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ABSTRACT: 

 

In the present study, different temperature-emissivity separation algorithms were used to derive emissivity images based on 

processing of ASTER( Advanced spaceborne thermal emission and reflection radiometer) thermal bands. These emissivity images 

have been compared with each other in terms of geological information for mapping of major rock types in Hutti Maski schist Belt 

and its associated granitoids. Thermal emissivity images are analyzed conjugately with thermal radiance image, radiant temperature 

image and albedo image of ASTER bands to understand the potential of thermal emissivity in delineating different rock types of 

Archaean Greenstone belt. The emissivity images derived using different emissivity extraction algorithms are characterised with poor 

data dimensionality and signal to noise ratio. Therefore, Inverse MNF false-colour composites(FCC) are derived using bands having 

better signal to noise(SNR)ratio to enhance the contrast in emissivity. It has been observed that inverse-MNF of emissivity image; 

which is derived using emissivity-normalisation method is suitable for delineating silica variations in granite and granodioritic gneiss 

in comparison to other inverse- MNF-emissivity composites derived using other emissivity extraction algorithms(reference channel 

and alpha residual method). Based on the analysis of ASTER derived emissivity spectra of each rocks, band ratios are derived(band 

14/12,band 10/12) and these ratios are used to delineate the rock types based on index based FCC image. This FCC image can be 

used to delineate granitoids with different silica content. The geological information derived based on processing of ASTER thermal 

images are further compared with the image analysis products derived using ASTER visible-near-infrared(VNIR) and shortwave 

infrared(SWIR) bands. It has been observed that delineation of different mafic rocks or greenstone rocks(i.e. separation between 

chlorite schist and metabasalt) are better in SWIR composites and these composites also provide comparable results with thermal 

bands in terms of delineation of different types of granitoids. 

 

1. INTRODUCTION 

The emissivity of an isothermal, homogeneous emitter is 

defined as the ratio of the actual emitted radiance to the 

radiance emitted from a black body at the same thermodynamic 

temperature(Norman, 1995). It is an important geophysical 

parameter of terrain elements for the studies related to 

climatology, hydrology and also used in modelling of the 

greenhouse effect (Hulley, 2009).  

Derivation of emissivity information from multichannel ASTER 

(Advanced Spaceborne Thermal Emission and Reflection 

Radiometer) data and using them for mapping of geological 

units of Precambrian rocks is an important aspect of research. 

Long wave or thermal emission is the response of atomic 

processes operated within the atomic structures of terrain 

elements in response to absorption of incident electromagnetic 

radiation of specific band width. Therefore, emissivity can be 

used to study the atomic structures of minerals and it is 

specially found suitable for identification of different silicate 

minerals. Emissivity can be used to identify individual minerals, 

and has been also related to silica content of rocks (Lyon 1972). 

Therefore, surface emissivity has been regarded as the one of 

promising geophysical parameter for mapping rock types with 

varying silica (SiO2)content. Major silicate minerals constitute 

the earth crust such as quartz and feldspars are not characterised 

with pronounced spectral features in the shortwave 

infrared(SWIR) region(bandwidth is restricted within the 

wavelength domain of 1 micrometer to 2.5 micrometer), rather 

these  minerals can be targeted based on their emissivity 

features. Importantly, igneous rocks are characterised with 

varying silica( i.e. silicon-di-oxide) content. Therefore spectral 

delineation of different igneous rocks having varying  silica 

content can be attempted using emissivity features based on 

processing of multiband thermal sensor data like ASTER. In 

this regard, emissivity signatures have the potential in 

delineating green schist rocks surrounded with granitoids of 

varying silica content. 

In the early days of geological studies using remote sensing 

data, single TIR(Thermal Infrared) band of Landsat Thematic 

mapper(TM)  has been used to differentiate different geological 

units using radiant temperature image. The differences in 

thermal properties( based on derivation of thermal inertia and 

also variation in temperature) have also been used to identify 

geological units(Abrams et al., 1984; Kahle and Rowan, 1980; 

Lyon, 1972).For example, important igneous rocks like basalt, 

gabbro, granites etc are delineated  from the apparent thermal 

inertia images (ATI). Further properties of surface cover or soil 

cover resulted due to variations in moisture can also be 

delineated in thermal inertia images.  However, thermal inertia 

characterisation requires day and night images of same area 

with a small time difference, which restricts its usefulness. On 

the other hand, multiband thermal sensor like ASTER can be 

used to derive emissivity of terrain elements in each band and 

provide information on variation in emissivity of terrain 

elements across the wavelength domain from 8-12 micrometer 

and this parameter can be used  for compositional mapping.  

In recent times different thermal composites and thermal ratio 

images have been used to delineate rock types (Kalinowski and 
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Oliver, 2004; Ninomiya et al., 2005). It is well known now that 

quartz-rich felsic rocks such as granite, dry river sand appear 

reddish in the L1B daytime false colour composite image  

derived using different thermal bands of ASTER sensor. This is 

due to the fact that the spectral emissivity of quartz is lower in 

the 8–9 μm region (bands 10 to 12) than in the 10–12 μm 

region(band 13 and 14). Feldspar also has absorption in band 

11. But mafic rocks appear colourless in this composite image 

as they have higher spectral emissivities in 8-9 μm 

region(Yajima et al. ). Based on an analysis of TIR spectral 

characteristics of rocks, Yoshiki Ninomiya has proposed   

several spectral indices for the mapping of quartzose, carbonate, 

and mafic rocks using ASTER data. Many important geological 

units were also mapped in the thermal images based on 

emissivity(Bertoldi et al., 2011; Ding et al.; Matar and 

Bamousa, 2013; Ninomiya et al., 2005; Ninomiya et al., 1997; 

Rowan et al., 2005). 

But characterisation of emissivity and its variation in different 

thermal bands of ASTER data are essential to understand the 

practical potential of emissivity data in mapping different rock 

types specially the rocks exposed under the influence of  intense 

tropical weathering set up of India. Thermal infrared at-surface 

radiance is recorded by thermal bands of ASTER sensor is a 

function of both the temperature and emissivity of the surface. 

Both of these parameters known for  very small  variance 

among the geologic materials exposed on the earth’s 

surface(Yajima and Yamaguchi, 2013). This results  a high 

degree of correlation between TIR channels for emissivity and 

radiant temperature values. Therefore, image processing 

algorithms which are used to enhance the spectral contrast in 

thermal bands such as  decorrelation stretch (DCS) etc. 

(displays emissivity variations and corresponding mineralogical 

variations in terms of variations in colour in the emissivity 

composites) have been regarded as important tools for ASTER 

thermal data for lithological mapping(Gillespie, 1992).  

In the present study, attempt has been made to utilise suitable 

image analysis methods for processing of ASTER derived 

emissivity bands  independently and also in conjunction with 

albedo and radiant temperature images to extract geological 

information  on  rock types essential for spatial mapping. In 

order to understand, standalone geological information content 

of thermal bands, attempt has been made to compare the results 

of interpretation of processed emissivity products with the 

results obtained from the analysis of ASTER VNIR-

SWIR(visible-near infrared, short wave infrared) data in terms 

of delineation of major rock types of Hutti-Maski Schist Belt. 

The work also has the relevance in present context as  record of 

mapping different geological units of green schist rocks and 

associated granitoids based on contrasting emissivity parameters 

derived from different emissivity extraction algorithms and 

comparison of the results of such analysis are limited in the 

literature. 

 

2. STUDY AREA AND GENERAL GEOLOGY 

Study area is situated at the western part of Raichur district of 

Karnataka State; which is located at south western part of India. 

The study area is restricted within the latitude from 1601' to 

16016' and the longitude from 76035' to 76037'(Fig.1). 

Geologically, study area is characterised with greenstone rocks 

of green schist and amphibolite facies, exposed with hook-

shaped outcrop pattern(Curtis and RadhaKrishna, 1995). 

Exposures of amphibolite/metabasalts were hardly preserved at 

surface with appreciable spatial extent. In general, these rocks 

have been  deeply weathered and in-situ soil is developed. In 

the study area, metabasalt and amphibolites are main rocks 

representing the greenstone rocks. Amphibolite has dark green 

colour and at places, it is schistose. Amphibolite exposures are 

seen at the north-eastern part of the hook of Hutti schist belt. 

Metabasalt is dominant component of greenstone rock. It  is 

fine grained and characterised with profused development of 

pillows but blanketed with black soil on surface.  

In addition to above components of greenstone rocks, 

amphibolites are also admixed with gneiss known as mixites in 

few places (e.g. Palkanmardi mixites)(Curtis and RadhaKrishna, 

1995). Black soil often blanket metabasalts;which are chlortic 

in terms of mineralogy. Black soil is developed  from 

metabasalt underneath the climate which is humid with erratic 

drought sequence(Roy and Barde, 1962).Greenstone rocks are 

closely associated with intrusive granitic plutons exposed  along 

the margin of the belt(Fig.2). The contact zone of these granites 

with granodiorites are important for gold mineralisation 

specially around remobilised portion of the contact. The grey 

granitoid is older phase and has recognisable gneissosity locally 

known as Kavital granitoid and it is granodioritic in 

composition. This granite outcrops at south east and north east 

part of the schist belt. The younger phase of granite is exposed 

at the northern part of the study area and is orthoclase feldspar 

rich and pink in colour. Locally this granite is known as 

Yelgatti Granite. Younger granite has intruded older Kavital 

granites at several place at eastern part of the study area (Fig.3). 

Exposures of migmatites or granodiortic  peninsular gneiss are 

restricted to the western side of the study area.((Fig.3).Acid 

rocks of granophyres, felsic porphyry etc. also occur within the 

schist belt and found to have intruded both green schist and 

granitoid rocks and identified near Chinchergi area(Curtis and 

RadhaKrishna, 1995). It addition to above, several granite and 

pegmatoid veins have intruded the greenstone rocks and these 

intrusion is associated with  the later phase of deformation 

(associated with second stage of regional deformation).In this 

regard, it is worthwhile to mention that Hutti-Maski schist belt 

has undergone three distinct phase of regional deformation. 

Second phase of deformation is pronounced with NNW trend 

and contributed in the formation of shear zone in the study 

area(Roy, 1979).Field-photographs of surface exposures of 

different rock types and soil cover is shown in Fig.2. 

 

 
Figure 2 a. Black soil developed over metabasalt. b Exposures 

of amphibolite. c. Younger K- Feldspar rich pink granite(locally 

known asYelgatti Granite). d. Older Granodiorite(locally known 

as Kavital Granite) 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, 2014
ISPRS Technical Commission VIII Symposium, 09 – 12 December 2014, Hyderabad, India

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-8-423-2014

 
424



 

 
 

Figure 1: Study area 

 
Figure 3:  Geological Map of the study area(prepared from 

consulting District Resource Map  of Raichur District and 

Koppal District, Karnataka prepared by Geological Survey of 

India in 1:250000 scale and Geological Map of Hutti Maski 

Schist Belt prepared by Sundaram et al. 1:150000. The map is 

further  modified based on image analysis supplemented with 

field survey along selected traverses ) 

3. METHODOLOGY  

We have processed Level 1B “at sensor”  radiance data of  

thermal bands of ASTER sensor. ASTER TIR bands are 

conjugately used with ASTER VNIR SWIR bands to analyse 

the  potential of thermal bands of ASTER data and compare the 

results of the thermal data analysis with the results obtained 

from  VNIR-SWIR bands. The detail specification ASTER 

sensor operative within the broad spectral domain 

encompassing visible-near infrared(VNIR), shortwave 

infrared(SWIR) and thermal infrared(TIR) electromagnetic 

domain have been illustrated in table 1. ASTER sensor is 

onboard in EO 1 satellite platform of NASA(National 

Aeronautics and Space Administration, America) of America 

have been operative since 1999 and have been widely used for 

geological applications(Abrams, 2000). 

 

ASTER VNIR-SWIR data used for deriving albedo image and 

also deriving ratio images to delineate different rock 

types(Yajima and Yamaguchi, 2013). ASTER VNIR and SWIR 

bands are independently calibrated using image based vicarious 

calibration methods to derive relative reflectance. ASTER 

VNIR bands are calibrated using "Internal average relative 

reflectance(IARR)" method and SWIR bands are calibrated 

using log residual method. Details of these methods and its 

potential in deriving relative reflectance image suitable for 

geological analysis have been discussed in literature(Guha, et 

al.2013). 

Subsyst

ems 

Band 

Numb

ers 

Spectral 

domain(Micromete

r) 

Spatial 

Resoluti

on 

Radiome

tric 

Resoluti

on 

VNIR 1 52–0.60 15  8 bits 

 2 63–0.69 15 8 bits 

 3 78–0.86 15 8 bits 

 3B 78–0.86 15 8 bits 

SWIR 4 1.60- 1.70 30 8 bits 

 5 2.145- 2.185 30 8 bits 

 6 2.185-2.225 30 8 bits 

 7 2.235-2.285 30 8 bits 

 8 2.965-2.360 30 8 bits 

 9 2.360- 2430 30 8 bits 

TIR 10 8.125-8.475 90 12 bits 

 11 8.8475-8.825 90 12 bits 

 12 8.925-9.275 90 12 bits 

 13 10.25-10.95 90 12 bits 

 14 10.95-11.65 90 12 bits 

Table 1:Specification of ASTER data 

ASTER VNIR-SWIR bands are used to derive false colour 

composites(FCC) and also used to derive few false colour band 

ratio composites using selected bands for delineating lithology. 

FCC and band ratio provide simple and most effective analysis 

of variation of spectral signature recorded in each spectral 

bands of multispectral data and these data can be reproducible 

and easy to interpret. The interpreted lithological information of 

ASTER VNIR-SWIR bands are compared with the information 

extracted from the analysis of ASTER thermal bands. Further, 

ASTER visible-near-infrared(VNIR) and shortwave infrared  

(SWIR) bands are used to derive broad band albedo image to 

utilise it as complementary information while analysing the 

emissivity images derived from ASTER TIR channels. 

Understanding of albedo variations and variations in radiant 

temperatures of different terrain element are important to 

understand the spatial variations in emissivity amongst these 

elements In our study, radiant  temperature image derived as by 

product of emissivity normalisation method has been taken as 

reference to understand the role of temperature in spectral 

radiance of each band. 

In order to analyse ASTER level 1B thermal bands, we have 

used geological map prepared from conjugate consultation of  

regional geological map of Geological Survey of India and 
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Geological map of Hutti Schist Belt prepared by Geological 

Society of India as reference geological information  to interpret 

satellite derived images on emissivity and reflectivity variations 

for delineating rock types. As present work is focussed to 

analyze the potential of ASTER thermal bands to delineate 

major rock types of the study area,we have compared 

composites of thermal radiances first before deriving emissivity 

and radiant temperature from radiance data. As emissivity 

information are correlative and minute influences of atmosphere 

may influence in delineating contrast in emissivity, atmospheric 

correction algorithm is used to calibrate the thermal bands 

before analysing the radiance composite of thermal bands. In 

present study, in-scene atmospheric correction method is 

applied to calibrate thermal bands. This algorithm assumes that 

the atmosphere is uniform over the data scene and  a near-

blackbody surface exists within the scene. The algorithm 

determines the wavelength that exhibits the maximum 

brightness temperature among the bands based on statistical 

analysis. This wavelength is then used as the reference 

wavelength. The pixel spectra that have their brightest 

temperature at this wavelength are considered as reference black 

body and used to calculate the atmospheric compensation. In 

this regard, the reference blackbody radiance values are plotted 

against the measured radiances for each wavelength,. The 

upwelling and transmission of atmosphere is calculated from 

slope of fitted line derived based on the comparison between 

actual radiance of these pixels and modelled radiance( i.e. black 

body radiance based on Planck's equation).After applying in- 

scene atmospheric correction in the data, we also have 

attempted masking of vegetation using third and second  band 

of ASTER data. Vegetations are developed along lineaments 

and drianages;which have been masked based on derivation of 

normalised difference vegetation index(NDVI) from near 

infrared(band 3) and red( band ) of ASTER sensor.We also 

have derived albedo image using reflectance information of 

SWIR and VNIR bands of ASTER data to understand  how 

albedo and radiant temperature have contributed in spectral 

radiances of thermal bands(Son et al., 2014). 

As our main aim was to derive emissivity for each thermal band 

and using them as basis for geological information extraction;  

emissivity have been derived for each band using three different 

algorithms and their similarity and contrast are also examined. 

Emissivity derivation using N band thermal radiance data is 

under determined  solutions as thermal radiance is governed by 

two parameters known as emissivity and temperature. If 

radiances are measured for N bands, there would be N+1 

unknowns. In this case, N would be emissivities at each 

wavelength and surface temperature would be another unknown 

variable. In this case, emissivity derivation problem using five 

thermal radiance bands has six unknown; five emissivity for 

five bands and radiant temperature. But we have five equations 

to derive such parameters. Therefore, assumptions are to be 

made in emissivity value to separate emissivity and temperature. 

In this regard, we have applied three emissivity extraction 

algorithms. In one method, a fixed emissivity (i.e., 0.96) is 

assumed to derive radiant temperature for each band. The 

emissivity to be assigned to the channel is 0.96, which is 

acceptable approximation of emissivity values of geological 

materials. The highest temperature derived for each pixels from 

such set of radiant temperature images are used to derive 

emissivity for each pixels of each band using  Plancks' equation. 

This method is known as emissivity normalisation method. In 

another method, emissivity of one thermal band is assumed 

constant to extract the radiant temperature of each band; which 

are subsequently used to derive emissivity information. This 

method is known as reference channel emissivity method 

In third method, a parameter known as alpha residual is derived 

for each thermal bands. Alpha residuals are derived based on 

the linear approximation of Planck's equation based on Wien's 

approximation and this approximation is having 1% 2% bias for 

temperature(Lia et al., 2013). It has been observed that alpha 

residual spectra represents the shape of emissivity spectra well 

but it is not truly represent emissivity shape in higher 

wavelengths(Lia et al., 2013). 

Emissivity composites of different bands are used to delineate 

major rock types of the study area. Further, we also have 

derived FCC images by applying decorrelational stretching on 

emissivity bands derived after removing noise using minimum 

noise fraction(MNF) method. It has been observed that 

emissivity bands are correlative in terms of information and 

characterised with low signal to noise ratio. Low SNR in 

ASTER thermal bands are evident from the striping noise of the 

emissivity composites(Fig.7). MNF method helps in segregating 

noise in data and also helps in arranging data as per the 

decreasing order of information content. In fact, MNF method 

is  two cascaded principal component method in which noise 

whitened principal components are derived. Higher order MNF 

contain noise; which are removed  while inversing emissivity 

information from MNF data space to original emissivity data 

space. In MNF method, noise are derived using shift difference 

algorithm operative over an area in the image; which appears 

homogeneous in terms of thermal radiance variation. In the 

study.Inverse-MNF Emissivity image has been used to analyse 

the signature of different rock types. Index images are also 

derived using emissivity bands derived using emissivity 

normalization  method.  Based on the analysis of emissivity 

composites; different rock types are delineated and image-

derived emissivity spectra of two different granitoids are 

evaluated to see how emissivity spectra of these rocks behave in 

comparison to each other. We also have derived different false 

colour composites and band ratio composites from relative 

reflectance images of SWIR band to delineate main greenstone 

rocks and associated granitoids and analysis of these composite 

with respect to emissivity based image composites has also been 

attempted. A schematic flow diagram is given to illustrate the 

outline of methods followed for processing of the data(Figure 

4). Results of the analysis of aforesaid images are discussed in 

the following segments 

 

 
 

Figure 4: Generalised flow chart adopted for ASTER data 

analysis and processing 

4. RESULTS 

We have processed thermal data for delineating different rock 

types based on the variation in thermal properties (i.e. 

emissivity) and its associated surface cover elements. Thermal 

parameters of the rocks are not only governed by their chemical 

composition but also influenced by the soil,vegeration cover 

developed above these rocks. In tropical environmental set up, 
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granitic rocks are also exposed to weathering  and granitic 

saprolites are developed. Therefore, the presence of the 

exposures of granodiorite and granites are also scanty and the 

rocks are covered with arenaceous soil. On the other hand, 

metabasalt is intensely weathered and montmorillonite rich 

black soil is developed over metabasalt(Roy and Barde, 1962). 

In the study area, almost entire extent of metabasalt are covered 

with black soil except in few places. Metabasalt exposures are 

only restricted in the few isolated hills and also found along 

geological sections developed along  nala(i.e. drainage section) 

and road. While analysing false colour composite of radiance 

image ( prepared using band 14 and 12 and 11)(Fig.5); we 

could delineate silica and K-feldspar rich granite(GN) based on 

its bright red colour in radiance composite image as quartz and 

K-Feldspar both have absorption in emissivity feature in band 

12 and band 11( i.e. 2nd and 3rd thermal bands of 

ASTER)(Fig.5). Granodiorite(GR) is dark red as it lacks K 

Feldspar and also low in silica content in comparision to 

granite.Further mafic mineral content of this rock is relatively 

higher than granite. This reduces the spectral contrast of 

granodiorite in this  emissivity bands and results dark red colour 

in the composite. Older granodiorite gneiss is regarded as 

distinct unit in comparison to younger alkali rich  granites as  

albedo of granodiorite is high and slightly higher at places but 

broadly similar to the albedo of younger granite( which has 

good exposures  reflecting incident energy well) as exposures of 

these rocks are massive and rich in high albedo bearing Calcium 

rich feldspar with low radiant temperature( please refer enlarged 

chips in the figure 5 where contrast in colour in radiance image 

is shown with contrast in albedo and radiant temperature 

image).In day time data; radiant temperature of granodiorite is 

very loe; even slightly lower than granite. 

Black soil(BS),amphibolite(AMP) and basalt(MBL) are 

indistinguishable  with their bright green colour in the radiance 

composites. These elements are all characterised with low 

albedo and high radiant temperate(Fig.5).However reddish tint 

observed below low albedo and high temperature bearing black 

soil( at the south-east part of the study area (Fig. 5.a) indicate 

the presence silica rich rock underneath(soil is developed above 

granodiorite at the south-east part of the study area).This 

indicates that the transported nature of this soil. On the other 

hand, black soil developed above metabasalt is in-situ soil and 

therefore the soil character is directly correlated with the 

metabasalt in terms of composition although soil is affected by 

pedological activity. Metabasalt and black soil have been 

grouped as single unit in terms of thermal character as thermal 

radiant temperature of these units are high and albedo of the 

units are low. Silica rich soil(SS) is also developed above 

granodiorite with high albedo and low radiant temperature at 

the south eastern part of the image. The soil has bright 

reflectance  and  rich in silica; which has been confirmed from 

analysis of SWIR bands. Conjugate analysis of albedo, radiance 

and radiant temperature images provide basis for 

characterisation of surface elements( rocks and soils)(Yajima 

and Yamaguchi, 2013).However, thermal bands are highly 

correlative in terms of information content(Table-2). 

We have also made emissivity composite images from the 

emissivity bands derived using different emissivity extraction 

algorithms(Lia et al., 2013; Payan and Royer, 2004). However; 

these emissivity images provide low contrast information(even 

if after applying decorrelational stretching on these composite 

images)(Fig.6) and striping noises are evident in these 

emissivity composites(Son et al., 2014). Silica rich younger 

granite is having  intense red colour in these 

composites(Fig.6.a.b and c).Emissivity composite derived using 

emissivity normalization method provides better contrast than 

the composites derived using reference channel and alpha 

residual method(Fig.6).However, Signal to noise ratio of 

thermal emissivity bands derived using each algorithm are also 

low. This has been estimated based on derivation Minimum 

Noise Fraction (MNF) image; which can segregate signal from 

noise using two cascaded principal component method; which 

separate higher order noise rich MNF bands from lower order 

signal rich MNF bands(Fig. 7). The concept and potential of 

MNF method in segregating signal for image analysis is well 

discussed in literature(Rowan et al., 2005; Zhang et al., 2007). 

It has been observed that emissivity bands derived using three 

different algorithms have comparable signal and noise content. 

This has been observed based on both visual analysis of MNF 

bands and also deriving plot of Eigen value and Eigen 

number(MNF band number)(Fig.7). It has been observed that 

information  have been reduced after MNF band 3 and two 

higher order MNF bands are dominated with noise. As 

emissivity normalised image provides better contrast of colur 

required to delineate rocks in comparison to reference channel 

method and alpha residual method; emissivity bands derived 

using this method are subjected to inverse analysis based on 

using first three MNF bands for inverse operation. Inverse MNF 

composite image thus derived have been decorrelation stretched 

to delineate rock types and associated surface 

elements(Fig.8.a).We could delineate granite from  granodiorite 

based on contrasting colours and amphibolite appear with blue 

colour in this composite image and this helps in separating 

amphibolite exposures from basalt. Presence of granophyres 

within green schist rocks are also enhanced( shown with ellipse 

in Fig.8.a).Emissivity spectra of Quartz, Feldspars and different 

mafic minerals are shown in Fig. 8.b.  Based on the analysis of 

image spectra of amphibolite, granite and granodiorite ratio 

images are derived .These ratios are band 14/band 12 and band 

10/band 12. Emissivity spectra are derived from visible 

exposures of these rocks and compared with the ASTER 

convolved laboratory spectra(Fig.9.b).  

These ratios are coined to enhance the contrast between granite 

and granodiorite as granodiorite has emissivity spectra with 

shallower depth than granite. Amphibolite is featureless with 

gradual fall in emissivity is observed at the higher bands(Fig. 

9.b).Based on the contrast in image derived emissivity spectra 

of aforesaid rocks; the ratio images were derived. These ratio 

images are further used to derive composite images to delineate 

different rock types(Fig.9.a).Although this composite could 

delineate granite(yellow in colour) and granodiorite(green in 

colour)  but it could not delineate basalt and amphibolite.  

We also have derived false colour composites using calibrated 

SWIR bands and the ratio images are also derived from these 

bands. We have used index images known for delineating mafic 

rocks from granite and also known for its potential for 

delineating chlorite rich rock( in this case metabasalt) and 

amphibole rich rock( in this case amphibolite).These ratio 

images  are further used in derivation of false colour composites 

for delineating different rock types. It has been observed that 

the ratio composites and simple composites could delineate  
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amphibolite from metabasalt. Moreover; granite and 

granodiorites are also well delineated  in SWIR band 

derived ratio images as  these rocks have different mafic 

minerals; known for their spectral absorption feature in the 

SWIR bands of ASTER sensor.  
 
 

 
Figure 5 a. False colour radiance composite image ( Red= 

Band 14, Green= Band 12 and Blue=Band 11) b. ASTER 

VNIR-SWIR derived albedo image((Yajima and 

Yamaguchi, 2013).C. Radiant temperature image derived 

using emissivity normalisation method.  

In the image, MP=Amphibolite,BS=Black- 

soil,GN=Granite,GR=Granodiorite, 

MP=Amphibolite, MBL=metabasalt, SS:Silica rich soil. In 

the zoomed portion of the figure 1= granite exposure, 

2=Granodiorite  

 

 

  
 

 

Figure 6 a. False colour composite of emissivity bands 

derived using emissivity normalisation method  b. False colour 

composite of emissivity bands derived using reference channel 

method  c. False colour composite of emissivity bands derived 

using alpha residual method. Strping noise is evident in this 

composite images.In this composite Red=Band 14, 

Green=Band12 and Blue= Band 11. Labelling has same 

nomencalture as shown in Figure 1. 

 

 

 
 

 
 Figure 8: a. Inverse MNF image Composite derived from  

signal dominated  emissivity bands derived using emissivity 

normalised method. In the composite(Red= Band 14, 

Green=Band 12 and Blue=Band 11).b. ASTER derived 

Emissivity spectra of different rock forming minerals are shown 

to illustrate orthoclase has absorption at band 11 and quartz has 

Correlation     

 

Band 

10 

Band11 Band12 Band 

13 

Band 

14 

Band 10 1.000  0.998  0.998  0.997  0.997 

Band 11 0.9982  1.000  0.999  0.998  0.997 

Band 12 0.998  0.9991   1.000  0.998  0.997 

Band 13 0.997  0.9985   0.998  1.000  0.999 

Band14 0.9970   0.997  0.997  0.999  1.000 

 

Table2 : Correlation matrix of ASTER thermal radiance band 

 

 
 

 Figure 7: a. MNF bands derived from emissivity bands derived using 

emissivity normalisation(I), reference channel(II) and alpha 

residual(III) method. b. Graphical plot of Eigen value and band 

number to show how information content reduces after three MNF 

bands. ( the graph is not clear) 
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aborption at band 12(Son et al., 2014). Labelling has same 

nomencalture as shown in Figure 1. 

 
 

 
Figure 9 a. Composite of two ratio image derived from 

emissivity bands derived using emissivity normalisation method 

and emissivity band 12.Raio images are derived using band 

14/band 12(ratio 1), band 12 and band 10(ratio 2).In FCC, 

Red= Ratio1, Green=Ratio2, Blue=Band 12. b. ASTER image 

derived emissivity spectra of three major rocks(I) and image 

derived emissivity  spectra of each rock  is compared with 

laboratory emissivity spectra of rocks( after convolving to 

ASTER bandwidth) collected from John Hopkins 

University(JHU) library( labelled as II,III and IV respectively). 

 

 
Figure 10 a. False colour composite of ASTER SWIR bands 

where Red=Band 5, Green= Band 6 and Blue= Band 8. 

b.ASTER band ratio composite where Red=(6+9)/(7+8); ratio is 

good for delineating amphibole,Green=5/8; ratio is for chlorite 

and Blue=4/5 for granite. C .ASTER Inverse MNF composite is 

also shown to analyse the potential of TIR bands and SWIR 

bands in delineating geology as shown in Figure 6. Labelling 

has same nomencalture as shown in Figure 1. 

 

CONCLUSIONS 

Emissivity information derived from processing of ASTER data 

are highly correlated. Emissivity composites derived using 

different algorithms provide comparable results,however, 

emissivity normalisation method provide slightly better contrast 

required to delineate different rock types and associated terrain 

elements in comparison to emissivity composite derived using 

reference channel and alpha residual method. Multiband 

emissivity derived using different emissivity extraction methods 

are highly correlated. Therefore MNF bands are derived to 

identify the information and noise content in the data and 

decorrelation stretching of inverse MNF composite has been 

utilised to identify the different rock types and associated terrain 

elements. ASTER thermal band derived image spectra are  also 

used  to delineate major rock types based on derivation of ratio 

images and its composite. But thermal bands of ASTER could 

only delineate granite and granodiorites. It also could delineate 

the granodiorite even if it is covered with black soil. Presence of 

soil cover and similar albedo, radiant temperature of soil 

blanketing metabasalt prohibits emissivity based delineation of 

metabasalt. Amphibolite also feature-less in multiband 

emissivity data as it has broad spectra with very gradual fall in 

emissivity in the high wavelength bearing thermal bands. From 

the results obtained from analysis of emissivity composites 

derived from ASTER thermal band, it is observed  that these 

data are suitable for delineating granitoids having different 

silica content. But delineation of metabasalt and amphibolite is 

better in ASTER SWIR band and ratio composites. Moreover; 

granites of different silica content are also delineated in SWIR 

bands based on the variations in mafic mineral contents in these 

granites as these minerals have their diagnostic absorption 

feature ASTER SWIR bands. 
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