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ABSTRACT: 

 

Soil moisture plays crucial role in influencing the components of hydrologic cycle and thus used for large range of applications such 

as climate predictions, agriculture management and flood/drought modelling. The current work focuses on establishing a measure to 

check the performance of passive microwave satellite soil moisture data using rainfall information over India. The measure is 

developed based on the concepts of information theory and copulas. Two soil moisture products developed by, VUA-NASA (jointly 

by Vrije Universiteit Amsterdam and NASA) and university of Montana are tested with the proposed measure using IMD rainfall 

data at 0.25° latitude-longitude spatial resolution. The measure conveyed that soil moisture product by university of Montana has 

outperformed over its counterpart. Further analysis concluded that under moderate climate conditions, Montana product could be 

used for analysis whereas for study in extreme weather conditions it may be necessary to check the usefulness of VUA-NASA 

product. 

 

1. INTRODUCTION 

The study of soil moisture plays an important role in 

understanding the hydrologic cycle. Though it accounts for less 

than 1/10000th of total earth’s water content, the presence of it 

at land atmosphere interface strongly affects the energy and 

water exchanges. The soil moisture studies have been utilized in 

two important aspects of hydrology, one, modelling and 

prediction of catastrophic events such as droughts and floods 

and two, climate change studies. However, the truthfulness of 

such a modelling is highly dependent on accuracy of soil 

moisture observations which is often a difficult process to 

achieve across spatial and temporal scales. The reasons could be 

attributed to the heterogeneous behaviour of soil moisture and 

geographic, financial constraints to establish a very dense 

station network. Also, one may not be able to generalize their 

findings to a larger area based on at site studies (Prigent et al., 

2005). This lead to retrieval of soil moisture through satellite 

remote sensing. 

 

Much attention has been paid towards retrieval from passive 

microwave sensors. This is because of its advantages such as a) 

the measurement is strongly dependent on dielectric property of 

target, which, in case of soil is directly influenced by its 

moisture content; b) the abstractions due to atmosphere are 

minimum allowing retrieval at any weather; c) retrieval can be 

done independent of solar illumination angle. Several satellite 

microwave sensors such as SMMR, SMM/I, TMI, AMSR-E, 

SMOS (Liu et al., 2012; Kerr et al., 2012) were deployed for 

global scale soil moisture retrievals. 

 

Fundamentally, the passive microwave remote sensing of soil 

moisture involves a retrieval algorithm (which is based on 

radiative transfer theory and dielectric mixing model) that uses 

the brightness temperature data (at appropriate sensitive 

frequency and along with some ground based ancillary data) at a 

grid location as input and produce corresponding soil moisture 

value. Numerous soil moisture retrieval algorithms have been 

formulated in literature (Jackson, 1993; Owe et al., 2001; Jones 

and Kimball, 2011; Pan et al., 2014) to obtain soil moisture 

from microwave data. It is important to note that there is high 

variability among the output generated by these algorithms even 

though the source of data (brightness temperature) remains 

same. Reasons could be a) the kind of assumptions that are 

made; b) formulation of radiative transfer models and c) soil 

physics that is being involved. The soil moisture produced from 

retrieval algorithms are validated using insitu soil moisture 

observations currently being hosted by International Soil 

Moisture Network (ISMN) (Dorigo et al., 2011) which 

comprises of 1588 stations spread across the world. The 

measurements across these stations are dependent on factors 

such as instrument specifications, method of measurement etc. 

So, one may not expect homogeneity across all the stations 

(both in terms of magnitude as well as units of measurement) 

which could lead to a situation wherein data pertaining to some 

stations may not be useful at all for validation. Also, the 

countries like India completely lack freely available 

comprehensive insitu soil moisture network. At this stage it is 

important to decide which among products provides better soil 

moisture information over a region. Hence, there is a necessity 

to formulate a method by which one can reasonably be sure 

about the performance of soil moisture sans insitu data. 

 

Based on the concepts of hydrometeorology, it can be 

understood that the variability of soil moisture at a particular 

location is predominantly influenced by the amount of 

precipitation recorded in the region. This relationship can be 

assumed to be nonlinear in nature since other factors such as 

evapotranspiration, runoff and drainage also affect the quantity 

of soil moisture (if not so significant as that of precipitation). In 

the current work, a new measure is proposed to quantify the 

accuracy of soil moisture products based on precipitation. It is 

formulated using the concepts of information theory and 

copulas. The method requires spatially and temporally 

concurrent precipitation information along with concerned soil 

moisture products for evaluation. The analysis has been carried 

to compare the performance of two soil moisture products 

derived from AMSR-E sensor over India using recently 
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developed high spatial resolution gridded precipitation data 

records procured from Indian Meteorological Department 

(IMD). Upon acquiring the data from respective sources, they 

are processed grid wise and prepared for analysis. Based on 

results obtained from proposed measure, further investigation is 

carried out to understand the dynamics of corresponding 

algorithms. 

 

2. DATA AND ITS PROCESSING 

As mentioned previously, the current work focuses on 

comparing AMSR-E passive microwave radiometer based two 

soil moisture products one developed jointly by Vrije 

Universiteit Amsterdam & NASA (Owe et al., 2001; from now 

referred to as VUAN) and other by University of Montana 

(Jones and Kimball, 2011; from now referred to as MONT). 

AMSR-E instrument is installed on polar orbiting Aqua satellite 

platform that operated from June 19, 2002 to October 3, 2011. 

Concurrently both the data products are available from June 19, 

2002 to September 27, 2011 (a total of 3386 days excluding last 

day of leap years 2004 and 2008). VUAN involved retrievals 

from X-band (10.65 GHz) frequency whereas MONT algorithm 

is based on C-band (6.925 GHz) brightness temperature values. 

In the latter case since C-band is affected by radio frequency 

interference at some locations, the retrievals are then replaced 

with X-band retrievals. The precipitation data obtained from 

IMD is developed by Pai et al., (2014). Data is made available 

at daily scale covering period of 113 years (1901-2013) over 

India with a spatial resolution of 0.25°×0.25°. A total of 6995 

rain gauge stations spread across the country were considered 

for preparation of gridded data. Since the gauge stations have 

underwent necessary quality control before gridding, the 

precipitation data is assumed to be consistent without any form 

of errors. A summary of details pertaining to datasets used in 

the current study are presented in Table 1. 

 

Data Product Hosted by 
Availability 

From To 

Daily Global Land 

Surface Parameters 

Derived from 

AMSR-E 

National Snow 

and Ice Data 

Center 

(NSIDC) 

NASA 

19 June, 

2002 

27 

September, 

2011 

Land Parameter 

Retrieval Model 

(LPRM) based 

AMSR-E daily 

Level 3 Ascending/ 

Descending 

Surface Soil 

Moisture, Ancillary 

Params, and QC 

Goddard Earth 

Sciences Data 

and 

Information 

Services 

Center (GES 

DISC) 

19 June, 

2002 

3 October, 

2011 

High spatial 

resolution (0.25° × 

0.25°) Long Period 

(1901-2010) daily 

gridded rainfall 

data set over India 

Indian 

Meteorological 

Department 

(IMD) 

1901 2010 

Table 1. Data Products 

 

Before the datasets are used for analysis, some amount of spatial 

processing is carried out. VUAN data is available at 0.25° 

latitude longitude grid while MONT data is provided in Equal 

Area Scalable Earth Grid (EASE) format which is available in a 

global cylindrical grid with spacing of 25 km. These two 

products are resampled with reference to IMD rainfall grid 

locations using inverse distance weighted average method. Care 

has been taken to carry out the interpolation from nearest 

possible surrounding grids due to which the resampling yielded 

meaningful values with a minimum loss of information. This 

process ensured of obtaining three datasets (one rainfall and two 

soil moisture products) at each IMD grid location. The AMSR-

E sensor recorded two observations per day one at ascending 

pass (which passes north across equator at approximately 1:30 

PM) and other during descending pass (which passes south 

across equator at approximately 1:30 AM). Due to difference in 

soil temperature conditions, the soil moisture values may vary 

between ascending and descending passes. Hence in order to 

quantify average amount of moisture accumulated for a 

particular day, average of ascending pass and descending pass 

data is considered with an assumption that the resultant value 

would be approximately relevant to the amount of precipitation 

recorded on that day. Later filtering of datasets is carried out 

wherein it is made sure that at a particular date, observations 

exist in all three datasets and rest of days were removed if at 

least one of the datasets lack data. This step ensures that the 

measures are unaffected by the amount of missing data in each 

product. Figure 1 present the maps of mean values of rainfall, 

VUAN and MONT across all the grids cells of India. 

 

 
Figure 1. Grid wise mean (a) IMD rainfall (b) MONT soil 

moisture (c) VUAN soil moisture for the period June 19, 2002 

to September 27, 2011 
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Mean rainfall map [Figure 1(a)] replicate general rainfall 

characteristics of India. One can observe extremes i.e., scarce 

and dense rainfall along Western Ghats & parts of North-

Eastern India and Rajasthan respectively. Rainfall of much 

portion of India is present to be around the median of mean 

rainfall. Considering rainfall to be dominantly affecting soil 

moisture content, soil moisture maps are interpreted 

accordingly. In case of MONT product map [Figure 1(b)], it is 

evident that Rajasthan region was well retrieved that imply very 

dry soils, the soils along Western Ghats are recorded with high 

moisture content which have might be in agreement with 

rainfall occurrence in that region, portion of Jammu region is 

shown to be having extremely low moisture content needs 

further investigation on its accuracy. Even VUAN product 

[Figure 1(c)] seems to have captured well the moisture content 

of Thar desert. Moisture values in Jammu & Kashmir (J&K) in 

VUAN product are quite opposite to what has been exhibited by 

the previous dataset. Some noticeable aspects drawn in general 

are, the region of Delhi in shown to be having almost scanty 

mean rainfall which is supportively retrieved by VUAN product 

which in case of MONT is quite opposite with very high soil 

moisture content, both the maps of soil moisture have shown a 

strip of very low soil moisture values along the states of 

Uttaranchal and Himachal Pradesh which might need further 

analysis on the selection of right product and accuracy. Datasets 

obtained from the aforementioned processing are now used for 

analysis. Details on the proposed measure are presented in the 

following section. 

 

3. COPULA BASED MUTUAL INFORMATION 

MEASURE 

As mentioned in previous section, precipitation plays key role 

in influencing soil moisture content. So, an attempt is made to 

quantify their relationship. It is important to note that the data 

of precipitation and soil moisture are in general nonstationary 

by nature at daily scale. Also, the distribution of precipitation is 

expected to be skewed towards lower side due to the existence 

of large number of non-rainy days which ultimately affects the 

distribution of soil moisture. Typical histograms of precipitation 

and soil moisture (from MONT) at one of the grid cells of India 

(17.5° N 76.25°E) that express the skewedness are presented in 

Figure 2. 

 

 
Figure 2. Histograms of (a) daily rainfall (IMD) (b) mean daily 

soil moisture (MONT) 

 

Hence either assuming that the datasets are stationary or on 

flipside, normally distributed may not be reasonable. Due to the 

above phenomena the computation of standard dependency 

measures such as Pearson correlation coefficient to understand 

the relationship may not be applicable. This lead to a more 

generalized form called mutual information. 

 

Mutual Information (Im) is a nonnegative scalar quantity that 

quantifies mutual dependency between two random variables. 

Innately it measures how much one random variable explains 

the other random variable. So, more is the value of Im between 

two variables, less would be the uncertainty in one variable 

knowing other or vice versa. In the current case, Im is used to 

quantify dependency between rainfall and soil moisture. The 

measure can be better understood if the problem is formulated 

this way “knowing soil moisture how better one can explain the 

distribution of rainfall?” This is because the precipitation 

records are consistent and since there is uncertainty in selection 

of soil moisture product, one need to check which product is 

able to reduce the uncertainty in rainfall data. For two discrete 

random variables S (soil moisture) and R (rainfall), Im is 

calculated as follows: 

   
 

   

,
, , log

m

R r S s

p s r
I S R p s r

p s p r 


 
 
 

  (1) 

where,  ,p s r is the joint probability density function of soil 

moisture and rainfall,  p s and  p r are marginal probability 

density functions of soil moisture and rainfall respectively. 

Intuitively it can be understood from the above equation that Im 

measures distance between actual joint distribution between S 

and R and joint distribution assuming independency between S 

and R. Since Im is a distance measure, it is always non negative 

and symmetric i.e.,  , 0
m

I S R  and    , ,
m m

I S R I R S . Im 

with a value zero indicates that the variables under study are 

independent of each other i.e., one variable does not provide 

any information about the other. 

 

In order to compute Im between soil moisture and rainfall one 

need to define their respective marginal density functions and 

joint density functions. As discussed before the datasets of soil 

moisture and rainfall cannot be constrained by assuming that 

they follow some parametric distributions under much 

unrealistic stationarity conditions. This lead to usage of copula 

theory. Copula is defined as a multivariate probability 

distribution for which marginal probabilities of each variable 

are uniformly distributed. Sklar’s theorem (Sklar, 1959), any 

multivariate distribution can be obtained from univariate 

marginal distribution functions and a copula function that 

contain dependence structure between variables of interest. This 

is an advantageous aspect because one can estimate joint 

distribution by separately estimating marginal distributions and 

copulas. Several parametric copula families (Nelsen, 2007) are 

available in literature. The parametric copula usually contains 

parameter that controls the strength of dependence between 

variables. Among them Archimedean family of copulas is 

extensively used in the field of hydrology due to their emphasis 

on tails as well as over median of the distribution. For the 

current study, Gumbel copula of Archimedean family is utilized 

for the analysis. In order to define the relationship between 

variables (which forms the parameter of copula), Kendall’s tau 

dependency measure is used. A nonparametric kernel density 

estimator with normal kernel function is used to define 

individually the marginal probability density functions 

 p s and  p r . Lastly with the aid of marginal density 
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functions and copula function, joint probability density function 

 ,p s r is computed. The resulting values are substitutes 

accordingly in Eq (1) to obtain mutual information between soil 

moisture and rainfall. 

 

4. RESULTS AND DISCUSSION 

The proposed mutual information measure explained in the 

previous section is applied separately to VUAN and MONT 

datasets with IMD rainfall grid wise. At a cell grid cell, the soil 

moisture product with greater mutual information is selected 

since it is able to explain more variability in rainfall (and vice 

versa) when compared with the other soil moisture product. 

Results thus obtained are compiled in Figure 3. 

 

 
Figure 3. Grid wise selection of soil moisture product based on 

proposed mutual information measure 

 

It is observed that all most 99 % of grids have been computed 

with valid values of Im, the rest of the pixels concluded with no 

result due to lack of data. Of these grids it can be observed that 

MONT dataset has outperformed over VUAN product. Almost 

73 % of grids have been selected with MONT and rest (~27 %) 

with VUAN. It is observed that in Western Ghats region and 

Kerala which have extreme rainfall conditions, VUAN product 

consistently exhibited better mutual information values. In 

central India region, in a very significant portion of pixels, 

MONT product has been selected. In case of extreme climate 

regions like Rajasthan, J&K and Northeast India, important 

contribution is made by VUAN product despite most pixels 

have comparably better MONT records. Moreover in the region 

of Delhi, as expected, VUAN product is selected which 

indicates the strength of proposed measure in identifying the 

anomalous datasets. So under extreme weather conditions, it 

may be necessary to consider even the performance of VUAN 

along with MONT for modeling and later compare the 

outcomes. 

 

5. CONCLUSIONS 

The current work focusses on a measure which is based on 

information theory to evaluate accuracy of satellite retrieved 

soil moisture products over India using rainfall information. 

Two soil moisture products (VUAN and MONT) and IMD 

rainfall are used for analysis. It is concluded that MONT can be 

used over most portions of India that have moderate climatic 

conditions. In case of extreme weather regions, it would be a 

better option to consider outcomes through other products such 

as VUAN and decide accordingly. 
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