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ABSTRACT: 

 
Aquatic macrophytes (AM) can serve as useful indicators of water pollution along the littoral zones. The spectral signatures of 
various AM were investigated to determine whether species could be discriminated by remote sensing. In this study the spectral 
readings of different AM communities identified were done using the ASD Fieldspec® Hand Held spectro-radiometer in the 
wavelength range of 325 – 1075nm.  The collected specific reflectance spectra were applied to space borne multi-spectral remote 
sensing data from Worldview-2, acquired on 26th March 2011. The dimensionality reduction of the spectro-radiometric data was 
done using the technique principal components analysis (PCA). Out of the different PCA axes generated, 93.472 % variance of the 
spectra was explained by the first axis. The spectral derivative analysis was done to identify the wavelength where the greatest 
difference in reflectance is shown. The identified wavelengths are 510, 690, 720, 756, 806, 885, 907 and 923 nm. The output of PCA 
and derivative analysis were applied to Worldview-2 satellite data for spectral subsetting. The unsupervised classification was used 
to effectively classify the AM species using the different spectral subsets. The accuracy assessment of the results of the unsupervised 
classification and their comparison were done. The overall accuracy of the result of unsupervised classification using the band 
combinations Red-Edge, Green, Coastal blue & Red-edge, Yellow, Blue is 100%. The band combinations NIR-1, Green, Coastal 
blue & NIR-1, Yellow, Blue yielded an accuracy of 82.35%. The existing vegetation indices and new hyper-spectral indices for the 
different type of AM communities were computed. Overall, results of this study suggest that high spectral and spatial resolution 
images provide useful information for natural resource managers especially with regard to the location identification and distribution 
mapping of macrophyte species and their communities.  
 
 

1 INTRODUCTION 
 

1.1 Remote sensing and GIS for aquatic plant studies 
 
Remote sensing data in combination with Geographic 
Information System (GIS) are effective tools for wetland 
conservation and management.  Remote sensing techniques 
offer rapid acquisition of data with generally short turn-around 
time at lower costs than ground surveys (Tueller 1982). 
Multispectral airborne and satellite imagery have been used 
extensively to distinguish and map aquatic vegetation (Carter 
1982, Martyn et al. 1986, Tiner 1997, Jakubauskas et al. 2002, 
Everitt et al. 2008, John 2010). Multispectral ground 
reflectance measurements have also been used to characterize 
and differentiate among wetland and aquatic plant species. Best 
et al. (1981) studied the multispectral reflectance of 10 wetland 
and emergent plant species and concluded that there were 
significantly different visible and near-infrared (NIR) spectra 
among the species. Everitt et al. (1999) reported that the 2 
submersed species hydrilla (Hydrilla verticillata) and water 
stargrass (Heteranthera dubia) could be distinguished in the 
green (520 to 600 nm), red (630 to 690 nm), and NIR (750 to 
900 nm) spectral bands. More recently, Everitt et al. (2007) 
reported that Eurasian water milfoil (Myriophyllum spicatum) 
could be differentiated from hydrilla in the green and red 
bands. Although these broadband systems and instrumentation 
have been widely used for wetland assessment, they are often 
constrained due to their coarse spatial and spectral resolution 
(Turner et al. 2003). 
 
More recently, hyper-spectral remote sensing including both 
imaging systems and ground-based radiometers, which can 
simultaneously acquire spectral data in many narrow 

contiguous spectral bands, has been used for a variety of 
natural resource management applications (Thenkabail et al. 
2000, Fung et al. 2003, Ge et al. 2006, Yang et al. 2009). 
Hyper-spectral ground reflectance measurements have been 
used to develop spectral signatures of aquatic and wetland plant 
species and to ultimately identify the optimum bands to 
separate plant species. Ullah et al. (2000) studied the hyper-
spectral reflectance of 3 emergent macrophytes and reported 
that the best separation among the species occurred at several 
bands in the NIR region (optimum bands: 882 and 885 nm). 
 
The study of aquatic macrophytes using remote sensing 
techniques has been less comprehensive than that of terrestrial 
vegetation because of the additional challenges associated with 
water reflectance, differentiating between different macrophyte 
species, and the small scale of freshwater aquatic environments 
compared to the resolution of most sensors (Underwood et al. 
2006). It is known that different types of aquatic vegetation 
have subtly different spectral reflectance signatures, which 
differ greatly from open water and non-vegetated areas 
(Marshall and Lee 1994, Ozesmi and Bauer 2002, Penuelas et 
al. 1993). However, in the case of mixed beds, the varying 
contribution of each emergent macrophytes species to the total 
coverage remains difficult (Underwood et al. 2006, Vis et al. 
2003). 
 
Mapping submerged aquatic vegetation with remote sensing 
can be problematic. The electromagnetic radiation reflected or 
radiating from submerged vegetation must cross the air-water 
interface (Wolter et al. 2005). In addition, because water 
absorbs much of the electromagnetic spectrum used in remote 
sensing, a major complication in remotely sensing of 
submerged vegetation is depth of the macrophyte canopy in the 
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water column (Han and Rundquist  2003, Penuelas et al. 1993, 
Wolter et al. 2005). Non-canopy forming submerged vegetative 
species are the most commonly misclassified submerged 
vegetation (Valta-Hulkkonen et al. 2005, Vis et al. 2003, 
Wolter et al. 2005). 
 
1.2 Methods of RS data analysis 
 
Principal components analysis (PCA) is a multivariate method 
of statistical analysis and has been used widely with large, 
multi-dimensional data sets. PCA has been called, ‘one of the 
most important results from applied linear algebra’ and perhaps 
its most common use is as the first step in trying to analyse 
large data sets. Some of the other common applications 
include; de-noising signals, blind source separation, and data 
compression (Mark 2009). Principal component analysis 
calculated with the matrix of correlations and therefore not 
mean-correlated (e.g.: maximizing the weight of IR 
wavelengths) gave, as expected, a first principal component 
(PC1) that separates underwater from floating and emergent 
plants (Penuelas et al. 1993). 
 
Derivative analysis is an established technique for eliminating 
background signals, resolving interference from overlapping 
spectral features such as those from soil and water reflectance, 
and avoiding turbidity interference in the assessment of aquatic 
chlorophyll (Demetriades-Shah et al. 1990). Several spectral 
indices in the visible and near infrared were calculated with 
criteria based in the most outstanding features of the spectra, 
mainly those due to the absorbance of photosynthetic and 
protective pigments. The first derivative helps to locate the red 
edge, that is, the wavelength of maximum slope of the 
reflectance between 670nm and 800 nm (Penuelas et al. 1993). 
 
1.3 Present study 
 
The present study was taken up in a selected portion of the 
Vembanad estuary in the western coast of peninsular India 1) to 
investigate the use of field based in-situ measurement of 
hyperspectral reflectance data in identifying and deriving new 
species specific hyperspectral indices of aquatic macrophytes 
2) to compare among spectral reflectance characteristics of 
aquatic plants those are adapted to grow above water surface 
(emergent/floating vegetation) and below water surface 
(submerged aquatic vegetation) 3) to integrate in-situ measured  
hyperspectral reflectance data with the high spatial resolution 
multispectral satellite image and map the distribution of 
species-specific communities. 
 
 

2 MATERIALS AND METHODS 
 
2.1 Study area: Vembanad estuary 
 
A small portion of Vembanad estuary is selected for the study.  
The central point latitude and longitude of the area selected for 
the study is 9038’4.74”N and 76024’49.02”E. This test site was 
chosen because of its size, water depth, and similar abundance 
of dominant macrophyte species. The study area enjoys humid 
tropical monsoon climate and receive more than 300 cm rain 
fall annually. Annual temperature ranges from 21 to 350C (John 
2010). This kind of monsoon climate played a crucial role in 
the diversity of fauna and flora of this lake. 
 
2.2 Materials used 
 
2.2.1 Spectro-radiometric data:  

Field reconnaissance of the Vembanad estuary was conducted 
on 26th march 2011. A FieldSpec® hand held field spectro-
radiometer was used to retrieve the true reflectance value of 
target plant communities (Fig. 1). Five communities were 
identified from the field (Table 1). Spectro-radiometric 
readings quantified the amount of atmospheric effects at 
different targets, thus allowing comparisons to be made with 
satellite retrieved reflectance. ASD FieldSpec® HandHeld 
spectroradiometer has a spectral range of 325-1075 nm, 
spectral resolution of 1.6 nm, sampling interval of 3.5 nm and 
field of view of 250. Garmin Etrex hand held 12 channel 
handheld GPS receiver with horizontal accuracy of 3 m was 
used to record the exact geographic coordinates of the AM 
communities location 
 

Scientific name Common name Vegetation type 
Cabombo 
caroliniana - not  
topped 

Rooted submerged 
- not topped 
(young) 

Cabombo 
caroliniana - 
topped 

Green Cabombo 
or Fanwort or 
Carolina Fanwort 
or Fish grass or  
Washington grass 

Rooted submerged 
- topped 

Eichhornia 
crassipes Water Hyacinth Free-floating  

Ischaemum 
travancorence Murainagrass Emergent -floating 

Stemmed 

Nymphaea 
pubescens 

White water lily 
or fragrant water 
lily 

Rooted floating 
leaved 

Table 1 Aquatic vegetation communities identified 

Figure 1 Field photos of different communities 
 

2.2.2 Satellite image data: The satellite imagery of 
Worldview-2 was acquired for the study area on March 26, 
2011 as part of the 8-band challenge programme of Digital 
Globe. These summer dates were used because the optimal 
time to map the area extent of emergent and submerged 
vegetation is in the growing season when full emergence has 
occurred.   
 
Worldview-2 was chosen because a high spatial resolution and 
the spectral bands needed to map the aquatic macrophytes. 
Worldview-2 satellite able to provide panchromatic imagery at 
0.5 m of spatial resolution and 8-band multispectral imagery at 
1.84 m spatial resolution. The satellite has a 16.4 km swath 
width, a 1.1 average day revisit time. In addition to the standard 
panchromatic and multispectral Blue (1), Green (3), Red (5) 
and Near InfraRed (NIR1) (7) bands the Worldview-2 sensor 
has Coastal Blue (2), Yellow (4), Red Edge (6) and NIR 2 (8) 
bands. 
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Figure 2 Portion of Vembanad Lake as viewed by WorldView-
2 on 26th march 2011: a) TCC of 8-band multi-spectral data b) 

Panchromatic data 
 
2.2.3 Software packages used  
 FieldSpec ViewSpec Pro (Spectra viewing and processing) 
 ERDAS IMAGINE 9.1 (Image Processing software) 
 ArcGIS 9.3 (GIS analysis Software) 
 PC-ORD, XLSTAT 2014.1.10 (Multivariate analysis) 
 
2.3 Methods Used 
 
2.3.1 Analysis of spectro-radiometric data: The spectral 
readings of different AM communities identified were collected 
using the HH spectro-radiometer. It was collected in such a 
way that reflectance from the target community only reached 
the detector. The detector head was placed just above the water 
surface for submerged communities. It was placed between 4 
and 6 cm above the target for other communities. The 
collection of spectral reflectance and its saving as a data file 
was done with the help of the FieldSpec RS3 software package 
loaded in a specially designed Notebook field computer which 
is connected with the spectro-radiometer. Preliminary data 
processing of the collected spectra was done in the Notepad 
itself using the FieldSpec ViewSpec Pro software.  
 
2.3.1.1 Principal component analysis: Principal components 
analysis (PCA) is a multivariate method of statistical analysis 
and has been used widely with large, multi-dimensional data 
sets. Multi- or hyper-spectral images are often highly 
correlated. PCA is an ideal method for transforming correlated 
variables in a sample data set into a new, uncorrelated co-
ordinate system or vector space. Each new variable is a linear 
combination of the original variables, such that the sequence of 
new factors successively represents the maximal variance of 
the data. Each resulting Eigen value is equal to the variance of 
the respective principal component along transformed 
coordinate axes, and the sum of all Eigen values is equal to the 
sum of all band variances in the original data. Associated with 
each Eigen value is a set of coordinates defining the direction 
of the associated principal axis (Krzanowski 2000). Eigen 
values and eigenvectors therefore describe the lengths and 
direction of principal axes. Eigenvectors can also be interpreted 
as correlations between the abstract principal components and 
individual bands in the original spectra (or image). These 
correlations or loadings are used in the interpretation of the 
principal components and describe how closely a particular 
spectrum resembles the principal component (Holden and 
LeDrew 1998).  
 
2.3.1.2 Derivative Analysis: Increasing use of hyper-spectral 
sensors in aquatic or marine settings, e.g. Holden and LeDrew 
(1998), Clark et al. (2000) opened the possibility of using 

derivative techniques for studies of algae in littoral 
environments (Louchard et al. 2002). Derivative uses 
wavelength changes in spectral reflectance or radiance to 
sharpen spectral features, separating components in the 
derivative spectrum clearer than in the reflectance spectrum. At 
the spectral sampling interval typical of hyper-spectral systems, 
derivatives should also be relatively insensitive to the spectral 
variations of sunlight and skylight (Tsai and Philpot 1998). The 
simplest numerical method for generating derivatives divides 
the differences between successive spectral values by the 
wavelength interval that separates them. The first order 
derivative provides information on the rate of change in 
reflectance, which is the slope with respect to wavelength; the 
second order derivative reveals the change in slope with respect 
to wavelength (Holden and LeDrew, 1998). Derivatives are 
particularly sensitive to noise, thus smoothing or otherwise 
minimising random noise is a major concern. 
 
2.3.2 Integration of interpreted information from in-situ 
hyperspectral data to multispectral satellite image: In 
previous section the analysis of spectro-radiometric data is 
presented. In the following section the methods applied to 
integrate the information derived from in-situ hyperspectral 
data with space borne high spatial resolution multispectral 
remote sensing data are described. 
 
2.3.2.1 Distribution mapping of AM communities: Using 
remote sensing methods for discriminating macrophyte species 
can be a consistent and objective means in mapping large areas 
for monitoring purposes but only if the spectra of in situ species 
are distinct.  
 
2.3.2.1.1 Digital classification and accuracy assessment: One 
of the goals of the study was to find an efficient, non-labour 
intensive way of classifying the image for the aquatic 
macrophytes communities. Marshall and Lee (1994) found that 
the process of selecting training classes and the subsequent 
signature evaluation needed in a supervised classification was a 
time consuming process. Everitt et al. (2005, 2008) showed that 
a supervised classification does not produce significantly better 
results than an unsupervised classification when mapping 
macrophyte species. For these reasons, an unsupervised 
classification using the Iterative Self-Organizing Data Analysis 
Technique (ISODATA) algorithm was run on the study area in 
the WorldView-2 image in four different spectral band subsets 
which was decided according to band dissimilarity derived 
from the PCA. The convergence threshold was left at the 
default of 0.95 and the maximum number of iterations was set 
to twenty five. Accuracy assessment was done by generating an 
error matrix using 51 sample locations from the field. 
 
2.3.2.1.2 Pan-sharpening and visual interpretation: 
Sharpening of multispectral data with high spatial resolution 
panchromatic data provides better visual discrimination of the 
boundaries of AM communities. The Intensity-Hue-Saturation 
(IHS) method is a popular pan-sharpening method used for its 
efficiency and high spatial resolution. Various transformation 
techniques such as Modified IHS, Principal Component, 
Brovey transformation, Multiplicative and Ehlers are used to 
improve the spatial resolution to 0.5 m. Merged products were 
used for visual interpretation and then compared for their 
resultant visual interpretability (Fig. 3). Data fusion involves 
geometrical co-registration of two data sets and mixture of 
spatial and spectral information contents to generate a new data 
set that contains the improved information from both datasets 
(Shaban and Dikshit 2002). 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, 2014
ISPRS Technical Commission VIII Symposium, 09 – 12 December 2014, Hyderabad, India

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-8-581-2014

 
583



2.3.2.1.3 Generation of spectral indices: Normalized 
Difference Vegetation Index (NDVI) was calculated using the 
red and NIR bands of the satellite imagery with the following 
formula: NDVI = (NIR – RED) / (NIR + RED). The value 
range of an NDVI is -1 to 1 where healthy vegetation generally 
falls between values of 0.20 to 0.80. Previous studies have 
shown that NDVI has positive correlation with aquatic 
macrophyte plant cover (Jakubauskas et al. 2000, Penuelas et 
al. 1993) and can be used to help differentiate vegetation and 
other surfaces from one another (Ozesmi and Bauer  2002). 
Because the NDVI is a ratio, it reduces many forms of 
multiplicative noise such as shadows. In this study in addition 
to existing vegetation indices certain new indices were 
generated using NIR-1, RED and Red-edge bands. 
hyperspectral vegetation indices were manually calculated 
using the result of PCA to identify species-assemblage wise 
indices. Eichhornia crassipes and Ischaemum travancorense 
showed highest reflectance variance in 810 – 900 nm and is 
quantified by the following equation: 
  NDVI (810-900) = R900-R810/R900+R810 
     SR (810-900)         = R900/R810 
 Cabombo caroliniana (mature), Cabombo 
caroliniana (young) and Nymphaea pubescens showed highest 
variance in the reflectance values at 325- 327 nm, 702 – 717 
nm and 739 - 741 respectively, and are quantified by the 
following equations: 
  NDVI (325-327) = R327-R325/R327+R325 
  NDVI (702-717) = R717-R702/R717+R702 
  NDVI (739-741) = R741-R739/R741+R739 
  SR (325-327)      = R327-R325 
  SR (702-717)      = R717-R702 
  SR (741-7397)   =   R741/R739 
 

 
Figure 3 Flowchart of the overall methodology adopted 

 
 

3. RESULTS AND DISCUSSION 
 
3.1 Nature of the hyperspectral reflectance spectra 
 
Spectral characterization of the identified communities yielded 
the following results showing high variability among different 
communities (fig. 4). Reflection spectra of the five macrophyte 
species, measured directly above uniform patches, showed low 

VIS reflectance, caused by absorption by chlorophyll and other 
pigments, and high NIR reflectance due to multiple-scattering 
processes occurring within the leaf structure, both of which are 
typical vegetation reflectance patterns (Gausman 1984).  These 
spectra can be used to draw conclusions about the nature of 
reflectance of different growth habitats for aquatic macrophyte 
species. It can be observed that Nymphaea pubescens has more 
reflectance than any other communities. Submerged type 
vegetation composed of Cabombo caroliniana showed very 
low reflectance value. 

             

 
          Figure 4 Mean reflectance spectra of five macrophytes 
species measured in situ using a FieldSpec® Handheld field 

spectro-radiometer 
 

3.2 Principal component analysis 
 
Principal components were calculated from the reflectance 
spectra from 325−900 nm for all species. 93.472 % of the 
variance was explained by the first axis and 5.876 % by axis 
two. PC loadings (Table 2) were used to pre-select for relative 
contributions of particular wavelengths and to identify poor 
spectral locations (wavelengths within the spectra).  
 

AM communities PC1 PC 2 PC 3 
Cabombo caroliniana 
(young) -0.885 0.455 -0.098 

Cabombo caroliniana 
(mature) 0.918 0.376 0.124 

Eichhornia crassipes 0.998 0.014 -0.060 
Ischaemum 
travancorense 0.998 -0.017 -0.049 

Nymphaea pubescens 0.996 0.060 -0.032 
Table 2 Factor loadings of the PC axes - community wise 

 
PC Axis 1 is highly positively related to the abundances of 
Cabombo caroliniana_topped, Eichhornia crassipes, 
Ischaemum travancorense and Nymphaea pubescens, and 
strongly negatively related to the abundance of Cabombo 
caroliniana_not topped. Axis 2, on the other hand, is positively 
related to the abundance of all species except Ischaemum 
travancorence, but mostly Cabombo caroliniana_not_topped. 
So the "gradient" reflected by Axis 2 is something which 
benefits Cabombo caroliniana_not_topped.  
 
According to the PC loadings of the various wavelengths, 
Ischaemum travancorense and Eichhornia crassipes showed   
maximum relation in the 810 nm - 900 nm wavelength region.  
Cabombo caroliniana_not_topped showed maximum relation 
in the 702 - 726 nm and 804 - 810 nm wavelength region. 
Cabombo caroliniana_topped showed maximum relation in the 
325 nm - 327 nm and at 680 nm wavelength region. Nymphaea 

WV-2 image 

Image Fusion 
(Modified HIS, 

Ehlers, PC, Brovey, 
Multiplicative) 

Visual 
interpretation of 

Std FCC 

Spectral band subsetting 

Unsupervised classification 

Accuracy assessment 

Spectroradiometric data 

Vegetation indices 

Principal Component 
Analysis 

Derivative Analysis 

Interpretation 
and 

evaluation of 
results 
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pubescens showed maximum relation in the 739 nm – 741 nm 
wavelength region. 
 
3.3 Derivative analysis 
 
The first and second-order derivatives of mean reflectance 
spectra of macrophyte species show differences in shape and 
magnitude, and provide a mean to quantify the exact 
wavelengths at which absorption troughs and inflection points 
occur in reflectance data.  
 

 

 
 

Figure 5 Derivatives of the reflectance spectra of five 
macrophyte species a) first order b) second-order  

 
Wavelengths where the greatest difference between the 
macrophyte species occurred in the reflectance spectra were at 
505, 685, and 930 nm. In the first-order derivative, these 
wavelengths were 510, 690, 720, 756, 806, 885, 907 and 923 
nm. Greater number of absorption troughs and inflection points 
were observed from the second-order derivative, at 510, 612, 
686, 710, 720, 752, 764, 802 and 930 nm. The first-order 
derivative spectra appear to be less subject to noise than the 
second-order, suggesting that the first derivatives would be the 
best option in selecting wavelengths to distinguish between 
macrophyte species. 

 
3.4 Distribution mapping of AM communities 

 
3.4.1 Spectral subsetting and unsupervised classification: 
The spectral subsets of the WV-2 multispectral image 
generated were: 1. Red-edge, green and coastal blue (631) 2. 
Red-edge, yellow and blue (642) 3.  NIR1, green and coastal 
blue (731) and 4. NIR1, yellow and blue (742). This consisted 
of only dissimilar spectral bands as derived from PCA. The 
unsupervised classification of these 4 different spectral subsets 
resulted in various AM community classes (Fig. 6, 7, 8, 9). 
Unsupervised classification of the first 2 spectral subset 
combinations which has red-edge band yielded an overall 
accuracy of 100% (Kappa static = 1). The overall accuracy of 
the second 2 subsets was 82.35% (Kappa statistic = 0.79). 
 

 
Figure 6 Unsupervised classification of WV-2 MSI using 6, 3, 

1 spectral subset bands 
 

 
Figure 7 Unsupervised classification of WV-2 MSI using 6, 4, 

2 spectral subset bands                    
 

a) 

b) 
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Figure 8 Unsupervised classification of WV-2 MSI using 7, 3, 

1 spectral subset bands                    

 
Figure 9 Unsupervised classification of WV-2 MSI using 7, 4, 

2 spectral subset bands                    
 
3.4.2 Pan sharpening and visual interpretation of standard 
FCC: PAN-Sharpening using various techniques resulted in 
different merged outputs (Fig. 10). Best sharpening was 

obtained in the Modified IHS method with very sharp edges 
between communities. 

 

 
 

Figure 10 PAN-sharpened worldview-2 image of a part of the 
study site through various techniques a) Mod. IHS b) Brovey 

transform c) Multiplicative d) Ehlers fusion e) Principal 
component   f) Original image. All were done by the FCC using 

5, 3, 2 bands. 
 

The visual interpretation of the standard FCC of best PAN-
sharpened multispectral image (MSI) using interpretation 
elements such as tone, texture, pattern, shape, size and 
association resulted in the identification of more communities 
even at species level (Fig. 11). 
 

 
Figure 11 Communities mapped through the visual 

interpretation of the Mod. IHS PAN sharpened WV-2 MSI 
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3.4.3 Vegetation indices of AM communities: Broadband 
vegetation indices were computed to calculate the density of 
the vegetation using the 3 spectral bands - red, red-edge and 
NIR-1 in the WV-2 MS image (Fig. 12 and 13). The value of 
NDVI ranged between -1 to 1. Value 1 represents the healthy 
vegetation.  
 
Species specific hyperspectral vegetation indices were 
generated using the spectroradiometric data as simple ratio and 
NDVIs using the wavelengths identified as dissimilar in the 
PCA (Table 3). Ischaemum travancorense has high NDVI and 
SR in 810 – 900 nm wavelength regions. Eichhornia crassipes 
has the next highest values for both NDVI and SR. Cabombo 
caroliniana (young)) has less vegetation index value in 702 – 
717 nm regions. 
 

AM communities 

PCA 
highest 
variance 

range (nm) 

NDVI SR 

Eichhornia crassipes 810 - 900 0.029 1.059 
Ischaemum 
travancorense 810 - 900 0.046 1.097 

Cabombo caroliniana  325 - 327 0.002 1.004 
Cabombo caroliniana 
(mature) 702 - 717 0.014 0.031 

Nymphaea pubescens 739 - 741 0.003 1.007 
NDVI- Natural Difference Vegetation Index, SR – Simple 

Ratio 
 

 
Figure 12 NDVI of bands NIR-1 and Red 

 

 
Figure 13 NDVI of bands Red-edge and Red  

 
 

4 CONCLUSION 
 

The study is very useful for spectral discrimination, spectral 
characterization and mapping of AM communities. The 
additional spectral bands especially the use of red-edge 
improved the seperability of different AM species. It is found 
that unsupervised classification using the red-edge and green 
bands were efficient to separate submerged communities from 
emergent communities. Overall, results of this study suggest 
that high spectral and spatial resolution images provide useful 
information with regard to the location and distribution of 
macrophyte species. Further use of remotely sensed 
hyperspectral images is required to improve the spatial 
mapping. The availability of these images is the main limitation 
for this. Outputs of this research improved the scope of 
utilization of remotely sensed satellite images and GIS based 
analysis for wetland monitoring, planning and management.  
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