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ABSTRACT: 

 

Sparse representation and decoding is often used for denoising images and compression of images with respect to inherent features. In 

this paper, we adopt a methodology incorporating sparse representation of a snow cover change map using the K-SVD trained 

dictionary and sparse decoding to enhance the change map. The pixels often falsely characterized as ‘changes’ are eliminated using 

this approach. The preliminary change map was generated using differenced NDSI or S3 maps in case of Resourcesat-2 and Landsat 8 

OLI imagery respectively. These maps are extracted into patches for compressed sensing using Discrete Cosine Transform (DCT) to 

generate an initial dictionary which is trained by the K-SVD approach. The trained dictionary is used for sparse coding of the change 

map using the Orthogonal Matching Pursuit (OMP) algorithm. The reconstructed change map incorporates a greater degree of 

smoothing and represents the features (snow cover changes) with better accuracy. The enhanced change map is segmented using k-

means to discriminate between the changed and non-changed pixels. The segmented enhanced change map is compared, firstly with 

the difference of Support Vector Machine (SVM) classified NDSI maps and secondly with a reference data generated as a mask by 

visual interpretation of the two input images. The methodology is evaluated using multi-spectral datasets from Resourcesat-2 and 

Landsat-8. The k-hat statistic is computed to determine the accuracy of the proposed approach. 

 

 

1. INTRODUCTION 

Snow cover monitoring is one of the crucial aspects of water 

supply management in Northern Himalayas, which implies 

extracting changes in the regional snow cover using remote 

sensing techniques regularly. The monitoring of snow cover is 

significant in various aspects from concluding the glacier masses, 

denomination of fresh water availability, climate change and 

towards understanding the glacier-river hydrological processes. 

To this aspect, understanding the seasonal variation of the snow 

cover also indicates patterns on the river dynamics. Satellite 

remote sensing, provides a key insight into all these applications. 

In several of these applications the basic work flow follows the 

identification of snow in the land cover and change detection of 

the existent snow cover. In literature, the Normalized Differenced 

Snow Cover index has been widely used for snow cover 

monitoring and development of snow cover maps (Negi et al., 

2005), a concept derived from the reflectance pattern of snow in 

visible and infrared spectrum of light.  

 

Besides monitoring snow change detection techniques are also 

applied in various other applications in remote sensing of natural 

resource and earth observation. The most basic form of 

unsupervised change detection technique is the simple image 

differencing (Singh, 1989). Various enhancements to the changes 

obtained by differencing are possible using image processing 

techniques (Radke et al., 2005). Besides these there are various 

other techniques for change detection with several reviews 

available in literature (Mas, 1999 and Lu et al., 2005). Fang et al., 

(2011), uses a sparse representation method for change detection.  

 

Sparse representation is often used for compressing images, and 

the same functionality is utilized in image de-noising. Change 

detection maps usually contain several small clusters of pixels for 

changes which would usually be invalid & apparent due to 
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various reasons. Thus, sparse representation and decoding can be 

effectively applied to the elimination of these clusters. Celik 

(2009), introduces an unsupervised approach for change 

detection by separating the differenced image into a feature 

vector space generated from the eigen images, followed by k-

means clustering. In another approach the feature vector space is 

generated by the Undecimated Discrete Wavelet Transform 

(UDWT) of the differenced image (Celik, 2009).  The feature 

vector space can be effectively constructed from sparse samples 

of the differenced image using a dictionary and then 

reconstructed using a definite number of atoms. The approach is 

bound by the minimal number of atoms required to reconstruct a 

feature vector. Thus by using the most productive atoms in an 

orderly sequence the lesser feature vectors can be ignored 

resulting in the enhancement of change detection map. The 

segmentation of such a reconstruction is far more effective than 

that of the differenced image (Fang et al., 2011).   

 

A similar approach is followed in this paper. The approach can 

be effectively applied to the change analysis of snow cover line 

or the ablation/accumulation zones used in the deduction of 

recession of a glacier or for studying the behaviour of a glacier-

river hydrological processes. The change maps derived from the 

NDSI in the former case, often exhibits several smaller clusters 

at the snow cover line. An accurate reconstruction of snow cover 

line is significant for multi-temporal analysis of a glacier and 

these unwanted clusters render the reconstruction of the snow 

cover line difficult in an unsupervised approach and it is thus 

required to filter out these clusters.  

 

In this paper we propose a methodology to develop an enhanced 

change map from differenced snow cover maps using sparse 

reconstruction. The methodology is divided in to two sections, 

within that, section 2 explains the approach followed for 

developing the preliminary changes from snow cover maps. We 
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use two datasets from Resourcesat-2 and Landsat-8 imagery and 

use the NDSI and S3 index for identification of snow 

respectively. In section 3 the sparse coding of the preliminary 

changes obtained by differencing the snow cover maps with K-

SVD trained dictionary is addressed along with the sparse 

reconstruction of the change map. Finally, we discuss the 

experiments and results. We compare the results firstly with 

Support Vector Machine (SVM) classified results from the bi-

temporal datasets and then with reference masks generated for 

the snow cover change with visual interpretation. 

 

2. PRELIMINARY CHANGE DETECTION FOR SNOW 

COVER 

Multispectral Image1

G,R,NIR,SWIR

Multispectral Image2

G,R,NIR,SWIR
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Cover 
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-
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Figure 1. Construction of preliminary change map.    

 

 

The preliminary change detection map corresponds to the 

changes obtained from simple differencing of the NDSI/S3 

images as shown in Figure 1. NDSI, given in equation 1, is 

mostly used for snow mapping with multi-spectral satellite 

imagery (Kulkarni et al., 2002). The reflectance of snow varies 

differently in visible and shortwave infrared spectrum. The 

reflectance of snow is higher in case of visible spectrum while 

lower in shortwave spectrum. Thus it is possible to identify snow 

using the difference of these two bands from a multi-spectral 

imagery.  

 

 

 G SWIR
NDSI

G SWIR





     (1) 

 

 

Where G and SWIR refer to the reflectance in the green and the 

shortwave infrared band respectively. In several cases, NDSI 

may fail to distinguish between snow and water which is often 

inevitable for studying a glacier in the melt season. The 

shortwave infrared band allows us to differentiate between snow 

and water. In the shortwave spectrum the reflectance of snow is 

much more than water. This aspect could be used to develop a 

water mask which can then be applied to the preliminary change 

map. The mask can be created based on the following criteria 

(Rosenthal and Dozier, 1996) 

 Identification of the NDSI value (n) for N% of snow 

covered pixels, say n=50.  

 Assessing the threshold for the reflectance of water (Iw) 

relative to the reflectance of snow (Is), say Iw < M%, 

with M=11%.  

 Evaluating a pixel as snow, if NDSI value is greater 

than or equal to n and if Is is greater than M%.  

 

However, in our case, such a scenario is barely visible and is thus 

ignored for simplicity. Identification of snow cover beneath a 

vegetation canopy is also indefinite due to the similar structure 

of the spectral reflectance curves for snow and vegetation in the 

visible and infrared spectrum. In order to identify snow beneath 

a forest canopy which is often the case in the Himalayas, the S3 

index given in equation 2 could be utilized (Negi et al., 2005).  
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where NIR, Red & SWIR are the reflectances in near infrared, 

red and shortwave infrared bands reflectively.  

 

3. GENERATION OF ENHANCED CHANGE MAP 

3.1 Workflow 
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Figure 2: Change map enhancement using K-SVD trained 

dictionary. 

 

The methodology is adopted in a patch based flow, where patches 

of size 8x8 are extracted for each pixel to generate a sample 

vector space (one sample corresponds to one column). The 

extracted samples are formulated into a rectangular matrix of 

dimensions M x N and sparse coded by compressed sensing with 

DCT. The resultant compressed samples are used to generate a 

dictionary which is trained using the K-SVD algorithm. K-SVD 

is an iterative algorithm for sparse representation of images and 

their reconstruction. It is widely used in image denoising and can 

be applied for change detection studies. The change map is 

reconstructed from sparse decoding and averaging of the patches 

(samples of the approximation obtained from the K-SVD trained 

dictionary and coefficients). The developed change map is then 

segmented using k-means method to differentiate between the 

changed pixels and non-changed pixels in reference to snow 

cover.  

 

3.2 Generation of compressed samples 

We apply the principle of compressed sensing to construct an 

initial dictionary which was trained by the K-SVD method. The 

extracted sample space vectors are compressed using the discrete 

cosine transform. A dictionary is then generated using this 

compressed vectors and DCT basis vectors as in equation 3.  

 

 

 .CS DCTX DCT X      (3) 
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where DCS is the DCT dictionary (sensing matrix) generated from 

DCT basis images and compressed vectors XDCT. In general, if a 

signal NX R and a compressed sensing matrix xM ND R , 

then Y=DX, where MY R is the measurements of the signal X. 

Y, thus sparsely represents the signal X.   

 

3.3 Dictionary learning with K-SVD 

For generating a trained dictionary, consider a sample set 

1, 2[ ,...., ]NC c c c corresponding to feature space from 

compressed sensing, which can be represented as follows 

 

 

 
MxK KxNMxN

C D X      (4) 

 

 

where D corresponds to the dictionary to be trained, with atoms 

1, 2[ ,...., ]KD d d d  and the sparsely represented signal

1, 2[ ,...., ]NX x x x .  Then C can be approximated from D and 

X such that 
2

C DX is minimum for a sparsely represented X, 

i.e.
0

X k , where at least k atoms are required for the 

reconstruction. Therefore to obtain
2

min C DX , we can find 

maximum X and D that solves the minimization problem. This is 

carried out in two steps-  

 

1. We can fix the dictionary D and find an approximate 

set of coefficients 𝑋̃. We thus minimize

2  0
. . 

X

min C DX s t X t  . This is a sparse 

coding problem with an erroneous solution and can be 

solved using OMP. OMP is an iterative greedy 

algorithm, which employs selection of one atom at 

each step (Rubenstein et al., 2008). The OMP 

algorithm can be summarized as follows  

 

Import inputs: dictionary D, sparse vectors X, 

iterations K and the stopping threshold.  

 

a. Initialize counter: t = 1, residual of the norm

2
X

min C DX , r0 = X and coefficient vector            

x = 0. 

b. Greedy Selection: Find atom dti such that 

1arg max ,i i i tdt d r    ,  

c. Update: Find the coefficients for the solution of

2

i i
X

i

min C d x , update the new approximation 

ci from dixi and the residual ri = cs - dixi.  

d. Terminate iteration if stopping condition 

2ir  is met or when t > K.  

e. Iterate: Set t = t +1. 

 

Outputs: Coefficient vector x with k non-zeros,     

dx ≈ c. 

 

2. Now, we fix X X , and find the best possible 

dictionary that minimizes the norm 
2

min C DX

such that
0

X k using the K-SVD approach 

(Aharon et al., 2006). Using the K-SVD approach the 

dictionary is updated iteratively with non-zero 

coefficients. Since, we update the dictionary atom di, 

one at each step in a greedy manner, we must consider 

in our formulation the adjustment of all the rest of the 

dictionary atoms and coefficients, except those 

corresponding to the index i. Thus the original 

minimization problem is now related to the 

minimization of the error term given  as follows 

 

 

 
2 2

2

2

k k i i i i i

k i

E min C DX

C d x d x E d x


 

 
     
 


   (5) 

 

 

In equation 4, E corresponds to the total error in 

approximation and Ei corresponds to the error in all N 

samples while excluding the case when ith atom is 

being removed. The number of iterations, k, are 

predefined by the user, and for each iteration, the 

dictionary can be updated iteratively in each column 

using a singular value decomposition (SVD), thus 

involving k SVD operations (Aharon et al., 2006). 

While approximating the samples by minimizing Ei,, 

the updated samples of
ix may not remain sparse 

anymore. In this case, we may define a group of indices 

s holding the indices to samples ci corresponding to the 

non-zero coefficients of
ix that employ di atom. Thus a 

pointing matrix Oi of size N x s is generated which is 

sparse. The pointing matrix is used such that 
i i

s

ix x O   

represents a vector of length s with all non-zero entries. 

Similarly, s

ic of dimensions N x s corresponds to a 

sample for the di atom, while s

iE  now becomes the 

error columns associated to the samples s

ic . With this 

in consideration equation 5 can be reformed as in 

equation 6, which we can minimize using the SVD.  

 

 

                           
2 2 2

s s

i i i i i i i iE E O d x O E d x              (6) 

 

 

3.4 Reconstruction of the Change Map  

The trained dictionary DK-SVD and coefficients X̂   obtained from 

the K-SVD algorithm is used to extract the approximate estimates 

of samples from the change map as given in equation 7.  

 

 

 ˆ ˆ
K SVDC D X      (7) 

 

 

The change map is then reconstructed from columns of Ĉ . The 

resultant change map is segmented using the k-means method 

into two classes, changed pixels in snow cover map and the non-

changed pixels. As discussed in section 2, in case of presence of 

water, the number of classes may be increased. The same is true 

for vegetation. There are two possibilities to tackle this problem. 

In the unsupervised approach, we may develop a mask separately 

for a class. For water we may use the method defined in section 

2, otherwise a supervised classification of the enhanced change 

map could be carried out delivering the changes in multiple 

classes (Snow, No snow, water, vegetation, etc.).  
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4. EXPERIMENTS AND RESULTS  

To evaluate, the developed methodology, we have experimented 

with two datasets from Resourcesat-2 and Landsat-8. We use bi-

temporal multi-spectral reflectance images to develop the 

preliminary change maps which is then used for enhancement 

using the trained dictionary with the KSVD approach. The 

accuracy assessment was carried out with the kappa statistic.  

 

4.1 Test datasets   

The details of the two bi-temporal images from Resourcesat-2 

and Landsat-8 used are given in Table 1. These images were 

downloaded without any cost thanks to Bhuvan, open data 

archive from the National Remote Sensing Centre (NRSC) and 

Earth Explorer from the U.S. Geological Survey (USGS) 

respectively. For experimentation, sections from these images 

were taken, since the images are relatively large in size. Three 

tests were performed, using different sections from these images, 

once with Resourcesat-2 and twice with Landsat-8 (We call these 

sections as Landsat8a and Landsat8b further). The size of the 

sections was selected to be around 500x500 pixels, which is 

ideally suitable for experiments, although Aharon et al., (2006) 

also provides a model for large image sets. However, this model 

has not been experimented much with remote sensing images, 

and still remains computationally rigorous. The test datasets are 

selected in Himachal Pradesh around the Kalihani glacier 

(Resourcesat-2), Hadsar village and the Sainj valley (Landsat-8).  

 

 

Satellite  Resourcesat-2 Landsat-8 

Date-1  18-10-2008 28-11-2013 

Date-2 02-12-2011 02-16-2014 

Sensor LISS III OLI-TIRS 

Resolution(MSS) 24m 30m 

Central region  Manali, H.P. Manali, H.P. 

 

Table 1. Test datasets  

 

 

4.2 Generation of the preliminary change maps 

The snow cover maps were generated following the procedure in 

section 2. The Resourcesat-2 and Landsat-8 images were in 8-bit 

and 16-bit formats, which were converted to their corresponding 

reflectance. These reflectance images were used to derive the 

snow identification indices namely the NDSI and S3. We perform 

NDSI tests with Resourcesat-2, LISS-III dataset and S3 tests with 

Landsat-8 OLI imagery. The developed snow cover maps based 

on the indices as explained in section 2 are shown in Figure 3. 

The snow cover maps are differenced to obtain a preliminary 

change map that identifies the regions of changes in snow cover.  

 

4.3 Generation of Enhanced Change Map  

The resultant preliminary change map is dissolved into patches 

of standard size 8 x 8, such that each pixel is represented by a 

patch, construing a sample space where each column is the 

sample vector. The sample space is compressed using 

compressed sensing by multiplication of DCT transformed 

sample space with a DCT sensing matrix generated from DCT 

basis images shown in Figure 4. Figure 4b), represents the trained 

dictionary obtained using the k-SVD approach. This compressed 

space is used to learn a dictionary using the K-SVD approach. 

Similar to the patches the dictionary size is defined to be of 64 x 

64 to render the computational efficiency optimum. It was noted 

that increasing the dictionary size requires extremely high 

computational efficiency and doesn’t refine the results relatively. 

We employ Batch-OMP, which is computationally faster than 

OMP, with a loop stopping threshold. The number of iterations 

and the acceptable error threshold were set to be 10 and 2 

respectively. The averaged coefficients alter very slightly on 

increasing the number of iterations beyond 10. The dimension L 

for the sparse coefficients was taken as 10. Increasing the error 

goal does result in improvements, but at the cost of computational 

efficiency.  

 

 

 
a)                                          b) 

 
 c)                                               d) 

 
 e)                                               f) 

 

Figure 3. a) & b) NDSI maps for Resourcesat-2 images, c) & d) 

S3 maps for Landsat-8 images, e) & f) Differences images 

generated from NDSI maps and S3 maps respectively.  

 

 

   
  a)                                   b) 

 

Figure 4.a) DCT basis functions and b) trained K-SVD 

dictionary for Reourcesat-2 dataset. 

 

 

For training the dictionary, the K-SVD toolbox by Aharon et al., 

(2006) was used.  The results from the experiment are shown in 

Figure 5. The change map from the approach in section 3 was 

post processed by selective histogram thresholds based on the 

mean and the standard deviation the results. For the Resourcesat-

2 dataset, (0.306, 0.279) are the mean and standard deviations of 

the result obtained from the approach in section 3, while for the 

Landsat-8 test datasets (Landsat-8a & Landsat-8b), (0.305, 
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0.158) and (0.334, 0.171) are the mean and standard deviations 

obtained respectively. The thresholds accurately transformed the 

change map for k-means classification of 2 classes. The k-means 

clustering is performed to compare the post classification results 

with the reference data. In consideration of the changes absolute 

changes were selected irrespective of being positive or negative 

to effectively compare against the reference data which is 

generated by visual interpretation from the difference of the two 

snow cover maps and the red and shortwave band of the two 

images. Since the datasets considered, contained relatively lesser 

water, the water pixels were considered to be the same as the 

pixels representing land devoid of snow cover. It is possible to 

identify the water pixels separately from snow, however, for 

simplicity such a scenario was avoided in experiments. From the 

results it could be noted that this approach eliminates smaller 

clusters of pixels from the preliminary change maps. We also 

perform the supervised classification of the snow cover maps 

using SVM and difference them for comparison as shown in 

Figure 5. From the results, it is evident that the differenced SVM 

classifications approximate the reference data very well. 

However in the context of several applications like detection of 

snow cover line, supervised classification are not preferable, 

since differenced SVM classified maps fail in smoothing the 

boundaries of the snow accumulation zones.  

 

 

Resourcesat-2 

       
a)                     b)                        c)                       d)  

  

     Landsat-8a 

    
a)                     b)                        c)                       d) 

 

Landsat-8b 

    
a)                     b)                        c)                       d) 

 

Figure 5. Comparison of the enhanced change map before post 

processing (a) and after (b) with the differenced SVM 

classification (c) and the reference data (d) for the 

corresponding datasets.  

 

 

The accuracy assessment was carried out at pixel level by 

comparing the k-means classified enhanced change maps with 

the reference data using the kappa coefficient. The confusion 

matrix for the three tests performed in this paper are shown in 

Table 2.  Since the overall accuracy from the confusion matrix is 

not a reliable estimator of accuracy, kappa coefficient was also 

computed. The obtained kappa coefficient values obtained from 

our approach are largely acceptable in the Landsat-8 datasets as 

compared to that of differenced snow cover maps. However, it 

should be noted that the reference data was generated manually 

by visually interpreting the snow cover maps and the red and 

shortwave reflectance images. Thus the possibly of human error 

is possible. However, the generated reference data matches the 

differenced SVM classified maps. The accuracy assessment was 

also done for the preliminary change map with the reference data. 

Figure 6 shows the comparison between the obtained overall 

error and kappa coefficient for the preliminary change map and 

the enhanced change map.  

 

 

Resourcesat-2 test dataset k = 0.7, Overall Acc. = 87.1% 

Class Change 
No 

Change 
Total 

Prod. 

Acc. 

User 

Acc. 

Change 164306 6473 170779 85.75 96.21 

No 

Change 
27306 63547 90853 90.76 69.94 

Total 191612 70020 261632 

Landsat-8 test dataset-1 k = 0.87, Overall Acc. = 97.5% 

Change 23796 286 24082 80.16 8.8 

No 

Change 
5888 220030 225918 99.87 97.39 

Total 29684 220316 250000 

Landsat-8 test dataset-2 k = 0.8, Overall Acc. = 94.12% 

Change 35796 12575 48371 94.37 
74.00 

 

No 

Change 
2137 199492 201629 94.07 98.94 

Total 37933 212067 250000 

 

Table 2. Accuracy assessment of the approach  

 

 

 

 

 

 
 

Figure 6. Comparison of Overall Accuracy and Kappa 

Coefficient for the enhanced change map (ECM) and the 

preliminary change Map (PCM) 

 

 

5. CONCLUSION 

In this paper, we apply the K-SVD approach for extracting the 

snow cover changes by improving the preliminary changes 
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obtained by differencing the snow cover maps. To develop the 

snow cover maps, we applied NDSI and the S3 index on three 

different datasets. The K-SVD approach was found extremely 

efficient in characterizing the accumulation zones of snow cover. 

In this paper, most of the changes in accumulation zones were 

reconstructed accurately and were comparable with supervised 

approaches such as the SVM classification. However, further 

investigations are necessary to adapt the approach in considering 

pixels that corresponds to water. Furthermore, the K-SVD 

approach is computationally challenging. Aharon et al., (2006) 

does provide a model for increasing the computational runtime 

of the K-SVD algorithm, which however requires further 

experimentation with large scale remote sensing datasets. 

 

The approach can be effectively utilized for applications which 

can be modelled with smaller image patches such as monitoring 

the accumulation zones for a runoff site near a glacier river. The 

approach can also be applied to monitoring the recession of snow 

cover line or the changes in glacier area.  
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