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ABSTRACT: 

The processing of hyperspectral remote sensing data, for information retrieval, is challenging due to its higher dimensionality. 

Machine learning based algorithms such as Support Vector Machine (SVM) is preferably applied to perform classification of high 

dimensionality data. A single-step unified framework is required which could decide the intrinsic dimensionality of data and achieve 

higher classification accuracy using SVM. This work present development of a SVM-based dimensionality reduction and 

classification (SVMDRC) framework for hyperspectral data. The proposed unified framework was tested at Los Tollos in 

Rodalquilar district of Spain, which have predominance of alunite, kaolinite, and illite minerals with sparse vegetation cover. 

Summer season image was utilized for implementing the proposed method. Modified broken stick rule (MBSR) was used to 

calculate the intrinsic dimensionality of HyMap data which automatically reduce the number of bands. Comparison of SVMDRC 

with SVM clearly suggests that SVM alone is inadequate in yielding better classification accuracies for minerals from hyperspectral 

data rather requires dimensionality reduction. Incorporation of modified broken stick method in SVMDRC framework positively 

influenced the feature separability and provided better classification accuracy. The mineral distribution map produced for the study 

area would be useful for refining the areas for mineral exploration.  

 

 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

In the recent decade, advances in hyperspectral technology have 

increased the perception and knowledge of the earth’s surface. 

The spectroscopy integrated into remote sensing systems has 

offered high spectral resolutions to capture subtle details of 

objects thereby providing better discrimination and 

identification of the targets.  

 

Some of the most important factors that make the usage of 

hyperspectral data complex are data volume, atmospheric 

distortions and high dimensionality. With the advancement in 

computation processing speed, the large volume of data can be 

handled. Another issue with hyerperspectral data is atmospheric 

corrections which also can be performed accurately for airborne 

hyperspectral data. The higher dimensionality of data suffers 

information redundancy and noisy. The advantages of 

dimensionality deduction is that it reduces the number of 

dimensions because a small portion of data can explain most of 

the variance of the image, while the original features of the data 

are preserved (Burgers et al,2009). 

 

After dimensionality reduction, the optimum number of bands 

are to be selected which have the total data content of the 

original image. This is done by considering the virtual 

dimensionality of the reduced image. Intrinsic dimensionality, 

because of some undesirable properties, produces unreasonable 

results in case of hyperspectral images. Second moment linear 

dimensionality techniques avoids the pitfalls of virtual 

dimensionality and are successful in identifying a certain 

number of components. It locates exceptionally large gaps in 

eigen values and gives a unique solution if the recommended 

level is used (Jackson, 2003). The results will depend upon the 

user-defined threshold, which in all cases may not be optimum, 

but Modified Broken-Stick Rule (MBSR) avoids it. In MSBR 

method, k is the number of principal components out of total 

dimension ‘p’ and ‘λ’ are eigen values of various dimensions 

(Bajorski, 2009).  

The value of k is defined as  

 

   
for j=1,2,…,k  and   λ_(k+1)≤b_(k+1) 

 

Where,   is a fair share of 

total variability represented by λj within λj,…, λp 

 

Generally used classification algorithms for hyperspectral data 

are spectral angle mapper (SAM) and the spectral feature fitting 

(SFF) which are non-iterative processes. Therefore, 

optimization of classification accuracy from misclassified pixels 

is not taken care (Soman et al, 2009). To overcome the 

drawbacks of SAM and SFF, an iterative process based 

classification algorithm, support vector machine (SVM) is used. 

The concept of SVM was introduced by Cortes et al (1995) to 

solve the regression and classification problems. SVM is 

supervised machine learning algorithm based on statistical 

learning theory and structural risk minimization. It finds an 

optimal hyperplane that maximizes the margin between the 

classes by using a small number of training samples known as 

support vectors (Cortes et al, 1995). SVM has a property of 
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simultaneously minimizing the empirical classification error and 

maximizing the geometric margin (Yang, 2009). Support vector 

machine uses kernel method to perform regression and 

classification by transforming the data to the higher dimensional 

space with nonlinear transformation techniques. Although the 

application of SVM to multiclass classification problems 

remains an open issue, in practice the one-versus-the-rest 

approach is the most widely used in spite of its ad-hoc 

formulation and its practical limitations (Bajorski, 2011). In a 

recent study, SVM as a dimensionality reducer and classifier 

was used for non-spatial dataset (Yang, 2009) that have lesser 

dimensions compared to the hyperspectral images. Motivated by 

this an algorithm is introduced that classifies an image along 

with dimensionality reduction, using SVM.  

 

The main goal is to develop a unified framework of SVM-based 

dimensionality reduction and classification algorithm for 

hyperspectral datasets and to evaluate its performance. The 

objective has been achieved by the following sub-objectives (i) 

developing a SVM based unified framework for dimensionality 

reduction and classification of hyperspectral datasets (ii) finding 

the influence of the dimensionality reduction on the feature 

extraction (iii) comparison of classification accuracies derived 

from proposed approach vis-à-vis conventional approach of 

SVM classification. 

 

2. MATERIALS AND METHODS 

2.1 Study Area 

Los Tollos area is a part of the Rodalquilar district in the Sierra 

del Cabode Gata, in south-eastern Spain (Figure 1). The area 

has volcanic rocks of different compositions form pyroxene-

bearing andesites to rhyolites (Arribas et al, 1995). The intense 

alteration of rocks is due to two reasons viz., volcanic 

geothermal activity known as hypogene alteration and chemical 

weathering also known as supergene alteration. Because of 

volcanic activity and alterations, there are deposits of different 

minerals and large-scale mining of alunite has taken place in the 

area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1. Location of study area 

2.2 Dataset Used 

We used an airborne hyperspectral image obtained from the 

HyMap sensor, having 126 contiguous spectral bands, covering 

0.45 – 2.5µm of electromagnetic spectrum at spectral resolution  

Table 1. HyMap instrument details (Cocks et al, 1998) 

 

between 15 – 20nm. Spectral coverage is nearly continuous in 

the SWIR and VNIR regions with small gaps in the middle at 

atmospheric water absorption bands (1.4 and 1.9 μm) (Table 1). 

The HyMap image utilized is a sub-scene of area 2.87 km2, 

covering the Los Tollos area. We have considered it because the 

area is mostly covered with the three minerals viz., alunite, illite 

and kaolinite. The study area was imaged on 11.07.2003 in 126 

narrow bands, from 0.45 to 2.48μm with a pixel size of 5m. 

 

 

2.3 Field Data 

Field spectra from some parts of the study area were collected 

using the Analytical Spectral Device (ASD) fieldspec-pro 

spectrometer, which covers the wavelength range between 

0.35–2.50μm with a spectral resolution of 3nm at 0.7μm and 

10nm at 1.4μm and 2.1μm. The spectral sampling interval is 

1.4nm in 0.35–1.05μm wavelength range and 2nm in the 1.0–

2.5μm wavelength range. For validating the classification, there 

were 17 validating points available, of those 7 points were of 

alunite, 7 for kaolinite and 3 points for illite mineral. Figure 2, 

shows the field data collection points in the study area. 

Figure. 2. HyMap image of the study area showing the position 

of validation points 

 

Spectrum Wavelength Range 

(μm) 

Bandwidth 

(nm) 

Spectral  

Sampling 

(nm) 

VIS 0.45-0.89 15-16 15 
NIR 0.89-1.35 15-16 15 

SWIR1 1.40-1.80 15-16 13 

SWIR2 1.95-2.48 18-20 17 

IFOV 2.5m along track   

 2.0m across track   

FOV 60º(512 pixels)   

Swath 2.3km at 5m IFOV   

 4.6km at 10m 

IFOV 
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2.4 Methodology 

2.4.1 Proposed SVMDRC framework 

The work flow, shown in figure 3 is described here. An airborne 

hyperspectral image of the study is selected and was 

preprocessed by performing atmospheric and geographic 

corrections. The preprocessed image is then subjected to SVM 

classification, with set of endmembers of each class taken from 

the image. The same training set and image are then subjected 

to SVMDRC framework. The classified images obtained from 

both the classifications are compared for accuracies by 

validating data. Separability analysis was performed to test the 

influence of dimensionality reduction by calculating the 

separation between the classes of the image before and after 

dimensionality reduction.  

 

The work methodology is divided into two parts, SVMDRC and 

SVMC. SVMDRC is the work which includes the developing 

of the framework and applying it on the hyperspectral image, 

and SVMC part is performing SVM classification on the 

hyperspectral image using the same training samples used by 

SVMDRC. The difference between the SVMDRC and is that, in 

the SVMC no dimensionality reduction is performed and in the 

SVMDRC dimensionality reduction is performed along with 

classification. Training samples are taken from the image, which 

are the endmembers of the class, which has to be classified. 

With the training samples provided, the SVM classifier decides 

the hyperplane and the support vectors are generated to separate 

the classes for classification. 

Figure. 3. Methodology. 

 

2.4.2 Pre-processing 

 

The HyMap scene was atmospherically corrected by using 

parametric geocoding procedure (PRAGE), Airborne 

Atmospheric, and Topographic Correction Model (ATCOR4) 

software by German Aerospace Centre. Where the scanning 

geometry of the image has been reconstructed by using PRAGE 

with the aid of the pixel positions, altitude and terrain elevation 

data (Schlapfer et al, 2002).   

 

2.4.3 Dimensionality reduction using eigen decomposition 

 

Dimensionality reduction is performed by eigen decomposition 

of the covariance matrix, where the covariance matrix of the 

original image is calculated and the eigen values and the eigen 

vectors are computed for each band. The scores for each band 

are calculated and the corresponding transformed components 

are obtained. These components have the data in the order of 

decreasing variability. As per the above statements, it means 

that the first component obtained will have the data, which have 

maximum variability, and so the variability decreases. In this 

way, the initial components will have the maximum amount of 

data. However, selecting the optimum number of transformed 

bands for obtaining the dimensionally reduced image is real 

task. 

 

2.4.4 Intrinsic dimensionality calculated using modified 

broken stick rule 

 

After the reduced bands of the complete hyperspectral image are 

obtained and their variability are calculated, an optimum 

number of bands must be selected for further processing, such 

that the selected data have most of the variability. These 

numbers of optimum bands selected represent intrinsic 

dimensionality of the image. Traditionally it is calculated by 

finding the number of bands by calculating the number of bands 

falling into the threshold set on the cumulative percentage 

variability of the image. This is generally set between 98 – 99% 

of variability. By this method, the intrinsic dimensionality 

achieved would be between 2 to 5. This would give better 

results if the number of bands were low. However, if a dataset 

like hyperspectral image are used which have very high 

dimensions the intrinsic dimensionality achieved by that above 

method is not satisfactory. As the dimensions are very high, 

such a low intrinsic dimensionality will not be promising and 

the complete feature detection chances would be less. 

Therefore, by setting a bigger threshold could increase the 

chance of apt feature selection and detection form the 

hyperspectral image. However, the threshold which must be set 

cannot be an arbitrary value.  

Radial basis function (RBF) kernel is used in SVM. For 

dimensionality reduction the complete data is transformed into 

the lesser dimensions using the eigen decomposition method. 

 

 

2.5 Influence of dimensionality reduction on feature 

extraction 

The influence of dimensionality reduction on feature reduction 

is assessed by calculating the distance (feature separability) 

between the classes before and after dimensionality reduction 

Jeffries-Matusita (JM) distance method was used to calculate 

the separability, which gives the distance (class separability) 

between two distributions. Consider two distributions p(x|ω_i) 

and p(x|ω_j) which are polynomial populations each having N 

classes. The sum of the values is equal to 1 as per laws of 

probability.   

The JM distance is defined as in equation 

 

 
 

It is the measure of average distances between two class 

probability density functions. 
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If the classes are normally distributed then the distance is given 

by the following equation 

 

 
 

where, B is Bhattacharyya distance. The importance of the 

exponential factor is that it gives the decreasing weight for the 

increasing separability between the spectral classes. The values 

of the distance are scaled between 0 and 2.0. The distance with 

a value 2.0 indicates that the classes are 100% separable and a 

value 0 that the classes are not separable (Richards et al, 2006). 

 

2.6 Proposed SVMDRC framework 

The SVM based dimensionality framework developed in this 

study is an integration of dimensionality reduction procedure 

based on eigen vector analysis, automatic selection of optimal 

transformed components and simultaneously classification of 

hyperspectral image using non-linear SVM. The proposed 

framework has been mathematically briefed as follows: 

Let X(x_i,y_i )  where i=1,…,n∈R^2is the input data and X^T 

(y_i,x_i )  where i=1,…,n∈R^2 be the transposed matrix of the 

input data. 

Calculate the covariance of the data denoted by K 

 

 

 
 

 

Apply eigen decomposition to K and obtain the eigen vector 

and eigen values 

 

 
 

where V is the eigen values matrix and D is the eigen vector 

Matrix. 

Sort the values of V in the decreasing order 
 

 
 

where p=1,…,m and q=1,…,l and 1≤l≤m 

 

    
for  j=1,2,…,k  and  

 

where,  

 

 

 is a fair share of total variability represented byλ_j within 

λ_j,…,λ_p. J gives the intrinsic dimensionality. 

 

 
where c is the normalized value. 

 

The dimensionally reduced and projected data is 

 

 
Applying SVM for the projected data 

 

  where i=1,2,…l 

 

 
 

where Φ()  is the Radial Basis Function 

 

3. RESULT AND DISCUSSION 

3.1 Dimensionality reduction and classification  

The framework designed performs dimensionality reduction and 

classification of the hyperspectral image in a single process. In 

the process, the covariance of the image is calculated, over that 

eigen decomposition is performed which produces eigen vectors 

and eigen values of the image. They are also known as scores 

and loadings. A list of eigen values for each band are generated. 

Table 2, depicts the eigen values of the first ten bands of the 

image. The remaining values are very small hence, they are not 

displayed. Looking at the variance values of the bands in the 

image, the first five bands contain 98.8% of data in it. So, in the 

traditional way the intrinsic dimensionality of the reduced 

transformed image is considered to be 5. Nevertheless, this is 

not true in the case of hyperspectral imagery. Due to high 

correlation between the bands and the data shown in the first 5 

bands as per the traditional way is limited. To overcome this, 

modified broken stick rule is implemented to calculate the 

intrinsic dimensionality of the reduced image. 

 

Transformed Bands Eigen Value 

1 114.49 

2 6.16 

3 2.40 

4 1.53 

5 0.41 

6 0.33 

7 0.19 

8 0.16 

9 0.07 

10 0.04 

Table 2. Eigen values of the first 10 transformed bands of the 

image. 

 

3.2 Modified Broken Stick rule 

By the MSBR method, the intrinsic dimensionality is the 

number of dimensions out of total dimension of the image, 

which is calculated and found out to be 27 for the dataset used 

in this study. This is how intrinsic dimensionality is calculated 

and the reduced data with 27 bands is classified. It is to be 

noted that the complete process of dimensionality reduction and 

classification is a single stepped processes, but the intrinsic 

dimensionality can be retrieved just for knowledge by passing 

the arguments in the code. In the figure 4, the transformed 

components selected by the broken stick rule along with 

remaining noisy transformed bands are displayed. After the 27th 

transformed band the noise content in the image is increased 

drastically, even though the transformed band have information 

the noise content is dominating it, which could be visually 

interpreted.  
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Fig. 4. Transformed Bands. 

 

3.3 Comparison of SVMDRC and SVM Classification 

The framework produces a raster image, which is dimensionally 

reduced and classified. Both SVMDRC and SVMC part gives a 

classified image as output. However, the differences between 

them are one is dimensionally reduced and other is not 

dimensionally reduced and the other difference is the accuracy 

of the classification. The accuracy is checked by performing 

accuracy assessment.        

The figures 5 and 6 shows the outputs obtained by two different 

processes of classification using SVM one with dimensionality 

reduction and other without dimensionality reduction. In 

dimensionality reduction, the intrinsic dimensionality of the 

image is estimated and calculated by modified broken sick rule 

method and the value is observed to be 27. The first 27 reduced 

bands are used for classification of the image. The 

dimensionally reduced and classified image is shown in the 

figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 5. SVMDRC classified image 

Figure 6 shows the image obtained by performing SVM 

classification without dimensionality reduction of the 

hyperspectral image.  The training of the SVM classifier is 

performed with the same training sets used for SVM 

dimensionality reduction and classification process, to make 

sure that same type of classification parameters are considered. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. SVM classified image without dimensionality 

reduction. 

The areas of classes were calculated for both the classified 

mineral maps. By performing SVM on the image the area of the 

class alunite was 127.44 hectares, illite was 22.23 hectares, 

kaolinite was 59.45 hectares and unclassified area was 59.45 

hectares. Whereas, by applying the SVMDRC the areas 

obtained were for alunite 118.3825 hectares, illite was 15.48 

hectares, kaolinite was 58.712 hectares and unclassified area 

was 74.9675 hectares.   

 

3.3.1 Validation: 

 

Validation is an important step, which gives the true assessment 

of the results obtained, i.e., it gives the accuracy of the 

classified image. Validation data has been collected from 

different parts of the study area. By this validation data also 

known as ground truth data, validation of the classified image is 

performed. 

Collection of field spectra from some parts of the study area 

(shown in figure 2) was performed during the over-flight using 

the Analytical Spectral Device (ASD) fieldspec-pro 

spectrometer. This spectrometer covers the 0.35–2.50μm 

wavelength range with a spectral resolution of 3nm at 0.7μm 

and 10nm at 1.4μm and 2.1μm. The spectral sampling interval 

is 1.4nm in the 0.35–1.05μm wavelength range and 2nm in the 

1.0–2.5μm wavelength range.  

As shown in Table 3, 17 validation points were available in the 

study area. Of the available 17 validating points, 7 points are of 

alunite, 7 for kaolinite and 3 points for illite mineral. 

Accuracy is assessed calculating the confusion matrix between 

the ground truth data and the classified image. This process is 

performed on both the classified images. The results of the 

SVM classified image and dimensionally reduced and classified 

image are given in the tables 4 and 5 respectively. 

From Table 4, which displays the accuracy assessment of SVM 

classified image, the overall accuracy of classification is 

64.70% where the individual producer’s accuracy of the classes 

alunite, kaolinite and illite are 85.71%, 42.85% and 66.66% 

respectively with a kappa coefficient value of 0.43, whereas 

from table 4, which displays the accuracy assessment of 

SVMDRC classified image, the overall accuracy of 

classification is 82.35% but the individual producer’s accuracy 

of the classes alunite, kaolinite and illite are 85.71%, 85.71.85% 

and 66.66% respectively with a kappa coefficient value of 0.72. 

There is an increase in the overall accuracy of classification. 

This shows that even though SVM takes care of dimensionality 
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of the image, performing dimensionality reduction will increase 

the classification accuracy. 

Table 3. Reference data from the ground 

 

Confusion Matrix 

 SVM SVMDRC 

Class 

Name 

Users 

Accuracy 

Producer 

Accuracy 

Users 

Accuracy 

Producer 

Accuracy 

Alunite 85.71% 85.71% 100% 85.71% 

Kaolinite 60.00% 42.85% 75.00% 85.71% 

Illite 40.00% 66.66% 66.66% 66.66% 

   

Overall 

accuracy/  

64.70% 82.35% 

kappa 0.4361 0.7197 

Table 4. Validation result obtained for SVM classified image 

and dimensionally reduced and SVM classified image 

 

The individual accuracies of the classes was increased. The 

major change was with the class kaolinite. The producer’s 

accuracy of kaolinite was 42.85% before dimensionality 

reduction was performed and after it became 85.71%. Before 

dimensionality reduction, kaolinite was classified into illite 

class. This is because of high spectral similarity between both 

the classes. The spectra of kaolinite and illite classes showed in 

the figure 7 (a) and (b) respectively, give a visual estimate of 

spectral similarity between them. There is only a small change 

in the spectral signatures between the classes. This has led to 

misclassification of pixels. By performing dimensionality 

reduction the separation between the two classes have increased 

leading to better classification. The classification accuracy of 

the kaolinite mineral has led to the drastic change in the levels 

of accuracy and the framework has successfully separated them 

and gave a better level of classification accuracy. 

 

Figure. 7. Spectral profile of (a) Kaolinite and (b) Illite 

 

3.4  Influence of dimensionality reduction on feature 

extraction 

For finding out the influence of dimensionality reduction on 

feature extraction, separability analysis between the classes was 

performed by using JM distance method. They are displayed in 

tables 6 and 7. It was observed that before dimensionality 

reduction, there was a moderate separability between the 

classes. The value was 1.34 and the separability values of 

remaining class pairs were. After dimensionality reduction, the 

same tests were performed on the image and the vales of all the 

class separability between the class pair kaolinite-illite was 1.38 

and the remaining classes were between 1.3 and 1.41, which is a 

measure of good separability. Hence, it is shown that 

performing dimensionality reduction shows a positive increase 

in index on the feature extraction, which increases the 

separation between the classes, leading to better classification. 

The separation of the kaolinite class has increased after 

dimensionality reduction, which increased the producer’s 

accuracy of kaolinite class leading to increase in the overall 

classification accuracy. 

 

Mineral Alunite Illite Kaolinite 

Alunite 0.0 1.39 1.41 

Illite 1.39 0.0 1.34 

Kaolinite 1.41 1.34 0.0 

Table 6. JM distances between the class pairs before 

dimensionality reduction. 

 

Mineral Alunite Illite Kaolinite 

Alunite 0.0 1.39 1.41 

Illite 1.39 0.0 1.34 

Kaolinite 1.41 1.34 0.0 

Table 7. JM distances between the class pairs after 

dimensionality reduction. 

 

4. DISCUSSION AND CONCLUSION 

A framework for dimensionality reduction and classification 

using SVM was developed and implemented on the airborne 

hyperspectral image for classification of minerals in the study 

area. Hyperspectral image classified by the framework has 

shown better accuracy than the classified using SVM alone. 

This indicates that SVM take care of dimensionality to a limited 

degree. Hence, performing dimensionality reduction is a 

compulsory step for processing the hyperspectral images. 

Separability analysis by JM distance method gave an interesting 

result. Before dimensionality reduction of the image, the 

separability analysis showed that two pairs of classes were 

having very less separability between them. This was the reason 

for the intermixing of the class pixels. There was poor 

separability between kaolinite and illite. Once dimensionality 

reduction is performed on the image the separability has 

increased between the class pair kaolinite and illite. The 

confusion matrix shows that the misclassification rate has 

decreased and hence the classification accuracy increases. This 

result gives an impression that if dimensionality reduction is 

performed the chances of having misclassified pixels will low. 

 

This work also shows that dimensionality reduction shows a 

positive impact on feature extraction, where the separation 

between the classes increases after dimensionality reduction is 

performed. Performing SVM on the hyperspectral image have 

Station X Y Determinant 

LT04-25 -2.01939 36.86044 Alunite 

LT04-15 -2.02209 36.86041 Alunite 

LT04-11 -2.02546 36.86038 Alunite 

LT04-12 -2.02840 36.86088 Kaolinite 

LT04-04 -2.03227 36.86052 - 

LT04-10 -2.02015 36.86222 Alunite 

LT04-20 -2.02335 36.86220 Alunite 

LT04-6 -2.02602 36.86299 Alunite 

LT04-3 -2.02986 36.86269 Alunite 

LT04-14 -2.02179 36.86419 Kaolinite 

LT04-17 -2.03001 36.86495 Kaolinite 

LT04-23 -2.03286 36.86401 Kaolinite 

LT04-7 -2.02039 36.86642 Illite 

LT04-1 -2.02394 36.86616 Kaolinite 

LT04-24 -2.02757 36.86698 Illite 

LT04-9 -2.03212 36.86648 Kaolinite 

(b) (a) 
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given an accuracy of 64.70% whereas accuracy after the 

framework is applied was 82.35%. There are certain advantages 

of using a unified framework. First is that the process of 

working will become shorter. Instead of a two-step process, the 

work is performed in a single step, this makes the work process 

faster and more efficient, the results of this research work have 

proved this point. The second advantage is the usage of SVM in 

the framework. The framework is completely written in open-

source software hence it is accessible to the scientific 

community for the usage and further improvements. 
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