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ABSTRACT: 

 

This work uses the canopy height model (CHM) based workflow for individual tree crown delineation and 3D feature extraction 

approach (Overwatch Geospatial's proprietary algorithm) for building feature delineation from high-density light detection and 

ranging (LiDAR) point cloud data in an urban environment and evaluates its accuracy by using very high-resolution panchromatic 

(PAN) (spatial) and 8-band (multispectral) WorldView-2 (WV-2) imagery. LiDAR point cloud data over San Francisco, California, 

USA, recorded in June 2010, was used to detect tree and building features by classifying point elevation values. The workflow 

employed includes resampling of  LiDAR point cloud to generate a raster surface or digital terrain model (DTM), generation of a 

hill-shade image and an intensity image, extraction of digital surface model, generation of bare earth digital elevation model (DEM) 

and extraction of tree and building features. First, the optical WV-2 data and the LiDAR intensity image were co-registered using 

ground control points (GCPs). The WV-2 rational polynomial coefficients model (RPC) was executed in ERDAS Leica 

Photogrammetry Suite (LPS) using supplementary *.RPB file. In the second stage, ortho-rectification was carried out using ERDAS 

LPS by incorporating well-distributed GCPs. The root mean square error (RMSE) for the WV-2 was estimated to be 0.25 m by using 

more than 10 well-distributed GCPs. In the second stage, we generated the bare earth DEM from LiDAR point cloud data. In most 

of the cases, bare earth DEM does not represent true ground elevation. Hence, the model was edited to get the most accurate DEM/ 

DTM possible and normalized the LiDAR point cloud data based on DTM in order to reduce the effect of undulating terrain. We 

normalized the vegetation point cloud values by subtracting the ground points (DEM) from the LiDAR point cloud. A normalized 

digital surface model (nDSM) or CHM was calculated from the LiDAR data by subtracting the DEM from the DSM. The CHM or 

the normalized DSM represents the absolute height of all aboveground urban features relative to the ground. After normalization, the 

elevation value of a point indicates the height from the ground to the point. The above-ground points were used for tree feature and 

building footprint extraction. In individual tree extraction, first and last return point clouds  were used along with the bare earth and 

building footprint models discussed above. In this study, scene dependent extraction criteria were employed to improve the 3D 

feature extraction process. LiDAR-based refining/ filtering techniques used for bare earth layer extraction were crucial for improving 

the subsequent 3D features (tree and building) feature extraction. The PAN-sharpened WV-2 image (with 0.5 m spatial resolution) 

was used to assess the accuracy of LiDAR-based 3D feature extraction. Our analysis provided an accuracy of 98% for tree feature 

extraction and 96% for building feature extraction from LiDAR data. This study could extract total of 15143 tree features using 

CHM method, out of which total of 14841 were visually interpreted on PAN-sharpened WV-2 image data. The extracted tree 

features included both shadowed (total 13830) and non-shadowed (total 1011). We note that CHM method could overestimate total 

of 302 tree features, which were not observed on the WV-2 image. One of the potential sources for tree feature overestimation was 

observed in case of those tree features which were adjacent to buildings. In case of building feature extraction, the algorithm could 

extract total of 6117 building features which were interpreted on WV-2 image, even capturing buildings under the trees (total 605) 

and buildings under shadow (total 112). Overestimation of tree and building features was observed to be limiting factor in 3D 

feature extraction process. This is due to the incorrect filtering of point cloud in these areas. One of the potential sources of 

overestimation was the man-made structures, including skyscrapers and bridges, which were confounded and extracted as buildings. 

This can be attributed to low point density at building edges and on flat roofs or occlusions due to which LiDAR cannot give as 

much precise planimetric accuracy as photogrammetric techniques (in segmentation) and lack of optimum use of textural 

information as well as contextual information (especially at walls which are away from roof) in automatic extraction algorithm. In 

addition, there were no separate classes for bridges or the features lying inside the water and multiple water height levels were also 

not considered. Based on these inferences, we conclude that the LiDAR-based 3D feature extraction supplemented by high 

resolution satellite data is a potential application which can be used for understanding and characterization of urban setup. 

 

 

                                                                 
*  Corresponding author.   

1. INTROCUCTION 

Light detection and ranging (LiDAR) is nowadays a very 

effective and prolific technology as far as detailed mapping and 

modeling of various types of terrain is concerned. LiDAR is an 

active remote sensing technology that evaluates properties of 

reflected light to determine range to a remote object (Lefsky et 

al., 2002). Airborne LiDAR is capable of providing highly 

accurate measurements of vertical features with single pulse, 

multiple pulses, or full waveform. However, its usage is 

currently limited because of its high acquisition cost. In LiDAR 
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remote sensing, the range to remote object is estimated by 

computing the time delay between broadcast of a laser pulse 

and recognition of the reflected signal (Wehr and Lohr, 1999). 

LiDAR technology is being progressively more practiced in 

ecology, forestry, geomorphology, seismology, environmental 

research and remote sensing because of its capability to produce 

three-dimensional (3D) point data with high spatial resolution 

and accuracy (Gaveau and Hill, 2003; Brandtberg et al., 2003). 

LiDAR systems coupled with accurate positioning and 

orientation systems can obtain precise 3D measurements of 

earth surface in the form of point cloud data by using high 

sampling densities. LiDAR is an efficient technique to map and 

model the vegetation cover and trees located in the landscape. 

Forest resource management and its impact on various regions 

is a very critical aspect and LiDAR is a very conducive tool to 

explore it. Individual tree crown delineation and tree parameter 

extraction is a complex research topic and various methods 

have been implemented for this task. LiDAR systems along 

with precise positioning and orientation systems can obtain 

highly accurate 3D measurements of earth surface in the form 

of point cloud data by using high sampling densities (NOAA, 

2012). Individual trees extraction is the matter of this study, 

which is highly important as far as its significant applications in 

ecology, environmental sciences and forestry are concerned. 

Various parameters associated with the trees like tree height, 

crown diameter, canopy based height, diameter at breast height 

(DBH), biomass, and species type can be determined after 

individual extraction of trees. There are various traditional 

methods which include forest inventory, aerial photography 

interpretation which require intensive field work and large 

amount of financial support. This can be replaced by airborne 

LiDAR along with very high resolution satellite imagery, which 

can also reduce the time consumption, labor and enhance 

geographical accessibility to a significant extent. LiDAR has 

been widely applied in forestry (Patenaude et al., 2004; 

Popescu and Wayne, 2004), and it is found to be useful in 

mapping individual trees in complex forests (Chen et al., 2007; 

Kock et al., 2006). Research on exploiting LiDAR point cloud 

data to evaluate vegetation structures has been progressed from 

a forest scale to individual tree level. This is evidently 

encouraged by the developments in LiDAR technology, 

resulting into higher pulse rates and increased LiDAR posting 

densities. Therefore, the semiautomatic extraction of single tree 

(delineation) has become a fundamental approach in forestry 

research (Heurich, 2008). Computing tree attributes at high 

spatial scales is essential to monitor terrestrial natural resources 

(Zimble et al., 2003). However, not many studies have focused 

on individual tree level feature extraction. One of the main 

challenges of this research is result validation and accuracy 

assessment for individual extracted tree measurements, where 

detailed field inventory and/or very high resolution satellite 

image is necessary. The high spatial density LiDAR point cloud 

data noticeably revealed the structure of individual trees, and 

hence provided better prospect for more accurate tree feature 

extraction and vegetation structure parameters. The high density 

LiDAR has been successfully employed to demarcate the whole 

structure of individual tree (Rahman, and Gorte, 2009; 

Reitberger, 2007). There are numerous methods proposed to 

demarcate individual trees using airborne LiDAR point cloud 

data. Popescu and Wynne (2004) employed a local maximum 

filtering method to extract individual trees. Tiede et al. (2005) 

practiced a similar local maximum filtering method to recognize 

tree tops and developed a region growing algorithm to extract 

tree features. Chen et al. (2007) proposed a watershed 

segmentation to isolate individual trees, where the tree tops 

extracted by local maxima were used as markers to improve the 

accuracy. Koch et al. (2006) extracted tree features by 

synergetic usage of pouring algorithm and knowledge based 

assumptions on the structure of trees. Korpela et al. (2007) used 

a multi-scale template matching approach for tree feature 

extraction using elliptical templates to represent tree models. 

Falkowski et al. (2006) proposed the spatial wavelet analysis to 

semiautomatically verify the spatial location, height, and crown 

diameter of individual tree features from LiDAR point cloud 

data. These algorithms extract individual tree features using the 

LiDAR derived canopy height model (CHM). CHM is a raster 

image interpolated from LiDAR cloud points indicating the top 

of the vegetation canopy. Tree detection and tree crown 

delineation from Airborne LiDAR has been focusing mostly on 

utilizing the CHM. However, CHM can have inherent errors 

and uncertainties, e.g. spatial error introduced during the 

interpolation from the point cloud to raster (Guo et al., 2007), 

which may reduce the accuracy of tree feature extraction. 

Therefore, new methods to delineate individual tree features 

from the LiDAR point cloud necessitate development and 

validation. Morsdorf et al. (2004) employed the k-mean 

clustering algorithm to delineate individual tree features from 

the point cloud, but their accuracy depended on seed points 

extracted from the local maxima of a digital surface model. 3D 

building models are essential for many Geographic Information 

System (GIS) applications such as urban planning, disaster 

management and city planning (Awrangjeb  et al., 2013; Gröger 

and Plümer, 2012). Therefore, 3D building extraction has been 

an area of vigorous research within the photogrammetric, 

remote sensing and computer vision communities for the last 

two decades. Detailed and  up-to-date building information is of 

enormous importance to every resident, government  agencies, 

and private companies (e.g. real estates). Remote sensing (RS) 

is one of the  most professional ways to obtain and extract the 

required geographical information (Jensen and Cowen, 1999).  

However, the traditional manual digitization for building 

extraction using raw imagery is highly labor-intensive, time-

consuming and expensive. During the past two decades many 

researchers in photogrammetry, remote sensing and computer 

vision communities have  been trying to study and develop the 

automatic or semi-automatic approaches for building  extraction 

and reconstruction (Mayer, 1999). For monocular image, 

shadow analysis is often used to assist building detection. In 

this study, we used method for individual tree delineation based 

on canopy height model (CHM) and 3D feature extraction 

approach (Overwatch Geospatial's proprietary algorithm) for 

building feature delineation from the high resolution airborne 

LiDAR point cloud data. To investigate the effectiveness of 

these methods in extracting individual trees and buildings, we 

used very high resolution remote sensing data from 

WorldView-2 (WV-2) satellite. This study aims to assess the 

accuracy of individual tree and building extraction using 

LiDAR by visual interpretation of trees onto very high 

resolution WV-2 image. 

 

2. STUDY AREA AND DATA 

In order to investigate and illustrate the effectiveness of LiDAR 

based tree and building feature extraction, we selected the part 

of San Francisco city, California, United States of America (37° 

44" 30N', 122° 31"  30' W and 37° 41" 30'N ,122° 20" 30' W ), 

as a test scene. San Francisco is situated on the West Coast of 

the USA at the north ending of the San Francisco Peninsula and 

comprises of significant extension of the Pacific Ocean and San 

Francisco Bay within its margins. The mainland area within the 
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city constitutes roughly 600 km2. There are more than 50 hills 

within city boundaries. There are more than 220 

parks maintained in the San Francisco by Recreation & Parks 

Department, containing thousands of native trees and plants.  

 

We used the standard airborne LiDAR data over San Francisco, 

California, USA, recorded in June 2010. The data was in LASer 

(LAS) (Figure 1). In addition to airborne LiDAR data, we also 

used radiometrically-corrected, geo-referenced, orthorectified 

16-bit standard level 2 (LV2A) WV-2 multi-sequence datasets, 

including single band PAN and 8-band MSI images at 46 cm 

and 185 cm ground sample distance, which were resampled to 

50 cm and 200 cm, respectively. Level 2A of image 

preprocessing had been done by the DigitalGlobe. The images 

were acquired during nearly cloud-free bright illumination on 

9th October 2011 over San Francisco covered a number of 

buildings, vegetation structures, forest structures, skyscrapers, 

industrial structures, residential houses, highways, community 

parks, and private housing (Figure 2). The calibration metadata 

was used to convert the raw digital numbers to radiance. 

Necessary pre-processing methods like Data Calibration, Dark-

pixel Subtraction, PAN-sharpening etc. were employed for 

better visualization.   

 

 

Figure 1. LiDAR based point cloud representation over the 

extent of study area. 

 

 
 

Figure 2. WorldView-2 PAN-sharpened satellite image over the 

study area. 

The remote sensing (RS) data cannot be used efficiently 

without ground truth, especially for urban studies. The 

successful interpretation of RS data requires supplementary 

field work to understand the small-scale variations that are 

common in urban land cover. PAN-sharpened WV-2 (0.5 m) 

supplemented by publicly available GIS maps and historical 

Google Earth images were used for accuracy analysis.  

 

3. METHODOLOGY 

Preprocessing of the WV-2 imagery comprises of four separate 

steps: (i) data preparation, (ii) Data fusion, (iii) Co-registration 

of WV-2 Pan-sharpened images to the LiDAR data, and (iv) 

Shadow compensation using LiDAR based DSM (Jawak and 

Luis, 2014a; Jawak and Luis, 2014b). First, a dark pixel 

subtraction was performed to reduce the path radiance from 

each band. The dark object is the minimum digital number 

(DN) value for more than 1000 pixels over the whole image 

(Jawak and Luis, 2013a; Jawak and Luis, 2013b; Jawak and 

Luis, 2013c; Jawak and Luis, 2013d). The calibration procedure 

was carried out in two steps: (i) conversion of the raw DN 

values to at-sensor spectral radiance factors and (ii) conversion 

from spectral radiance to Top-of-Atmosphere (TOA) 

reflectance (Jawak and Luis, 2012; Jawak and Luis, 2011). In 

order to create an image at 0.50 m resolution, the multiband 

image was PAN-sharpened from a resolution of 2.00 m to 0.50 

m by using Hyperspherical Color Sharpening (HCS) fusion 

method which has been specifically developed for the WV-2 

data (Jawak et al., 2013a). The first and possibly the most 

important precursor step of the tree and building feature 

extraction process is the precise co-registration between all 

datasets. In fact, neglecting geo-registration can lead to false 

accuracy analysis. The optical WV-2 data and the LiDAR 

intensity image were co-registered. Co-registration was 

performed in two steps: (i) geometric correction without ground 

control points (GCPs) and (ii) ortho-rectification using ground 

control points. The main challenge was to match the resolution 

of LiDAR intensity image with the resolution of PAN-

sharpened WV-2 image. At first, the WV-2 rational polynomial 

coefficients model (RPC) was executed in ERDAS Leica 

Photogrammetry Suite (LPS) using supplementary .RPB file. In 

the second stage, ortho-rectification was carried out using 

ERDAS LPS by incorporating well-distributed GCPs. The 

obtained root mean square error (RMSE) for the WV-2 was 

estimated to be 0.25m using more than 10 well-distributed 

GCPs. 

 

LiDAR-based individual tree and building feature extraction        

consists of five main tasks: (1) bare earth digital 

elevation/terrain (DEM/DTM), DSM, and intensity image 

generation, (2) building footprint extraction, (3) individual 

trees/vegetation/forest extraction using CHM and building 

extraction using 3D fetaure extraction approach, (4) tree 

filtering, and (5) accuracy assessment of tree and building 

feature extraction. Many different software packages are 

available to resample LiDAR point clouds into 2-D grids and 

advanced processing. We utilized Overwatch system’s LIDAR 

Analyst for ArcGIS, LAStools© software, and Qcoherent 

software LP360 for ArcGIS. Conversion of point clouds to 

uniform raster surfaces or 2D-grids by resampling methods is 

the first essential step in many LiDAR based applications. 

Many surface interpolation methods are available in literature 

for effective rasterization (Gurram et al., 2013). The choice of 

cell size affects the quality of 2D- raster models or surfaces 

generated. We selected a grid size of 50 cm to match the 50 cm 
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resolution of PAN-sharpened WV-2 image and based on 

average tree diameters interpreted using WV-image. A bare 

earth DEM/DTM, a DSM and an intensity image were derived 

from the raw airborne LiDAR data. The DEM/DTM was 

generated by triangulating elevation values only from the bare-

earth LiDAR points, while the DSM was generated by 

triangulating elevation only from the first-return LiDAR points 

(Figure 3). The intensity image was generated by triangulating 

intensity from the first-return LiDAR points. Surfacing was 

used to interpolate the ground points and generate the DEM 

(Guo et al., 2010). In this study, the ground points were 

collected and interpolated using an adaptive triangulated 

irregular network (TIN) model. We employed TIN interpolation 

method over IDW and spline, because the LiDAR point cloud 

data was very dense and spline and IDW method failed to give 

desired results. TIN approach also considers the density 

variation between data points. As the study area is urban, this 

method provided good results when compared to other methods 

like Kriging which is useful in the areas consisting of diverse 

features which exhibit high degree of spatial auto-correlation. 

Bare earth DTM/DEM extraction is followed by editing or 

cleaning of that bare earth layer. In most of the cases, bare earth 

DEM does not represent true ground elevation. Hence, the 

model was cleaned/ edited to get the most accurate DEM/ DTM 

possible. After DTM editing, we normalized the LiDAR point 

cloud data based on DTM in order to reduce the effect of 

undulating terrain. The normalization step is very significant 

since the tree filtering algorithm needs to define a reference 

height for further processing. We normalized the vegetation 

point cloud values by subtracting the ground points (DEM) 

from the LiDAR point cloud. A normalized digital surface 

model (nDSM) or CHM is calculated from the LiDAR data by 

subtracting the DEM from the DSM. The CHM or the 

normalized DSM represents the absolute height of all 

aboveground urban features relative to the ground. After 

normalization, the elevation value of a point indicates the 

height from the ground to the point. The above-ground points 

were used for tree feature and building footprint extraction. The 

second step of the workflow is to identify building 

measurements from non-building (mainly vegetation). Building 

footprint extraction consists of extracting the footprints of 

buildings in 3D shapefile format along with the attribute table 

showing the information about each building polygon. This task 

also consists of editing building footprint layer so as to separate 

the merged buildings. We employed LiDAR analyst 4.2 for 

ArcGIS workflow for buiding extraction. The parameters used 

for building extraction are listed in Table 1, 2 and 3. The final 

output map of building feature extraction is shown in Figure 4. 

We used the CHM (Jawak et al., 2013b) based method for 

individual tree feature extraction. The individual tree extraction 

based on this method produces 3D shapefile for extracted tree 

features. It is generally assumed that the LiDAR points other 

than the terrain are tree features in the urban areas. The 

calculation of individual tree height is difficult because it is 

indistinct where the laser pulse hits and be reflecting on the 

tree. A local maximum filtering with variable search window 

approach was used to detect tree features. In individual tree 

extraction, first and last return point clouds  were used along 

with the bare earth and building footprint models discussed 

above. While extracting the trees, the minimum tree height was 

set to a value (0.5m) that corresponds with the size of 

vegetation we desire to be called a tree. The resulting shapefile 

of tree feature extraction consists of point features showing 

individual trees. While extracting forests, maximum distance 

between the trees and minimum size of group of the trees/ 

minimum size of a forest were specified by trial and error 

method to achieve desired results. After tree feature extraction, 

LiDAR point cloud classification was performed so as to 

classify different points according to their elevation values and 

defined criteria. The accuracy of the classification highly 

depends on the user defined criteria (Table 1 and 2). Texture 

variance for trees and minimum difference between returns for 

trees are the crucial parameters which affect the extraction 

accuracy. The classified LiDAR output contained three 

categories: bare earth, buildings and vegetation. The text file of 

output gives information about the total points included or 

excluded in a particular class, maximum height, minimum 

height, etc (Table 3). The segmented point clouds and the tree 

locations are then used as input for tree filtering routine. Since 

the data includes many elevated objects such as buildings, trees 

and bridges, the classification or filtering is needed in various 

LiDAR applications. The classification of point cloud data is 

called the filtering process of LiDAR data. In this study, a tree 

filtering algorithm aims at separating dominant trees and above-

ground objects such as buildings, bridges and undergrowth 

vegetation. This algorithm requires three input parameters: 1) 

maximum growing distance for tree crown, 2) maximum 

growing distance for tree trunk, and 3) average tree trunk 

diameter. The final output map of tree feature extraction is 

shown in Figure 5. In accuracy assessment, we visually 

interpreted the LiDAR-classified trees on WV-2 image. The 8-

band WV-2 image was georeferenced, orthorectified and PAN-

sharpened using HCS method. WV-2 PAN-sharpened image 

(0.5 m) was used such that the tree and building features can be 

easily recognized. The PAN-sharpened image (0.5 m) was 

visualized in ArcGIS 10 at several scales for the better 

visualization of tree features using various band combinations: 

7-4-2; 8-7-2; 6-3-2; 5-3-2 and 7-3-2. Finally, 1:500 scale and 5-

3-2 band combination was selected for visualization of the tree 

and building features. Based on publically available map 

datasets and Google images of the study area, the WV-2 HCS-

sharpened image was manually evaluated using ArcGIS 10 to 

visualize against LiDAR based extracted tree and building 

features. All the tree and building features extracted by 

processing LiDAR data were evaluated using WV-2 PAN-

sharpened image to interpret individual trees and buildings for 

statistical accuracy assessment. 

 

  
Figure 3. LiDAR Bare Earth DEM (scale in meter) 
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Processing Steps Criteria 

Bare Earth extraction method Point Clouds 

Return filter All returns 

Remove buildings with area more than 35000 m2 

Minimum slope for building roofs 15° 

Maximum slope for building roofs 40° 

Texture variance for trees 80% 

Smoothing tolerance 1 m 

Minimum height for tall buildings 15 m 

Minimum area for tall buildings 200 m2 

Tree extraction method Variable 

window search  

Predominant tree/forest type Mixed 

Minimum tree height 3 m 

Maximum tree height 40 m 

Minimum size of the forest  600 m2 

 

Table 1.  Criteria used for bare earth, buildings and trees 

extraction 

 

Processing Steps Criteria 

Ground height threshold 0.3 m 

Minimum height (Building settings) 1.5 m 

Search Radius 2 m 

Minimum height for Low vegetation  0.5 m 

Minimum height for medium Vegetation 1 m 

Minimum height for high vegetation 2 m 

 

Table 2. Criteria for point cloud classification. 

Parameter Building Features Tree Features 

Included  Excluded Included Excluded 

Min. Height 1.50 0.50 1.00 0.50 

Max. 

Height 

406.54 1.50 34.19 1.00 

Mean 

Height 

13.00 0.92 5.92 0.72 

Point Count 13999456 331429 7315433 1718478 

 

Table 3.  LAS classification statistics for building and tree class 

(height statistics for LAS points that were classified as a given 

feature class are recorded in the "Included" field, and statistics 

in the "Excluded" field were gathered from points that should 

have been classified as the given feature class but were weeded 

out due to the user-defined classification settings) 

 

 

4. RESULTS 

Our research focus on CHM-based tree feature extraction and 

LiDAR analyst's 3D building fetaure extarction using high-

resolution airborne LiDAR data and its accuracy assessment 

using high-resolution WV-2 image data. In building and tree 

feature extraction methodology, the scene dependent criteria 

were used. Texture variance for tree features and minimum 

difference between returns for trees were the crucial parameters 

in building and trees feature extraction. The results depicted in 

Table 3 show that all the LiDAR points exihibit point cloud 

classification and hence, the criteria used for tree and building 

feature extraction were appropriate. A 8-band WV-2 image was 

used for visual interpretation of LiDAR-classified tree and 

building features. The image was PAN-sharpened and 

georeferenced which helped in proper visualization of LiDAR 

tree points. The results depicted in Table 4 shows that 15143 

tree features were extracted by CHM method using LiDAR 

point cloud data. All the tree features extracted using LiDAR 

data were cross-verified using multitemporal high resolution 

images, which indicates that the 14841 tree features were 

correctely interepreted out of 15143 tree features. The overall 

accuracy of LiDAR based tree feature extraction was found to 

be 98% against the high resolution satellite image as a 

reference. A DSM-based shadow mask was used for reducing 

the potential source of error attributable to topography-based 

shadow in high resolution image. A total of 1011 tree features 

under shadow were cross-verified using multitemporal image 

data. 

 

 
 

Figure 4. The final output map of building feature extraction 
 

 
 

Figure 5. LiDAR-based tree feature extraction 

 

It is evident that the LiDAR-based extraction caused over-

estimation of 302 tree features, which can be atttributed to two 

methodological and experimental inadequacies: 1) the present 

research was carried out using scene dependent criteria which 

should be optimized with trail-and-error method, and 2) the 
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error might be propogated during the LiDAR filtering or 

classification process. For optimal tree feature extraction, we 

propose the rigorous optimization of criteria and synergetic 

usage of high resolution data for tree feature extraction in future 

studies. LIDAR Analyst's 3D extraction approach is used for 

collecting features and generating raster data from airborne 

LiDAR. It simplifies the process of extracting bare earth, 

buildings, and trees/forests features.  

 

Table 4. Statistics for LiDAR based tree feature extraction 

accuracy results 

 

ACCURACY ATTRIBUTE VALUE 

Total building features extracted from LiDAR by 

using 3d feature extraction  method 

6370 

Total building features visually interpreted using 

multitemporal image data 

6117 

Total non-shadowed building features visually 

interpreted using multitemporal image data 

6005 

Total shadowed building features visually 

interpreted using multitemporal image data 

112 

Total building features which are hidden under 

trees 

605 

Total building features which are not hidden 

under trees 

5512 

Total overestimated building features  253 

Overall accuracy for building feature extraction 96% 

 

Table 5. Statistics for LiDAR based building feature extraction 

accuracy results 

 

The results depicted in Table 5 show that 6370 building 

features were extracted by 3D fetaure extraction method using 

LiDAR point cloud data. All the building features extracted 

using LiDAR data were cross-verified using multitemporal high 

resolution images, which indicates that the 6117 building 

features were correctly interpreted out of 6370 building 

features. The overall accuracy of LiDAR based building feature 

extraction was found to be 96% against the high resolution 

satellite image as a reference. In addition to visual 

interpretation of all the extracted buildings, we randomly 

sampled 250 points within areas classified as buildings and 

another 250 points from areas outside those regions classified 

as buildings to visually determine the number of points within 

the building areas that were correctly and incorrectly classified. 

The same procedure was done for region outside the building 

areas. The building extraction process yielded 96% Overall 

accuracy with 98% Producer's accuracy and 95% User's 

accuracy. 

5. DISCUSSION 

Separation of point cloud into ground and non-ground is the 

most critical step for DEM / DTM generation from point cloud 

data. Filtering and interpolation algorithms play a major role in 

this task. As point cloud is able to penetrate the forested areas, 

it has an advantage over photogrammetry of a highly accurate 

DTM extraction in forested areas. Numerous methods have 

been developed for point cloud processing so far, but some 

more work has to be done to get much better results. High 

density datasets make it easy to filter ground from non-ground 

points, but for low density datasets, choice of filtering 

algorithm is an utmost important step to achieve the highest 

possible accuracy. Due to significant increase in the volume in 

case of highly dense point cloud data, data storage, processing 

and manipulation have become important issues to be taken 

care of. We note that the use of a PAN-sharpened image as 

reference data for the accuracy analysis introduces, to some 

extent, data circularity. We cross-verified the tree and building 

features visually interpreted on PAN-sharpened WV-2 images 

with multitemporal satellite image data to reduce data 

circularity and bias due to visual interpretation of WV-2 data. 

Additionally, we have carried out an extensive accuracy 

analysis of the tree and building feature extraction using the 

visual interpretation of WV-2 image supported by empirical 

cross-verification of tree and building points in terms of visual 

analysis of Google Earth images of the study area and 

employing different methods using various sources of ground 

reference data acquired through several means from urban 

areas, which are publicly available (GIS-based) as maps and 

manually prepared polygons. We also note that the difference in 

acquisition of WV-2 and LiDAR datasets might have affected 

the analysis, however, this study employs many supplementary 

temporal datasets in the analysis. Therefore, we surmise that the 

potential data circularity existing in our accuracy analysis had a 

relatively insignificant effect on the comparative performance 

of the tree feature extraction. It is noted that tree features are 

over estimated which are adjacent to building features, and it 

could have reduced if we had subtracted building layer and then 

carry out the accuracy analysis. However, we are testing the 

inherent capability of LiDAR data to extract tree features using 

CHM. Subtracting building feature layer would produce the 

biased accuracy analysis. Hence, we carried out the accuracy 

analysis without subtracting the building layer. We also note 

that the present attempt should be compared with other existing 

methods for extracting tree and building features. However, the 

present study is much focused on existing algorithms for 

extracting tree and building features and cross-verifying the 

outcomes using high resolution satellite images. The present 

study insinuates some future studies for comparison of 3D 

feature extraction methods using high resolution satellite data 

as a reference.  

 

6. CONCLUSION 

The high resolution airborne LiDAR data provides tremendous 

potential for tree and building feature extraction in urban 

landscape and the hyperspatial WV-2 imagery supplements the 

accuracy assessment procedure. The objective of this study was 

to evaluate CHM-based tree-feature and building feature 

extraction by LiDAR analyst's accuracy by visual interpretation/ 

identification on 8-band WV-2 image. Our study uses the 

algorithm developed by Overwatch system’s LiDAR Analyst 

for ArcGIS for LiDAR feature extraction and classification with 

scene dependent criteria. The 8-band WV-2 image provides 

better recognition and extraction of various land-cover features 

ACCURACY ATTRIBUTE VALUE 

Total tree features extracted from LiDAR by 

using CHM method 

15143 

Total tree features visually interpreted using 

multitemporal image data 

14841 

Total non-shadowed tree features visually 

interpreted using multitemporal image data 

13830 

Total shadowed tree features visually 

interpreted using multitemporal image data 

1011 

Total overestimated tree features  302 

Overall accuracy for tree feature extraction 98% 
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and due to the inclusion of new bands in the imagery, the 

vegetation analysis becomes more effective. The present study 

provides following conclusions. (1) Texture variance for trees 

and minimum difference between returns for trees turned out to 

be the two most important factors in discriminating the tree and 

building features in the LiDAR data. (2) Preprocessing of the 

WV-2 image improved the visualization of vegetation features. 

(3) LiDAR data was found to be capable of extracting shadow-

covered tree and building features. (4) LiDAR point cloud data 

can be used in conjunction with satellite image data for 

supporting tree and building feature extraction. The research 

highlights the usefulness of the commonly used methodology 

for the LiDAR data processing and the effectiveness of 8-band 

WV-2 remotely sensed imagery for accuracy assessment of 

LiDAR-based tree and building feature extraction capability. 
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