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ABSTRACT 

 
Polar orbiting satellites (MODIS and SPOT) have been commonly used to measure terrestrial Net Primary Productivity 

(NPP) at regional/global scale. Charge Coupled Device (CCD) instrument on geostationary INSAT-3A platform 

provides a unique opportunity for continuous monitoring of ecosystem pattern and process study. An improved 

Carnegie-Ames-Stanford Approach (iCASA) model is one of the most expedient and precise ecosystem models to 

estimate terrestrial NPP. In this paper, an assessment of terrestrial NPP over India was carried out using the iCASA 

ecosystem model based on the INSAT CCD derived Normalized Difference Vegetation Index (NDVI) with multisource 

meteorological data for the year 2009. NPP estimated from the INSAT CCD followed the characteristic growth profile 

of most of the vegetation types in the country. NPP attained maximum during August and September, while minimum 

in April. Annual NPP for different vegetation types varied from 1104.55 gC m-2 year-1 (evergreen broadleaf forest) to 

231.9 gC m-2 year-1 (grassland) with an average NPP of 590 gC m-2 year-1. We estimated 1.9 PgC of net carbon fixation 

over Indian landmass in 2009. Biome level comparison between INSAT derived NPP and MODIS NPP indicated a 

good agreement with the Willmott’s index of agreement (d) ranging from 0.61 (Mixed forest) to 0.99 (Open 

Shrubland). Our findings are consistent with the earlier NPP studies in India and indicate that INSAT derived NPP has 

the capability to detect spatial and temporal variability of terrestrial NPP over a wide range of terrestrial ecosystems in 

India. Thus INSAT-3A data can be used as one of the potential satellite data source for accurate biome level carbon 

estimation in India.   

 

1. INTRODUCTION 

Net primary productivity (NPP) is the dry matter 

produced by the green vegetation per unit area and per 

unit time (Peng et al. 2000). Regular monitoring of NPP 

gives useful information for management of natural 

resources (Liu et al. 1997) and amount of CO2 removed 

from the atmosphere through photosynthesis and 

respiration (Bonan 2008; Grosso et al. 2008). Due to 

dynamic environmental conditions, NPP varies with time 

and space (Cao et al. 2004). However, to monitor this 

accurately and to understand its role in carbon dynamics 

within the atmosphere-vegetation-soil continuum, we 

require an accurate, simple and dynamic approach. 

 

A number of statistical (Leith, 1975), parametric (Law 

and Waring, 1994) and process based models (Bonan 

1995) have been developed to monitor terrestrial NPP 

and its interaction with regional climatic conditions.  

Over decades, several statistical models are developed 

based on correlating field NPP with mean annual 

temperature, precipitation and evapotranspiration (Lieth 

1975) but they do not capture temporal lags in vegetation 

response to climate (Goward and Prince, 1995). The 

parametric models estimate NPP based on (Kumar and 

Monteith 1981) radiation efficiency concept to 

decompose NPP into independent parameters such as 

insolation, light use efficiency and conversion efficiency 

of absorbed radiation in to dry matter (Ruimy et al., 

1994). Liu et al., (1997) reported that process based 

models are reliable, sophisticated and useful for revealing 

dry matter production, plant-environment interaction and 

for analyzing the response of vegetation to varying 

climate. Ruimy et al., (1994) reported that these models 

are not satisfactory, at present times, for performing the 

global analysis due to lack of ecosystem specific inputs 

for different landcover types on a global scale. Remote 

sensing technology provides an ideal vantage point for 

getting a large synoptic view of land surface and 

facilitates mapping at various scales based on their 

sensing platform. Studies (Sellers 1985; Running et al., 

1989) in ecological modeling have linked process based 

models with remotely sensed observation for assessing 

regional to global scale patterns in ecosystem production.  

 

Ruimy et al. (1999) classified these models broadly as 

Production Efficiency Models (CASA, GLO-PEM, 

HRBM and TURC) and Canopy Photosynthesis Models 

(BIOME3, CARAIB, FBM, HYBRID, KGBM, PLAI, 

SIB2 and SILVAN) based on the method employed to 

model the absorption of solar radiation and its conversion 

into dry matter. PEMs are less complex stand level 

process based models that estimate terrestrial NPP based 

on conversion efficiency approach (Kumar and Monteith, 

1981) with very less inputs, mainly driven by satellite 

data. CPMs are very complex and require large number 

of inputs to derive different processes of terrestrial 

vegetation productivity. Nevertheless, PEM models are 

widely used to assess spatio-temporal variations in 

terrestrial NPP and its response to global climatic 

phenomenon like warming, ENSO events and regional 

climate variability. Such studies require precise input 
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parameters. Absorbed Photosynthetically Active 

Radiation (APAR) and Light Use Efficiency (LUE) are 

key input parameters for PEM models. Although spatio-

temporal variation in APAR can be measured and 

mapped regularly through satellite remote sensing 

technique (Sellers et al., 1992), no such satellite-based 

measurements can yet be made for photosynthetic 

efficiency (Boegh et al., 2002). LUE varies spatially as 

well as temporally between vegetation types and 

locations due to their respiration cost and suboptimal 

climatic conditions (Gower et al., 1999). As a result 

producing representative LUE values for regions with 

extensive vegetation cover is very difficult because native 

vegetation types and crops generally have different LUE 

values (Gower et al., 1999), creating spatial heterogeneity 

not measured through remotely sensed reflectance 

measurements. Details of widely used approach to 

integrate information about ecosystem types and 

influence of regional environmental conditions 

(temperature and available soil moisture status on LUE 

calculations) are mentioned in Ruimy et al. (1994). 

Carnegie–Ames–Stanford Approach (CASA) is an 

extensively used, satellite data driven ecosystem model, 

offers a unique opportunity for simulating terrestrial NPP 

at larger spatial scale with less input data. The model 

controls photosynthetic efficiency in response to spatio-

temporally varying stress constraints resulting from 

temperature and water. One of the largest sources of error 

in their study was “maximum LUE”. They used sole LUE 

value (0.389 gC MJ-1) for different vegetation types due 

to the very small data set (n<15) of measured NPP in 

different vegetation types that existed worldwide at the 

time, Potter et al. (1993) essentially had to assume a 

globally uniform LUE (0.389 gC MJ) for all vegetation 

types. A comparative analysis (Hicke 2006) using two 

data sets (National Centres for Environment Predications 

and Goddard Institute for Space Science) and CASA 

model by allocating exclusive maximum LUE values 

(0.46 to 0.50  gC MJ-1 ) for different landcover types, 

found varying response of LUE with native 

meteorological, soil, topography and physiological 

conditions. Another limitation of the CASA model 

(Potter et al. 1993) is that, they estimate moisture stress 

factor at each grid cell using monthly temperature and 

precipitation data in amalgamation with several soil 

parameters like field moisture capacity, wilting 

coefficient, percentage of sand and clay particles and 

depth of soil. However, this moisture submodel is 

extremely complex, requires several soil attributes, which 

are generally obtained from a soil map whose accuracy is 

very low when compared on global scale. Thus, Yu et al. 

(2009) improved the earlier CASA (Potter et al., 1993) 

model in two aspects without changing their original 

plant physiological and ecological basis for estimating 

NPP. First calculated maximum LUE ( maxε ) values for 

different vegetation types using observed NPP and 

estimated NPP. Secondly, simplified the earlier soil 

moisture submodel by replacing several soil attributes 

with a monthly meteorological parameters (solar 

radiation, temperature and precipitation) in the existing 

regional evapotranspiration model to determine moisture 

stress coefficient. In the present study we estimating 

terrestrial NPP over India using improved CASA model 

and geostationary INSAT-3A satellite data for the period 

2009.  
 

 2. STUDY AREA AND INSTRUMENT  

 

The study area is India with a total geographical area of 

329 million hectares situated in the tropics between 7°N 

and 40°N and between 68°E and 100°E. The country is 

known for its diverse vegetation ecosystems and 

biodiversity (Fig. 1). The region is predominantly 

covered by evergreen needleleaf forest (ENF), evergreen 

broadleaf forest (EBF), deciduous broadleaf forest 

(DBF), mixed forest (MF), closed shrublands (CSH), 

open shrublands (OSH), woody savannas (WSA), 

savanna (SA), grasslands (GRA), wetlands (WET), 

croplands (CRO), croplands/natural vegetation mosaic 

(CRO/NAT. Mosaic), snow and ice, barren and sparsely 

vegetation (BAR/SPARSLY VEG.) and water bodies. 

The region experiences four climatically different 

seasons in a year: southwest summer monsoon (June-

August), northeast winter monsoon (December to 

February), spring or pre-monsoon (March-May) and 

autumn post-monsoon (September-November) Inter 

monsoonal periods. The southwest monsoon is essentially 

warm and humid, and the rainfall received during this 

period accounts for 80% of the total annual rainfall of the 

country. Northeast monsoon is cold and dry; however, 

the southeastern parts of the country receive significant 

rainfall during this period. The two inter-monsoonal 

periods are mostly dry and moderately warm. 

 
Figure. 1 Land cover map (IGBP Version 2.0) depicting 

different vegetation types in India. 

INSAT-3A is a multipurpose satellite built by Indian 

Space Research Organisation (ISRO) and it was launched 

from European Ariane-5G Launch Vehicle into a 

Geosynchronous Transfer Orbit (GTO) in April 2003. It 

is third satellite in INSAT-3 series after INSAT-3B & 

INSAT-3C. This satellite was basically designed for 

telecommunications, television broadcasting, 

meteorological and search & rescue services. It carries 

twenty four transponders - twelve operating in the normal 
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C-band frequency, six in Extended C-band and six in Ku-

band. Nine of the twelve normal C-band transponders 

provide expanded coverage and the remaining three have 

India coverage beam. All the extended C-band as well as 

the Ku-band transponders has India coverage beams. 

INSAT-3A also carries a Ku-band beacon. 

 

For meteorological observation, INSAT-3A carries a 

three channel Very High Resolution Radiometer (VHRR) 

with 2 km resolution in the visible band and 8 km 

resolution in thermal infrared and water vapour bands. In 

addition, INSAT-3A carries a Charge Coupled Device 

(CCD) camera which operates in the visible and short 

wave infrared bands providing a spatial resolution of 1 

km (Table 1).  

Table 1 Details of INSAT 3A CCD sensor 

Channels Wavelength 

range (µm) 

Spatial 

resolution 

(km) 

Visible 0.63-0.69 1 km 

NIR 0.77-0.89 1 km 

SWIR 1.55-1.69 1 km 

FOV 10°10° (Normal 

frame),  

62506250 km2 

 

Time of overpass 

considered 

0500 GMT (1030 

LMT) 

 

GMT: Greenwich Mean Time; LMT: Local Mean 

Time. 

The CCD derived NDVI has been the focus of several 

studies in India (Bhattacharya et al., 2010, Nigam et al., 

2013). In the present study, CCD derived NDVI was used 

to generate monthly terrestrial Net Primary Productivity 

(NPP) over India for the period 2009. 

 

3. DATA USED 
Ten day composite Normalized Difference Vegetative 

Index (NDVI) data for the study period (2009) was 

obtained from Meteorology Oceanography Satellite Data 

Archive Centre (MOSDAC), Space Applications Centre, 

India. The data was used in the present study to derive 

biome specific fraction of Absorbed Photosynthetically 

Active Radiation (fPAR).  Spatial distribution of diverse 

vegetations types and its unique response to local 

conditions is among the vital key parameters in the 

improved CASA ecosystem model. An extensively 

validated (Hansen and Reed 2000) global landcover data 

with 1 km spatial resolution created by the U.S. 

Geological Survey (USGS), the University of Nebraska-

Lincoln (UNL), and the European Commission's Joint 

Research Centre (JRC) for environmental research and 

modeling studies was acquired from International 

Geosphere–Biosphere Programme Data and Information 

System (IGBP-DIS). This was used to derive fraction of 

Photosynthetically Active Radiation (fPAR) and 

allocating biome specific maximum Light Use Efficiency 

(LUE) for different vegetation types in the study region. 

Classification scheme adopted in this landcover was 

based on biome specific phenological events; estimated 

using monthly maximum Advanced Very High 

Resolution Radiometer (AVHRR) derived NDVI data. 

This scheme categorizes the entire study region into 17 

vegetation classes (Fig. 1). 

 

We utilized meteorological data (mean temperature, 

precipitation and incident solar radiation) to derive 

temperature and moisture stress coefficients. Mean 

monthly temperature and cumulated monthly 

precipitation with 0.5° spatial resolution were acquired 

from Climate Research Unit (CRU) at University of East 

Anglia (UEA). Downward monthly shortwave radiation 

with 1/2x2/3° spatial resolution was obtained from 

Modern-Era Retrospective Reanalysis for Research and 

Applications (MERRA). Utility of model derived 

variables can only be used for further study if they are 

properly validated. Moderate Resolution Imaging Sensor 

(MODIS) derived NPP product, derived using extensive 

field NPP measurements, eddy flux tower data, 

multisensor satellite data and process based model offer 

such invaluable opportunities to evaluate INSAT derived 

NPP as well as iCASA model performance because 

MODIS products are already extensively validated across 

the world using different data sources. In the present 

study MODIS NPP data obtained for the study period 

was used in the study to validate INSAT derived NPP 

over wide range of vegetation types in India. 

  

Light Use Efficiency (LUE) is key input parameter in 

Production Efficiency Model (PEM). LUE varies 

between vegetation types due to their respiration cost and 

suboptimal climatic conditions. As a result producing 

biome specific LUE values for extensive vegetation cover 

is very difficult due to heterogeneity of native vegetation 

types (Gower et al., 1999). Yu et al. (2009) were derived 

biome specific LUE values for different vegetation types 

in East Asia region (10–70° N, 70–170° E) through 

principle of minimal error approach between estimated 

NPP and observed NPP (field measurement data). 

Therefore, in this analysis, we used Yu et al. (2009) 

derived biome specific LUE values to estimate precise 

NPP for various vegetation types in Indian subcontinent.   

 

Monthly NDVI and fPAR data from Advanced Very 

High Resolution Radiometer (AVHRR) sensors onboard 

series of National Oceanic and Atmospheric 

Administration (NOAA) satellites was acquired from 

1981 to 2006. This data was used here to derive 

landcover specific NDVImax, NDVImin, fPARmax, fPARmin 

(Table 1), which are important parameter for generating 

biome wise accurate fPAR values in the country.  

 

Table 2.Biome specific minimum and maximum 

NDVI and fPAR values in Indian region 

IGBP 

Code 

LULC 

Type 

NDVI 

Min. 

NDVI 

Max. 

fPAR 

Min 

fPAR 

Max. 

01 ENF 0.090 0.871 0.301 0.843 

02 EBF 0.014 0.944 0.564 0.906 

03 DNF 0.021 0.890 0.529 0.913 

04 DBF 0.131 0.870 0.532 0.916 

05 MF 0.035 0.896 0.620 0.896 

06 CS 0.043 0.810 0.469 0.858 

07 OS 0.044 0.798 0.133 0.625 

08 WS 0.093 0.841 0.427 0.913 

09 SA 0.110 0.784 0.204 0.742 

10 GRA 0.016 0.655 0.226 0.783 

11 PW 0.011 0.891 0.145 0.776 
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12 CRO 0.082 0.827 0.273 0.834 

14 CRO/ 

NVM 

0.041 0.870 0.269 0.795 

 

3. MODEL DESCRIPTION AND STRUCTURE 

 

Modeling of NPP was carried out using modified 

Carnegie–Ames–Stanford Approach (CASA). Detailed 

procedure for the estimation of NPP is shown in flow 

chart (Fig. 2) and explained in subsequent steps. 

 

3.1 Model description: NPP in the present study was 

estimated using improved CASA ecosystem model (Yu et 

al., 2009). The model estimate NPP as a product of 

absorbed photosynthetically active radiation (APAR) and 

maximum energy conversion efficiency ( maxε ) of the 

vegetation. The model can be expressed as in equation 

(1) (Potter et al. 1993): 

 

maxAPARNPP 
   (1) 

where NPP represents the net primary productivity (gC 

m-2month-1); APAR is absorbed photosynthetically active 

radiation (MJm-2 month-1) and maxε is maximum energy 

conversion efficiency of the vegetation (gC MJ-1). A 

structure diagram of the improved CASA algorithm is 

shown in Fig. 2. 

 
Figure 2. Framework of modified CASA ecosystem 

model depicting the modeling steps, the input 

requirements and their spatio-temporal resolutions. 
 

3.2 Comparison of INSAT NPP with MODIS NPP 

 

INSAT derived NPP values were compared with MODIS 

NPP using two important statistical measures: the root 

mean square error (RMSE) and Willmott’s index of 

agreement for model validation (Willmott, 1981 and 

1982). The Willmott’s index of agreement (d) is defined 

as  

 

 












n

i

n

i

1

2

ii

1

2

ii

O-POO

PO

-1d

   (2) 

Where iO  is observed value (tower NPP), iP is the 

estimated value (INSAT NPP), O  and P are mean of 

the observed and estimated NPP values. A non-

dimensional measure (d) that ranges from 0 to 1, wherein 

d is equal to 1 when two data sets are in ideal agreement.  

 

4. Result and Discussion 

 

4.1 Spatial and Temporal variability of NPP: Mean 

monthly NPP over Indian subcontinent for the study 

period 2009 is shown in Figs. 3&4. Two distinct seasons 

can apparently see from the figures. The winter (January 

to March) and monsoon (July to October) seasons. It was 

observed during January that due to dry winter spell in 

the entire country, vegetation was stopped growing in 

most parts of the country and NPP was reached to very 

low. In parts of the Western India especially at desert 

regions and non vegetated areas the NPP was even went 

up to zero. The mean NPP for the entire country during 

this month was estimated to be 43.42±20.77 gCm-2 

month-1(mean±SD), which was 12 percent lesser than 

mean monthly NPP (49.15±10.46 gCm-2 month-1) of the 

country. Low NPP in the month was mainly due to the 

low contribution of NPP by deciduous and evergreen 

forest situated in Western-Ghats and North-Eastern 

regions. In February month mean NPP (45.96±20.92 

gCm-2 month-1) was increased considerably by 6 percent 

than mean NPP of previous month. Substantial increase 

of NPP in the month was basically due to the coincidence 

of peak growth stages of the major crops especially in 

Indo- Gangetic plains and Punjab regions. As the crops 

achieved maturity and senescence stage during the end of 

the winter season (March), mean monthly NPP 

(39.61±19.58 gCm-2 month-1) was reduced strongly by 13 

per cent than previous month and 20 per cent as 

compared to the mean monthly NPP of the country. In 

April, mean monthly NPP of the country (36.06±20.86 

gCm-2 month-1) was reduced drastically with attaining 

annual lowest mean monthly NPP value. The value was 

about 9 and 27 per cent lower than mean monthly NPP of 

previous month and mean monthly NPP of the country. 

From May month, increasing pattern of NPP was 

observed due to onset of flushing in forest regions of 

Sothern and South-Eastern states of the country. 

Approximately 10 per cent more NPP was observed in 

May (39.93±23.45 gCm-2 month-1) as compared to the 

mean NPP of the previous month. But still it was 19 per 

cent lower than the mean monthly NPP of the country. 

There was large change in NPP value (53.71±23.45 gCm-

2 month-1) was observed in June due to the onset of 

South-West monsoon. About 26 per cent more NPP was  
January February 

  
March April 
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May June 

  
July August 

  
September October 

  
November December 

  
Net Primary Productivity (g C m-2 month-1) 

 
Figure 3 Spatial distribtion of Monthly NPP in India 

estimated using INSAT 3A CCD data 

observed in June as compared to the NPP of May month. 

It was 10 per cent higher than the mean monthly NPP of 

the country. In subsequent month (July), appearance of 

unexpected dip was due to cloudy condition during 

satellite pass. As the development in monsoon, NPP in 

the entire region was substantially increased especially in  

 
Figure 4 Monthly change of mean NPP over Indian 

subcontinent 

agricultural and grassland regions. Mean monthly NPP in 

August (65.43±22.67 gCm-2 month-1) was reached 33 per 

cent more NPP than mean monthly NPP of the country. 

In September, mean monthly NPP was reached at its peak 

NPP (66.47±24.43 gCm-2 month-1) value with 36 per cent 

more NPP as compared to the mean NPP of the country. 

As the south west monsoon widraw, NPP was started 

declining. Mean monthly NPP in October was 

(53.71±23.45 gCm-2 month-1) reduced by 10 per cent as 

compared to the previous month and was just 20 per cent 

higher than mean monthly NPP of the country. During 

November, NPP was declined drastically (46.43±25.08 

gCm-2 month-1) by 24 per cent as compared to the 

previous month and 5 per cent lower than the mean 

monthly NPP of the country. That decreasing pattern was 

continued to December with mean NPP of 40.39±34.10 

gCm-2 month-1, which was 13 per cent lower than NPP of 

revious month and 18 per cent lower NPP value than 

mean NPP value of the country.  

 

4.2 Seasonal change of NPP in different vegetation: 

Seasonal change of NPP for each vegetation type in India 

is shown in Figure 5. It can be observed from the figures 

that seasonal change of NPP decreases from evergreen 

broadleaf forest (EBF), deciduous broadleaf forest (DBF) 

and croplands to grasslands. Seasonal change of EBF was 

the lowest among all the vegetation types. The forest was 

achieved peak growth in winter as well as in monsoon 

season with a mean monthly NPP of 100 gCm-2 month-1 

and 110 gCm-2 month-1, respectively. As for DBF, 

maximum NPP was appeared in September (92 gCm-2 

month-1). However, for croplands, there were two NPP 

climaxes in some regions (Indo-Gangetic and Punjab) 

were observed due to double cropping pattern. The first 

climax was appeared in February (63 gCm-2 month-1) and 

second was in September (80 gCm-2 month-1). 

 

NPP of the first climax was relatively lower than the 

second climax because first crop was wheat and second 

was rice, however the productivity of wheat generally 

lower that of rice. Grasslands showed the lowest NPP 

among all the vegetation types. Grasslands were started  

flushing in June and attained maximum growth in 

September (45 gCm-2 month-1). NPP of grasses in arid 

regions (parts of Rajasthan and Gujarat) was very low as 

compared to the NPP of grasses situated in wet or moist 

regions due to growth of grasses in arid regions were 

limited by moisture condition. 
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Figure 5 Seasonal change of NPP for different vegetation types 

Figure 6 depicts spatial distribution map of annual NPP 

in India. NPP derived from INSAT CCD using improved 

CASA model showed maximum (>1200 gCm-2 year-1) 

NPP in evergreen broadleaf forest of North-East and 

Western-Ghats regions, whereas the lowest NPP (<100 

gCm-2 year-1) was observed in arid regions of Rajasthan. 

 

Net carbon fixation over Indian landmass during 2009 

was estimated about 1.9 PgC. The estimated value of 

total net carbon fixation in the present study was 

comparable to that of earlier estimates for India by 

Chhabra and Dadhwal (2004). They reported net carbon 

fixation of 2.18 PgC. A recent work by Singh et al. 

(2011) used NOAA-AVHRR satellite data and the GLO-

PEM model for 1981–2000 and obtained values between 

3.56 (1983) and 4.57 PgC (1998), respectively. More 

recent longterm studies by Nayak et al. (2012) and Bala 

et al. (2013) using NOAA AVHRR NDVI data and 

CASA model for the study period 1982 to 2006 reported 

1.42 PgC and 0.83 PgC net carbon fixation over India.  

Table 2. Agreement analysis between MODIS NPP and INSAT NPP 

 EBF DBF MF CS OS GRA CRO CRO/NVM 

N 1007 1039 1320 471 625 377 841 7103 

INSAT NPP (T) 1001.25 867.23 976.33 680.47 358.14 523.82 640.87 594.48 

MODIS NPP (C) 702.62 613.60 989.69 615.08 241.12 520.06 675.51 513.17 

Difference (C-T) 298.62 253.63 13.36 65.39 117.02 3.76 34.63 81.30 

d 0.96 0.63 0.61 0.68 0.87 0.92 0.99 0.78 

RMSE (gC m-2 month-1) 339.42 346 290 158.4 136.3 113.2 114.7 133.95 

4.3 Comparison INSAT NPP with MODIS NPP 

INSAT derived annual NPP values compared with 

MODIS NPP over different vegetation types (EBF, DBF, 

MF, CS, OS, GRA, CRO, CRO/NVM) are shown in 

Table 2 with quantitative assessment of agreement using 

root mean square error (RMSE) and Willmott’s index of 

agreement (d).  

INSAT NPP simulated from the improved CASA 

ecosystem model was consistent with NPP fluxes 

obtained from MODIS. Mean INSAT NPP varied from 

358.14 gC m-2 yr-1 (OS) to 1001.25 gC m-2 yr-1 (EBF) 

whereas, mean MODIS NPP ranged from241.12 gC m-2 

yr-1 (OS) to 989.69 gC m-2 yr-1 (MF). INSAT NPP 

overestimates by MODIS NPP over all the vegetation 

types except in MF and CRO. Significant difference 

between both the data sets was observed in MF with the 

Willmott’s index of agreement (d) 0.61.  
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Net Primary Productivity (g C m-2 year-1) 

 
Figure 6 Spatial distribution of annual NPP in India 

Whereas, good agreement between both the data sets was 

observed in OSH with the Willmott’s index of agreement  

(d) 0.99. The difference between INSAT NPP and 

MODIS NPP was mainly due to errors in pixel 

registration, model estimates and difference in scales 

when comparing 1 km MODIS NPP with the 8-km 

INSAT NPP estimates. Spatial pattern of both the data 

sets matches evidently over North-eastern, Western Ghats 

and over Himalayan regions. Whereas, MODIS NPP 

underestimates considerably by INSAT NPP over most 

parts of the country including forest regions of Madhya 

Pradesh, Orissa and Chhattisgarh. Overall, INSAT NPP 

overestimates MODIS NPP product by 0.72 PgC over 

Indian subcontinent.  

 

5. CONCLUSION AND FUTURE DIRECTION 

In the present study, an effort was made to estimate 

monthly Net Primary Productivity over Indian 

subcontinent using geostationary INSAT-3A CCD data 

and improved CASA ecosystem model for the study 

period 2009. Monthly NPP was generated at 8 km spatial 

resolution and tested the data through generating growth 

profiles of different vegetation types in the country. The 

NPP follows characteristic growth profiles of most of the 

vegetation types in the country. Spatial NPP pattern and 

net carbon fixation obtained by INSAT was compared 

with MODIS NPP product. There was a good agreement 

between both the data set over different ecosystems 

except mixed forest and closed Shrubland. Overall we 

estimated 1.9 PgC fixations by different ecosystem in the 

country. But the number was relatively higher (0.72 PgC) 

than MODIS NPP.  
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