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ABSTRACT:  

A study was carried out by collecting soil samples from parts of Gwalior and Shivpuri district, Madhya Pradesh in order to assess the 

dominant clay mineral of these soils using hyperspectral data, as 0.4 to 2.5 μm spectral range provides abundant and unique 

information about many important earth-surface minerals.  Understanding the spectral response along with the soil chemical 

properties can provide important clues for retrieval of mineralogical soil properties. The soil samples were collected based on 

stratified random sampling approach and dominant clay minerals were identified through XRD analysis. The absorption feature 

parameters like depth, width, area and asymmetry of the absorption peaks were derived from spectral profile of soil samples through 

DISPEC tool.  The derived absorption feature parameters were used as inputs for modelling the dominant soil clay mineral present in 

the unknown samples using Random forest approach which resulted in kappa accuracy of 0.795.  Besides, an attempt was made to 

classify the Hyperion data using Spectral Angle Mapper (SAM) algorithm with an overall accuracy of 68.43%. Results showed that 

kaolinite was the dominant mineral present in the soils followed by montmorillonite in the study area. 
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1. INTRODUCTION 

Soil is a very complex medium consisting of several 

constituents that affect the spectral reflectance of soil. Based on 

the chemical and physical composition different soils have 

specific absorption of reflection at different wavelengths.  

 

Reflectance spectrometry gained importance due to the potential 

in rapid identification of constituent minerals in soils (Clark, 

King, Klejwa, & Swayze, 1990; Hunt, 1977; Hunt & Salisbury, 

1970). Hyperspectral remote sensing, or imaging spectroscopy, 

consists of acquiring images in many (>100) narrow, contiguous 

spectral bands (Goetz, Vane, Solomon, & Rock, 1985), thus 

providing a continuous spectrum for each pixel. Hyperspectral 

images enable spectral identification of minerals, rocks, or soils 

at the surface, with laboratory-like reflectance spectroscopy at 

the remote sensing scale (Sabine Chabrillat et al, 2002). Hence, 

hyperspectral sensors provide a vastly improved ability to 

classify the objects in the scene based on their spectral 

properties (Goetz et al., 1985). 

 

Most of the clay minerals show distinctive spectral reflectance 

patterns at visible wavelengths and especially at reflected IR 

wavelengths (Hunt, 1980). In the SWIR, soil spectra display 

more features than those observed in shorter wavelengths but 

are still dominated by water content, litter, and minerals 

(Gausman et al., 1975b; Henderson et al., 1992; Daughtry, 

2001). 

 

The 0.4 to 2.5 μm spectral range provides abundant information 

about many important Earth-surface minerals (Clark et al., 

2001). In particular, the 2.0 to 2.5 μm spectral range covers 

spectral features of hydroxyl-bearing minerals, sulfates, and 

carbonates common to many geologic units and hydrothermal 

 alteration assemblages. Imaging Spectrometers or hyperspectral  

sensors provide the unique combination of both spatially 

contiguous spectra and spectrally contiguous images of the 

Earth's surface that allows spatial mapping of these minerals 

(Goetz et al., 1985). Airborne hyperspectral data have been 

available to researchers since the early 1980s and their use for 

mineral mapping is well established (Goetz et al., 1985; Kruse 

and Lefkoff, 1993; Boardman and Kruse, 1994; Boardman et 

al., 1995; Kruse, et al., 1999).  

 

Keeping the above mentioned views, present study was carried 

out to analyze spectral characteristics of dominant clay minerals 

in soils. 

 

2. STUDY AREA 

The study was conducted in parts of Gwalior and Shivpuri 

districts of Madhya Pradesh. The area has a humid sub-tropical 

climate with average annual rainfall of 916 mm. The study area 

is generally covered with sandy clay soil derived from the 

weathering of Bundelkhand granites and the Vindhyan 

formations. Certain parts of the area are covered by the black 

cotton soils derived by the weathering of the Deccan trap 

formation and the lateritic soil. Alluvium is found all along the 

major and minor rivers. 

 

 
Figure 1. Location map of the study area 
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3. MATERIALS AND METHODS 

3.1 Satellite data used: 

For sampling plan preparation and hyperspectral classification 

of soil mineralogy, Hyperion data (L1T product with 242 bands 

at 10 nm band width) acquired on 14th April, 2011 was used. 

The data was downloaded from the U.S Geological Survey 

website. 

 

3.2 Collection and preparation of soil samples 

Using the pre-acquired Hyperion data and existing soil maps, 

sampling sites were determined. Field data has been collected at 

various distinct soil locations and soil samples were collected 

for XRD analysis, spectral analysis and analysis of other 

chemical properties. The soil samples were treated with the 

glacial acetic acid to remove the carbonates and H2O2 to remove 

the organic matter. The silt and clay in the suspension were 

separated by decantation or by centrifugation using sodium 

hexametaphosphate, a dispersant or deflocculant. The dried 

samples are ground with mortar and pestle so that the particles 

are finer than 0.062 mm to avoid mineral fractionation.  

 

 

3.3 Clay mineral extraction and identification by XRD 

 

 X-ray powder diffraction, which is the most common technique 

to study the characteristics of crystalline structure and to 

determine the mineralogy of fine sediments like clays, was used 

in the present study. The procedure mentioned in “A laboratory 

manual for X ray diffraction” by U. S. Geological Survey was 

followed for the extraction and identification of clay minerals. 

The samples were smeared on the surface of the glass slide and 

sufficient amount of acetone was added to wet the sample and 

subsequently exposed to ethylene glycol to expand swelling 

clays and placed in dessicator at 60-700 C and heat treatments at 

4000 C  and 5500 C. The samples are glycolated for atleast 4 hrs 

by vapour glycolation technique using LiCl. The mount is x 

rayed between angles of 2 & 70 degrees two theta using copper 

K alpha radiation at scanning rate of 2 degrees per minute. 

Using the Bragg equation degrees two theta was converted to 

interplanar spacing. 

 

D =  o / 2 * sin (0.5 x 2 x R)            (1) 

  

Where, 

D  = Inter lattice spacing in angstroms 

o = Wavelength of the characteristic X-rays  

 X-ray incidence angle (Bragg angle) 

R = conversion factor used to change degrees to radians  

     ( 0.0174532925199433). 

 

 

  

3.4 Laboratory spectral observations 

Spectral reflectance of the soil samples were collected over the 

350–2500 nm wavelength range with a Field Spec®Pro 

Spectrometer (Analytical Spectral Device-ASD).The radiometer 

consists of one silicon photodiode array and two fast scanning 

thermoelectrically (TE) cooled spectrometers with a spectral 

resolution of 10 nm. The instrument was operated with 5° full 

field-of-view (FFOV) fore optics. A laptop interface with the 

instrument allows real time viewing of the spectrum recorded. A 

white Spectralon panel provided the absolute reflectance factor 

both for field and laboratory measurements. 

 

3.5 Spectral Reflectance analysis  

The reflectance spectra of the soil samples, especially the 

absorption features of the spectra were analysed using the 

DISPEC (Version 3.2), an IDL program developed by Harald 

Vander Werff (www.itc.nl/personal/vdwerff/software.html). The 

programme characterizes the shape and wavelength position of 

strongest absorption features in the reflectance spectra for 

detailed spectral analysis. The absorption features were 

calculated by the programme based on position or centre of 

absorption band, depth, width, area and asymmetry of the 

continuum removed spectra.  

 

3.6 Modeling approach 

The absorption feature parameters that were obtained using the 

DISPEC tool were used as input parameters for modeling the 

dominant soil clay mineral in the soil samples using the random 

forest approach and the unknown samples were classified. The 

random forests, an extended classification and regression tree  

(CART) model constructs multiple regression trees and adopts 

ensemble approach for prediction of output value. The random 

forests as adopted in R through Rattle package (Williams, 2009) 

was used in this study. 

 

3.7 Classification by Spectral Angle Mapper 

The Hyperion data has been subjected to radiance conversion, 

smile correction and atmospheric correction (FLAASH). The 

training sets were provided based on field location information 

and based on XRD data dominant mineralogy class has been 

assigned to training set. The corrected hyperion imagery was 

subjected to classification using spectral angle mapper (SAM) 

using the above training sets. About 15% of samples were kept 

aside for post-classification verification. The SAM method 

developed by Kruse et al. (1993) is a classification approach 

based on the similarity between two spectra. The measurement 

of the angular difference permits the allocation of each 

spectrum of the image to a given class. The method determines 

the similarity between the reference spectrum and the image 

spectrum by the calculation of the angle. The spectral angle is 

calculated from the following equation: 

 

                    (2) 

 

Where r = reference spectrum vector (prototype) and t = test 

spectrum vector (pixel). 

 

 

4. RESULTS AND DISCUSSION 

4.1 Identification of dominant clay minerals 

 

 Mineralogy of the soil samples has been assessed through XRD 

analysis. The dominant clay minerals in the soil samples were 

identified by dominant peak producing d spacings. The soil 

samples were subsequently grouped based on presence of 

dominant minerals in soil. On an average the dominant mineral 

present was as follows kaolinite>montmorilonite>illite. Results 

indicated that the kaolinite abundant soils showed dominant 
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peaks mostly at 12.3, 24.8 and 37.7 Å d spacing where as 

montmorilonite abundant soils at 4.9, 9.82 and 14.7 Å d spacing 

in the study area (Table. 1). 

 

 

Table. 1 Dominant peak producing d spacings (Å) in the clay 

minerals. 

 

4.2 Spectral analysis of absorption features 

 

The hyperspectral absorption feature parameters i.e, depth, 

width, area and asymmetry of the absorption peaks at 1400-

1450nm, 1900-1920nm and 2200-2210 nm were derived from 

spectral profile of soil samples using the DISPEC tool. It was 

observed that, Kaolinite, montmorillonite and Illite are the clay 

minerals which were common in these soil samples. The strong 

absorption band near 1.4 μm, along with the weak 1.9 μm band 

in kaolinite, are due to hydroxide ions, while the stronger 1.9 

μm band in montmorillonite is caused by bound water 

molecules in this hydrous clay. The SWIR spectra of illite 

showed two diagnostic absorption peaks at the 1.4 μm and 2.2 

μm nm regions. The 1.4 μm peak is derived from the OH-

overtone stretching vibration, and the 2.2 μm absorption is 

related to the Al–OH bending combined with OH stretching 

(Hauff et al. 1991, Masinter & Lyon 1991). An additional peak 

at the 1.9 μm region in some illite separates is related to 

adsorbed water.  

 

 
Figure 2.  The original and continuum removed spectra of a 

Kaolinite dominant soil sample. 

 

It should be emphasized that infrared spectra are influenced 

mainly by short-range order and are relatively insensitive to 

long-range order in minerals, whereas XRD patterns are more 

sensitive to long-range order (e.g., Gaite et al. 1997). Therefore, 

information about the clay mineral structure derived from 

infrared spectroscopy is not expected to be identical to that from 

XRD.  

 

These derived absorption feature parameters were used as input 

variables for modeling the dominant soil mineralogy class using 

random forests approach. Of these variables a maximum 

variance of 31% was explained by width of the absorption  

indicating the importance of the variable in the prediction.   

Using this model, the unknown samples were classified which 

has resulted in a kappa accuracy of 0.795. The error matrix 

indicating the number of samples classified in each mineralogy 

class in accordance with the ground truth and XRD analysis is 

presented in the table 2. 

 

 

K M I G V 

K 22 0 0 0 0 

M 3 18 1 0 0 

I 0 1 9 0 1 

G 0 1 0 5 2 

V 0 0 1 1 6 

 

Table 2. Error matrix of the random forest based classification 

(K=Kaolinite, M=Montomorillonite, I=Illite, G=Goethite, 

V=Vermiculite) 

 

4.3 Image Classification 

 

An effort was made to classify the Hyperion  data using Spectral 

Angular Mapper (SAM) algorithm. The output is provided as 

figure 3. The algorithm was trained based on the field 

observations in combination with XRD analysis and the image 

was classified using SAM. It was observed that Kaolinite is the 

dominant mineral of the study area followed by 

Montmorillonite. The accuracy was assessed by studying the 

error matrix and the overall accuracy of the classification was 

found to be 68.43%. In the study area the uplands are mainly 

with non-expanding clay minerals, while lowlands (bottom 

portion of the image) are dominated by expanding clay 

minerals. The predominance of montomorillonite in lowlands 

indicates a high base status of weathering environment 

(Gawande etal 1974). 

 

 

Figure 3. Classified Hyperion image using SAM algorithm 

 

CONCLUSIONS 

The study explored the possibility of using the hyperspectral 

field as well as satellite based observations for deriving 

dominant clay minerals. The results from modelling dominant 

clay minerals by Random forests and mapping of hyperion data 

using SAM algorithm indicated the dominance of Kaolinite clay 

mineral followed by montomorillonite in the study area. 

 

It was also found that the spectral absorption features found to 

be useful parameters to assess the dominant clay mineral of 

soils from laboratory spectra of soil clays.  However due to 

mixed nature of clay minerals in natural soil samples in the 

Clay Mineral Peak producing d spacing in angstroms 

Kaolinite 12.3,24.8,37.7,51.0,65.1 

Vermiculite 
6.13,12.2,18.4,24.7,31.0,37.4,43.9,50.6,57.

56,64.6 

Illite 8.84,17.7,26.7,35.8,45.3,55.0,65.2 

Montomorillon

ite 

4.9,9.82,14.7,19.7,24.7,29.7,34.8,40.04,45.

3,50.6 

Goethite 4.18,21.2,43.2,67.1 
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present study determination of only dominant clay mineral is 

explored. Attempts are being made to find the composition of 

clay mixtures through linear decomposition techniques. 
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