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ABSTRACT: 

This study describes the utility of Earth Observation (EO)-1 Hyperion data for sub-pixel mineral investigation using Mixture Tuned 

Target Constrained Interference Minimized Filter (MTTCIMF) algorithm in hostile mountainous terrain of Rajsamand district of 

Rajasthan, which hosts economic mineralization such as lead, zinc, and copper etc. The study encompasses pre-processing, data 

reduction, Pixel Purity Index (PPI) and endmember extraction from reflectance image of surface minerals such as illite, 

montmorillonite, phlogopite, dolomite and chlorite. These endmembers were then assessed with USGS mineral spectral library and 

lab spectra of rock samples collected from field for spectral inspection. Subsequently, MTTCIMF algorithm was implemented on 

processed image to obtain mineral distribution map of each detected mineral. A virtual verification method has been adopted to evaluate 

the classified image, which uses directly image information to evaluate the result and confirm the overall accuracy and kappa 

coefficient of 68% and 0.6 respectively.  The sub-pixel level mineral information with reasonable accuracy could be a valuable guide 

to geological and exploration community for expensive ground and/or lab experiments to discover economic deposits. Thus, the study 

demonstrates the feasibility of Hyperion data for sub-pixel mineral mapping using MTTCIMF algorithm with cost and time effective 
approach.  

1. INTRODUCTION 

Hyperspectral sensors acquire images of earth surface in many 

narrow, continuous and discrete spectral bands in such a way that 

a complete spectral pattern of each pixel can be derived for target 

detection, discrimination and classification (Zadeh et al., 2013). 

Airborne hyperspectral sensors were extensively used in 

comprehensive study of earth’s materials by several researchers 

across the globe but access to such advanced imaging systems 

are still challenging in developing nation such as India. 

However, launch of spaceborne hyperspectral sensor Earth 

Observation (EO)-1 in November 2000 has met the global 

demand of hyperspectral data for extensive range of 

applications. The sensor measures the energy reflected from the 

earth’ surface in visible near infrared (VNIR) and short-wave 

infrared (SWIR) covering the wavelength of 400-2500 nm with 

242 spectral bands at 10 nm and 30 m spectral and spatial 

resolution respectively (Breck, 2003). Most of the surface 

minerals show diagnostic spectral signature in VNIR and SWIR 

of electromagnetic spectrum which enables their detection on the 

basis on characteristics spectral signature (Hunt, 1977; Clark et 

al., 1999; Rowan et al., 2004; Kruse et al., 2006). The Hyperion 

hyperspectral sensor provides fine resolution and makes possible 

to detect several minerals viz. clays (illite, montmorillonite, 

kaolinite, and alunite), carbonates (calcite, dolomite), oxides 

(hematite, goethite, and jarosite), chlorites etc (Magendran and 

Sanjeevi, 2013; Zadeh et al., 2013). Several surface mineral 

mapping were carried with significant accuracy demonstrate the 

utility of Hyperion data (Jafari and Lewis, 2012; Kusuma et al., 

2012; Farifteh et al., 2013). Most of these studies focus on full 

pixel mineral detection or mapping by considering pixels as pure 
which may not be the case on the ground. 

It is important to cite here that there have been limited studies 

illuminating the Hyperion data exploitation for sub-pixel mineral 

investigation such as Magendran and Sanjeevi, 2013 applied 

Linear Spectral Unmixing (LSU) on calibrated Hyperion data for 

iron ore abundance mapping; Zadeh et al., 2013 discriminated 

and mapped the diagnostic hydrothermal alteration minerals viz., 

biotite, muscovite, illite, kaolinite, goethite, hematite, jarosite, 

pyrophyllite and chlorite etc. A partial sub-pixel method Mixture 

Tuned Matched Filtering (MTMF) was implemented on 

calibrated Hyperion dataset to derive the abundance map of each 
mineral.  

Spatial resolution of the remotely sensed data play a crucial role 

and should be considered in mineral mapping. It is common that 

a pixel contain two or more minerals may containing spectral 

signature of all minerals present in a pixel, which causes mixing 

of spectral feature and hence the pixel contains less diagnostic 

spectral signature for particular target and yield less 

classification accuracy. So, a key attention should be given 

particularly while discussing about sub-pixel level feature 

extraction from such datasets. Generally, most of pixels are 

mixed class type due to the coarse spatial resolution of Hyperion 

sensor (Kumar et al., 2010). Because of its high spectral 

resolution and immense atmospheric attenuations, signal 

detected by a sensor in to a single pixel is frequently a 

combination of numerous disparate signals hence the actual 

spectral signature of material get altered. Due to low Signal to 

Noise Ratio (SNR) and higher sensitivity to noise, the quality of 

information retrieved from Hyperion image immensely gets 

affected. A serious concern coupled with these disparate signals 

is that the interferers are generally unknown in nature and cannot 

be identified from scene (Ren and Chang, 2000). The utility of 

several unmixing algorithms such as LSU, Matched Filtering 

(MF) and MTMF etc were well demonstrated by for sub-pixel 

target detection (Magendran and Sanjeevi, 2013; Molan et al., 

2013; Zadeh et al., 2013; Zhang et al., 2014) but still these 

algorithms are not effective in minimizing the effect of 

interferences on the spectral mapping. In this study a hybrid 

unmixing algorithm i.e. MTTCIMF developed by Jin et al., 2009 

was implemented on processed Hyperion data for sub-pixel 

mineral investigation. The algorithm combines MTMF and 
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TCIMF target detectors which offers opportunity to provide 

target as well as non-target information for improved sub-pixel 

target detection. Both MTMF and TCIMF are effective spectral 

matching techniques and widely used for hyperspectral target 

detection but the performance of target detectors get enhanced 

while computes as combined algorithm (Ren and Chang, 2000; 

Jin et al., 2009). MTMF uses MNF transformed bands to perform 

MF and it adds an infeasibility image to reduce the number of 

false positives whereas TCIMF is constrained to eliminate the 

response of non-targets and minimization of interfering effects 

to improve the efficiency of spectral mapping. Therefore, 

MTTCIMF algorithm can perform three simultaneous process 

i.e. eliminating the response of non-target (interference or 

unwanted signals), applying finite impulse filter and add 
infeasibility image to reduce the falsely mapped pixels. 

The most common procedure adopted in the evaluation of 

hyperspectral analysis is done by using portable 

spectroradiometer and/or geochemical laboratory experiments. 

However, such procedure could be difficult in the hostile 

conditions or where such facilities are not easily accessible. With 

these concerns, a virtual verification (King and Clark, 2000) 

method has been adopted to evaluate the hyperspectral analysis 

results. This method uses directly image information to evaluate 

the result and could be very effective where accessing of such 
facilities are not possible. 

Therefore, the main objective of this study is investigating the 

feasibility of Hyperion data for sub-pixel surface mineral 

mapping using MTTCIMF algorithm in arid and mountainous 

region of southern Rajsamand with limited lab and/or field 

experiments. It is pertinent to mention here that utilization of 

MTTCIMF algorithm for Hyperion data analysis is not described 

so far. To the best of our knowledge rare publication available 

for the selected area as per as sub-pixel mineral mapping in 
concern, which clearly explain the need of study.  

2. Study Area 

The study area (Figure 1) is situated in the southern part of 

Rajsamand district of Rajasthan province, India with latitude and 

longitude ranging from 24°39'17.4" to 24°53'3.1"N and 

73°40'31.9" to 73°48'1.5"E respectively. The area is chosen for 

study because of its geological richness, availability of suitable 

Hyperion scene and arid to semi-arid climatic conditions. The 

common litho-units (Figure 1) found here are synsedimentional 

basic volcanics, migmatite, gneiss, quartzite, phyllite, 

greywacke, felspathised, biotite, calc and mica schist of different 

geological age (Gupta et al., 1981; Sinha-Roy et al., 1993). The 

area is endowed with several metallic and non-metallic mineral 

deposits such as lead, zinc, copper, rock phosphate, limestone 

and dolomite etc (Roy et al., 1998). Since, the area is in hostile 

mountainous terrain where field based survey could be very 

difficult at initial stage nevertheless hyperspectral based study 

could offer valuable information in the form of distribution of 

surface minerals at sub-pixel level to geological and exploration 
community for further investigation.  

 

 

            

Figure 1. Location and Lithology map (redrawn after Gupta et al., 1981) with sample and major location in study area

Lithology Map 

INDIA 
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3. Methodology 

3.1 Data Sets 

The EO-1 Hyperion image of January 2004 was used to study 

the spatial distribution of surface mineral at sub-pixel level. The 

image consist of 224 spectral channels in the wavelength ranges 

400-2500 nm of electromagnetic spectrum with the spectral and 

spatial resolution of 10nm and 30m respectively. A cloud free 

spatial subset of original image was selected for processing. 

Geological map of Rajsamand district of Rajasthan (scale: 

1:250000) was referred as lithological guide and also used in 

representative rock sample collection from the study area. 25 

rock samples were collected from several litho units and studied 

with Analytical Spectrometer Device (ASD) FiledSpec4 in 

wavelength ranges 350-2500 nm mineral detection. In the 

present study software packages such as ENVI 4.8 and ArcGIS 

9.3 was used for hyperspectral image processing and creation of 

GIS layers respectively.  

3.2 Hyperion Data Processing 

The Hyperion Level 1R (i.e. radiometric corrected) image 

consist of 242 bands was used as raw data for processing. 169 

calibrated bands were considered for further processing whereas 

rest of bands were uncalibrated and diversely affected by 

atmospheric attenuations were eliminated. These 169 bands 

were subjected to preprocessing i.e. removal of vertical strips, 

cluster of bad pixels, and atmospheric attenuations using Fast 

Line of Sight Atmospheric Spectral Hypercubes (FLAASH) of 

ENVI 4.8 to extract actual reflectance value of each pixel. A 

standard Hyperspectral data processing procedure outlined in 

Kruse, 1997 i.e. preprocessing, data reduction, Pixel Purity 

Index (PPI), endmember selection, target detection or mapping 

is followed. The Hyperion datasets have got significant 

limitations in the form of noise and dimensionality, to recoup 

these limitations minimum noise fraction (MNF) transformation 

coupled with pixel purity index (PPI) and endmember extraction 

were incorporated. First 20 MNF bands consisting of more 

information and less noise were used to compute PPI with the 

iterations and threshold of 15000 and 2.5 respectively to derive 

the spectrally pure pixels. These pixels preserve better spectral 

characteristics rather than non-pure pixel and used in the 

endmember extraction. In this study endmembers were derived 

from individual pure pixel rather than considering the mean of 

similar pixels, to avoid mixing of endmember/target to possible 

extent. Since the study’s goals is sub-pixel mineral mapping 

which requires possible pure endmember to represent an 

individual mineral for accurate target detection and mapping. 

This approach could provide an advantage of avoiding mixing of 

endmembers and hence may yield better accuracy in mineral 

mapping.  These endmembers were then assessed with USGS 

mineral spectral library available in ENVI 4.8 for mineral 

identification. Nevertheless, a preliminary field visit was also 

carried to understand the geology of the area and to collect rock 

sample from each possible litho units. Lab spectra of each rock 

samples obtained from Analytical Spectrometer Device (ASD) 

FieldSpec4 in the wavelength of 350-2500 nm at sampling 

interval of 1.4 nm @350-1050 nm and 2 nm @1000-2500 nm in 

normal condition to detect major constituent of samples by 

spectral inspection to make sure the existence of minerals in the 

ground. Finally, illite, montmorillonite, dolomite, phlogopite 

and chlorite minerals were selected as endmembers. Selection of 

these endmembers were based on following two criteria i.e. pixel 

and rock sample’s spectra must show the diagnostic spectral 

signature and also commonly found in the area. However, the 

geolocation of rock samples and their corresponding pixel’ 

spectra were not considered to make any evaluation or 

correlation because of coarser spatial resolution of Hyperion 

data. Since, the study does not uses geochemical analysis to 

detect minerals therefore a key consideration were given on 

spectral inspection for mineral detection of both field rock 

samples and image endmembers. 

3.3 Sub-pixel Mineral Mapping 

A hybrid unmixing algorithm i.e. MTTCIMF was implemented 

on processed Hyperion data for sub-pixel surface mineral 

mapping. The algorithm require MNF bands of reflectance 

image, desired and undesired target spectra as basic input to 

generate distribution map of given endmembers. In this study, 

image spectra of illite, montmorillonite, dolomite, phlogopite 

and chlorite minerals were given as target whereas three noisy 

spectra such as spectrum of or near pixel of shadow, dry 

vegetation and water body were given as non-target. These noisy 

spectra have better possibility to provide best information about 

unwanted signals or noises and least information of targets. The 

main purpose of giving non-target spectra here is to minimize 

the effect of disparate signals on the spectral mapping algorithm. 

The target detection wizard of ENVI 4.8 software package was 

used to implement this algorithm. Results of this algorithm are 

two sets of gray images for each endmember including TCIMF 

score and infeasibility image. Correctly mapped pixels contains 

TCIMF score above than background distribution around zero 

and a low infeasibility value exported as correctly classified 

target minerals from each rule and infeasibility images to 

generate distribution map of endmembers. 

4. Results and Discussion 

4.1 Endmember Extraction 

Five minerals (Figure 2) viz. illite, montmorillonite, dolomite, 

phlogopite and chlorite were selected as endmembers derived 

from individual pure pixel of reflectance Hyperion imagery to 

avoid mixing of two or more minerals to possible extent. The 

spectra of these minerals shows diagnostic spectral signature 

which is similar to lab spectra of field rock samples as well as 

USGS mineral spectral library. The spectral inspection of both 

lab and image spectra was carried with USGS mineral spectral 

library available in ENVI 4.8 software package. The spectral 

plots of illite (Figure 2(a)) and montmorillonite (Figure 2(b)) 

show a diagnostic absorption feature at 2.2 µm due to Al-OH 

vibration. The spectral plots of dolomite (Figure 2(c)) displays a 

diagnostic absorption feature at 2.31 µm due to CO3 and Mg 

molecules. It should be noticed here that USGS spectra of 

dolomite shows more absorption depth compared to image and 

lab spectra of dolomite caused by higher concentration of CO3 

and Mg molecules than image pixel and lab sample. The spectral 

plots of phlogopite (Figure 2(d)) shows the diagnostic absorption 

feature at 2.3 µm due to Mg-OH molecules. A small absorption 

feature is found near 2.1 to 2.2 µm caused due to secondary 

minerals. The spectral plots of chlorite (Figure 2(e)) displays a 

diagnostic absorption feature at 2.35 µm due to Mg-OH 

molecules. Both image and USGS spectra of chlorite show 

absorption feature near 0.7 µm due to presence of Fe2+ but does 

not found in lab spectra. It is important to notice here that one or 

more minerals shows their diagnostic absorption in same or near 

wavelength region but still could be differentiated by analyzing 

their overall spectral curve. However, in present case illite and 

montmorillonite as well as dolomite and phlogopite display their 

diagnostic absorption feature at 2.2 and near 2.3µm respectively 

and easily differentiated by analyzing the overall spectral curve 

of these minerals. The most diagnostic spectral signature of these 

minerals falls in the wavelength ranges of 2.2 to 2.35 µm which 
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mainly caused by Al-OH and CO3, Mg-OH molecules. These 

minerals also closely associated with either argillic or 

pyrophyllite zone of hydrothermal alteration and mineralization. 

 

 

 

Figure 2. The spectral plots of detected minerals 

(endmembers). (a) spectral plots of illite, (b) spectral plots of 

montmorillonite, (c) spectral plots of dolomite, (d) spectral pots 

of phlogopite, (e) spectral plots of chlorite. Red line: image 

spectra, blue line: lab spectra, black line USGS spectra. In 

image spectra there was no bands in the wavelength region of 
1.4 and 1.9 due to water absorption. 

 

4.2. Sub-pixel Mineral Mapping using MTTCIMF 

Results of MTTCIMF algorithm produce set of rule images 

(Figure 3) corresponding to TCIMF score and infeasibility 

values for each endmembers. These rule images are in grey color 

where bright and dark tone represent target and background 

respectively. Correctly mapped pixels contains TCIMF score 

above than background distribution and a low infeasibility value 

exported as correctly classified target minerals from each rule 

and infeasibility images to generate sub-pixel mineral map 

(Figure 4) of endmembers. A visual interpretation of rule images 

and mineral distribution map illustrates an overall distribution of 

mineral with the respect to lithology of the area. Most of illite 

found in synsedimentional basic volcanics, gneiss and schist. 

Montmorillonite dominantly found in ridges and near the contact 

boundaries of synsedimentional basic volcanics and migmatites, 

gneiss and schist in poorly drainage region. Dolomite is 

dominantly found in phyllite and mica schist. Phlogopite and 

chlorite is found in the area of biotite-calc schist, volcanic rocks 

and felspathised schist. The summary of sub-pixel mineral map 
is given in Table 1.

(a) 

(b) 

(c) 

(d) 

Spectral Plots of Chlorite 

(e) 
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Figure 3. TCIMF rule images of each detected surface minerals derived from MTTCIMF algorithm. (a) illite, (b) montmorillonite, 

(c) dolomite, (d) phlogopite, (e) chlorite.

 

Figure 4. Sub-pixel surface mineral map derived from 
MTTCIMF algorithm. 

 

 

 

Table 1. Summary of sub-pixel mineral map 

Minerals Total classified pixels 

Illite 794 

Montmorillonite 1992 

Dolomite 228 

Phlogopite 439 

Chlorite 668 

 

5. Accuracy assessment 

In this study, validation of results were carried in to two part i.e. 

confirmation of detected mineral and evaluation of classified 

image. Confirmation of detected minerals was done by visual 

interpretation of spectral signature and overall spectral curve 

with the help of USGS mineral spectral library. However, there 

was some dissimilarity between spectra of lab and library were 

found due to the difference in quality of sample whereas 

dissimilarity between image spectra and lab or spectral library 

was found due to coarser spatial resolution of the image data.  

Since, there was no access to any portable spectroradiometer and 

geochemical analysis therefore, to evaluate the accuracy of 

classified image a virtual verification method has been adopted. 

This approach is successfully used by Molan et al., 2013 to 

assess the MF classification results of mineral map. To evaluate 

the accuracy of classified image, 25 pixel ’spectra of each class 

were generated randomly and then those spectra were verified 

with endmembers given as target by visual spectral inspection. 

For example, a pixel which is classified as illite and if the actual 

reflectance spectra of that corresponding pixel is similar to illite 

spectra then it is considered as correctly mapped pixel else 

spectra shows similarity with another class endmember means 

pixel is falsely mapped and assign to that class endmember. 

Same procedure was followed for all pixels selected for 

verification and confusion matrix (Table 2) (Congalton, 1991) 

was formulated to compute overall accuracy (68%) and kappa 

coefficient (0.6). From the confusion matrix and spectral profiles 

of minerals, it could be refereed that mineral having similar 

spectral signatures yields less accuracy while mineral having 

distinct spectral signatures yields greater accuracy for example, 

phlogopite and chlorite shows similar spectral feature while 

(a) (b) (c) (d) (e) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, 2014
ISPRS Technical Commission VIII Symposium, 09 – 12 December 2014, Hyderabad, India

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-8-455-2014

 
459



 

dolomite spectra is distinct compared to other endmembers 
hence yield minimum and maximum accuracy respectively.       

Table 2. Confusion matrix of classified image 

       

6. Conclusion 

The present study investigated the feasibility of Hyperion data 

for sub-pixel mineral mapping using MTTCIMF algorithm in 

arid and mountainous region with limited lab and/or field 

experiments. The endmember extraction from individual pure 

pixel was quiet useful to deriving target minerals such as illite, 

montmorillonite, dolomite, phlogopite and chlorite. Generally, 

these minerals are closely associated with either argillic or 

pyrophyllite zone of hydrothermal alteration and mineralization. 

The overall accuracy (68%) and kappa coefficient (0.6) 

demonstrate the efficiency of algorithm for sub-pixel target 

detection. A detailed mineral distribution map could provide 

better understanding of possible mineralization in the area for 

detailed field investigation. However, the algorithm does not 

produce high accuracy as per as its efficiency is concern, mainly 

due to similarity between interclasses and limited SNR of the 

Hyperion image. 

The study also explains that even though a routine procedure of 

hyperspectral data exploitation require sophisticated portable 

spectroradiometer and geochemical analysis etc but still freely 

available these high spectral resolution data could be used to 

improve  the understanding and management of earth’ surface 

without sophisticated equipment as shown in the study. In future, 

upcoming spaceborne hyperspectral sensors with improved SNR 

and resolutions could provide an enhanced perspective of earth’ 
surface.  
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