective processes of precipitation. 
The 2D scatter plot (Figure 6d) of MODIS derived LE versus 
SWI showed strong positive correlation with significant positive 
linear increase (0.80 ≤ R2 

≤ 0.93) with some deviation of the data 
points from given cluster in a zone that is attributed to the 
variation in the annual rainfall pattern. The sensitivity of LE to 
SWI found varying from arid, semi arid to the Himalayan region. 
Except WDR (lowest SWI; SWI < 0.3) and Himalayan region 
(highest SWI; SWI ≥ 0.5), the other areas showed overlapping 
where the LE found varying from 80 to 140 Wm-2 and SWI found 
varying from 0.25 to 0.55.  
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The 2D scatter plots of MODIS derived LE versus Ts (Figure 6e) 
and MODIS derived LE versus Ta (Figure 6f) showed increasing 
LE with decreasing Ts and Ta. A clear demarcation between the 
highest rainfall (Himalayan region; Ts ≤ 298 K; Ta < 305 k) and 
the lowest rainfall (WDR; Ts > 312 K; Ta > 314 k) were observed. 
Overlapping of cluster of data points were observed in moderate 
to low rainfall areas (300 k < Ts ≤ 310 K; 302 K< Ta ≤ 314 K). 
The statistical relationships among the parameters with R2 values 
are explained in table 2. 

 
4.4 Seasonal variation of coupling hotspots of LE  
 
Based on the LE couplings with various parameters, India as a 
whole was categorized in to different rainfall zones such as zone 
1: lowest rainfall, zone 2: low rainfall, zone 3: moderate rainfall; 
zone 4: moderate to high rainfall; zone 5: very high rainfall, zone 
6: highest rainfall. The pixel-by-pixel segmentation of annual 
mean (2003-2012) of seasonal dynamics of LE coupling hotspots 
are depicted in Figure 7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Seasonal coupling of LE versus land surface and 
meteorological parameters (decadal mean were computed from 
2003-2012 for the all the parameters). a. LE vs EF; b. LE vs SWI; 
LE vs Ts; LE vs Ta. Different rainfall zones are: LTRZ: Lowest 
rainfall zone; LRZ: Low rainfall zone; MRZ: Moderate rainfall 
zone; HRZ: High rainfall zone; VHRZ: Very high  rainfall zone; 
HTRZ: Highest rainfall zone;  
 
The above couplings explained the roles of soil moisture and 
temperature in surface energy exchange processes. Higher LE 
class was found corresponding to the high EF, high SWI and low 
Ts and Ta. The shift in rainfall zones were found varying from dry 

to wet months with the increase in LE, EF and SWI as these 
parameters provide positive feedback to rainfall and decrease of 
Ts and Ta, as they provide negative feedback to rainfall.  
 
The transition of agro climatic zone wise availability of rainfall 
from June to September along with the surplus and deficient 
rainfall areas can very well understood from the seasonal 
dynamics of LE coupling hotspots and this also shows that in 
India, June is comparatively drier month with low crop cover (low 
NDVI), low soil moisture (low SWI), high temperatures (Ts and 
Ta) (see Figure 5) which are the constraint for ET to take place (it 
is obvious from the June ET in Figure 2). Hence, both LE and EF 
were found lowest during June. Both LE versus EF and LE versus 
SWI coupling hotspots increased linearly as the rainfall 
progresses with highest value in September. Throughout June to 
September, LE coupling hotspots with high rainfall (high LE 
versus high EF; high LE versus high SWI) were observed in the 
WCPH and Himalayan region (WHR and EH), followed by the 
gangetic plains (regions were showing as decreasing pattern of LE 
coupling hotspots i.e. LGP>MGP>UGP>TGP), EPH and ECPH. 
LE coupling hotspots with low rainfall was observed in WDR 
followed by WPH and CPH. It is understood from the previous 
sections that both Ta and Ts lowers down as rainfall progresses. 
Figures 7c and 7d show the LE versus Ts and LE versus Ta 
coupling hotspots over different ACR. In the month of June, 
highest Ta and Ts were found coupled with the lowest LE values 
and with the progress of rainfall, the coupled relationships tend to 
change where the LE found increased gradually with decreased Ta 
and Ts. The seasonal transition of temperature (Ts and Ta) in both 
humid regions and arid regions became unaffected as negligible 
temperature difference was observed in those areas whereas in 
other regions both the temperatures dropped down drastically in 
the month of July due to frequent rainfall and it remained almost 
unchanged till September. The higher temperature difference 
more than 10 K from June to July was observed in the sites such 
as TGP, UGP, GPH, CPH, WPH (both Ta and Ts) and MGP, EPH 
(only Ts).  In contrast with the bare soil, the dense vegetation has 
relatively higher LE, EF and SWI values, usually LE on the order 
of 200-300 W·m−2 and EF in the range of 0.6-0.7. The sparse 
vegetation has very low values with LE usually less than 80 
Wm−2 and EF less than 0.42.  
 

5. CONCLUSIONS 
 

The present study very well explained methodology to understand 
and map LE coupling hotspots using multi-year (2003-2012) 
MODIS observed LE flux versus land surface and meteorological 
parameters over Indian region. Based on the LE couplings, 
different agro climatic zones were categorized into various 
rainfall zones i.e. from highest to lowest. Seasonal variations in 
the LE coupling hotspots are observed that are believed to be 
strongly associated with the land surface and meteorological 
parameters. LE hotspots showed wide variability in 
spatiotemporal domain in both locations and intensity, 
demonstrating different responses of individual land surfaces to 
LE dynamics. Both soil moisture and temperature were found to 
be the important indicators of rainfall and its variability in surface 
energy exchange processes. Higher LE class was found 
corresponding with the high EF, high SWI and low Ts and Ta. The 
statistical analysis showed that the parameters could be strongly 
coupled well with each other depicting a clear demarcation 

Table 2: R2 values of LE versus parameters obtained in 2D 
scatter plot. 

a 

b 

c 

d 
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between lowest and highest rainfall zone. This indicates that this 
coupling process can able to capture reasonably the spatial 
distribution of rainfall over India. This is an important input for 
climatological and hydrological modeling for predicting rainfall 
in a particular area. 
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Components Set of Equations;  Computational methods & 
Reference 

Net radiation 
(Rn) 

Rn= Rns+ Rnl                             
Rns = Rs (1- α)                            
Rs = al0f (sin ω)b                                   
Rnl =   εsεaσ Ta

4- εsσ Ts
4                    

[a= 0.75 and b= 1.28 (a and b are the co-efficient 
(Mallick et al. 2009); l0= Solar constant (1367 Wm-2); 
f= sun earth distance correction factor (Astronomical 
Unit); ω=sun elevation angle (radian) and ω=π/2-
θs;θs=Solar zenith angle (radian); insolation (Rs) was 
computed using Cano et al. (1986). εs= Surface 
emissivity; εa= Air emissivity; σ= Stephan-
Boltzmann constant (5.67 ×10-8Wm-2 s-1 K-4); Ta= 
Air temperature (K); Ts= LST (K)] 

Surface 
emissivity (εs) 

εs = [1.009+0.047ln (NDVI)      
van de Griend and Owe (1993) 

Air emissivity 
(εa) 

εa = 9.2*10-6 * (Ta+273.15)2 ,          
Campbell and Norman (1998) 

Soil heat flux 
(G) 

G=Rn[(Ts-273.15)/α] *[(0.0032α+0.0062α2)* 
(1+0.978NDVI4)]; Bastiaanssen et al., (1998)                    
 

 
 

 
APPENDIX I 

Computation of energy flux parameters from MODIS products 
(LST, NDVI, albedo). 
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