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EXTENDED ABSTRACT 

 

Tropical forests contribute to approximately 40% of 

the total carbon found in terrestrial biomass. In this context, 

forest/non-forest classification and estimation of forest above 

ground biomass over tropical regions are very important and 

relevant in understanding the contribution of tropical forests in 

global biogeochemical cycles, especially in terms of carbon 

pools and fluxes. Information on the spatio-temporal biomass 

distribution acts as a key input to Reducing Emissions from 

Deforestation and forest Degradation Plus (REDD+) action 

plans. This necessitates precise and reliable methods to estimate 

forest biomass and to reduce uncertainties in existing biomass 

quantification scenarios. 

The use of backscatter information from a host of all-

weather capable Synthetic Aperture Radar (SAR) systems 

during the recent past has demonstrated the potential of SAR 

data in forest above ground biomass estimation and forest / non-

forest classification.  

In the present study, Advanced Land Observing 

Satellite (ALOS) / Phased Array L-band Synthetic Aperture 

Radar (PALSAR) data along with field inventory data have 

been used in forest above ground biomass estimation and forest 

/ non-forest classification over Odisha state, India. The ALOS-

PALSAR 50m spatial resolution orthorectified and 

radiometrically corrected HH/HV dual polarization data (digital 

numbers) for the year 2010 were converted to backscattering 

coefficient images (Schimada et al., 2009).  

The tree level measurements collected during field 

inventory (2009-’10) on Girth at Breast Height (GBH at 1.3m 

above ground) and height of all individual trees at plot (plot size 

0.1ha) level were converted to biomass density using species 

specific allometric equations and wood densities. The field 

inventory based biomass estimations were empirically 

integrated with ALOS-PALSAR backscatter coefficients to 

derive spatial forest above ground biomass estimates for the 

study area. 

Further, The Support Vector Machines (SVM) based 

Radial Basis Function classification technique was employed to 

carry out binary (forest-non forest) classification using ALOS-

PALSAR HH and HV backscatter coefficient images and field 

inventory data. The textural Haralick’s Grey Level Co-

occurrence Matrix (GLCM) texture measures are determined on 

HV backscatter image for Odisha, for the year 2010. PALSAR 

HH, HV backscatter coefficient images, their difference (HH-

HV) and HV backscatter coefficient based eight textural 

parameters (Mean, Variance, Dissimilarity, Contrast, Angular 

second moment, Homogeneity, Correlation and Contrast) are 

used as input parameters for Support Vector Machines (SVM) 

tool. Ground based inputs for forest / non-forest were taken 

from field inventory data and high resolution Google maps.  

Results suggested significant relationship between 

HV backscatter coefficient and field based biomass (R2 = 0.508, 

p = 0.55) compared to HH with biomass values ranging from 5 

to 365 t/ha. The spatial variability of biomass with reference to 

different forest types is in good agreement. The forest / non-

forest classified map suggested a total forest cover of 50214 

km2 with an overall accuracy of 92.54%. The forest / non-forest 

information derived from the present study showed a good 

spatial agreement with the standard forest cover map of Forest 

Survey of India (FSI) and corresponding published area of 

50575 km2. Results are discussed in the paper 
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1. INTRODUCTION 

  

Forests play an important role in balancing the Earth’s CO2 

supply and exchange, acting as a key link between the 

atmosphere, geosphere, and hydrosphere; therefore, monitoring 

forest biomass at local to global scales has become a 

challenging issue in the context of climate change. Tropical 

forests contain about 40% of carbon found in terrestrial biomass 

(Dixon et al., 1994; Phillips et al., 1998; Watson et al., 2000). A 

precise quantification of above ground biomass (AGB) and 

producing accurate and high resolution up to date forest cover 

maps in tropical forests are the international efforts to avoiding 

deforestation and associated emissions. The issue of Reducing 

Emissions from deforestation and Degradation plus (REDD+) in 

developing countries has been initiated (Achard et al., 2007; 

Gibbs et al., 2007; 

http://unfccc.int/resource/docs/2005/cop11/eng/05.pdf). Forest 

carbon pools consist of trunks, branches, leaves, litter, dead 

wood, roots and soil carbon. In tropical forests worldwide, 

about 50% of the total carbon is stored in above ground biomass 

and 50% is stored in the top 1m of the soil. Because of this, 

precise and reliable methods are needed for estimating loss of 

forest cover, land cover change and monitoring forest carbon 

stocks at national level to assess the economic benefits. 

 Tropical forests are often difficult to access on the 

ground because of this satellite observations and measurements 

could become the primary source for monitoring AGB and 

producing forest maps. Optical remote sensing has proved to be 

useful for estimating deforestation and detecting secondary 

vegetation but it may be obstructed clouds and smokes for most 

of the times in tropical region and is insensitive to biomass 

growth. Space borne Synthetic Aperture Radar (SAR) are active 

systems that transmit microwave energy at wavelengths ranging 

from 1-100 cm (X band to P band). They are weather and 

daylight independent. This is very advantageous in tropical 

regions, which are often covered by clouds. Moreover, radar 

signal are sensitive to moisture content and vegetation structure 

properties which may help to forest types (Saatchi et al., 1997; 

Salas et al., 2002; Neumann et al., 2010).  

Polarized SAR at L-band (e.g., ALOS/PALSAR) has 

been successfully used for estimating AGB (Wolter et al., 2011; 

Santoro et al., 2009; Cartus et al., 2012; Robinson et al., 2013) 

and regional land cover classification (Nicolas Longépé et al., 

2011) due to the high sensitivity of the backscattered signal at 

L-bands to forest structure, probably because of strong 

interactions with tree trunks and branches. In this context, we 

used ALOS PALSAR 50 m dual polarization (HH/HV) mosaic 

data for forest above ground biomass (AGB) estimation and 

forest/non-forest (FNF) classification for the Odisha, India for 

the year 2010. 

 The main objective of this research is to investigate 

the potential of L-band dual polarization SAR (PALSAR) data 

for state level biomass estimation by using regression method 

and forest/non-forest classification by using Support Vector 

Machine (SVM) supervised classification method. 

 

2. STUDY AREA AND DATA 

 

Study area selected for both objectives (Forest AGB estimation 

and FNF classification) of this research is the Odisha, it is an 

eastern state of India and which lies between 17.49N latitude to 

22.34N latitude and 81.27E longitude to 87.29E longitude 

(Fig.1). It has an area of 155,707 km2 and extends for 800 

kilometres from north to south and 500 kilometres from east to 

west. Its coastline is 480 kilometre long. There are three major 

seasons- summer (March-June), Rainy season (July-September) 

and the winter (October-February) and has tropical climate. It is 

warm almost throughout the year in the western districts of 

Sundergarh, Sambalpur, Baragarh, Bolangir, Kalahandi and 

Mayurbhnj with maximum temperature hovering between 40 - 

460 C and in winter, it is intolerably cool. In coastal districts, the 

climate is equable but highly humid and sticky. The summer 

maximum temperature ranges between 35-400 C and the low 

temperatures are usually between 12-140 C. The average rainfall 

is 150 cm, experienced as the result of south west monsoon 

during July-September. The state experiences small rainfall 

from the retreating monsoon in the months of October-

November, January and February are dry. The study area, 

thickly covered by forests both of the tropical moist deciduous 

type as well as tropical dry deciduous. The hills, plateaus and 

isolated areas of the north eastern part of the state are covered 

by the tropical moist deciduous forests whereas the second 

types of the forests are located in the southwest region of the 

state. Some of the trees which grow in abundance in Odisha are 

bamboo, teak, rosewood, sal, piasal, sanghvan and haldi (Roy 

et. al., 2012). 
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Fig.1 False colour composite (HH HV HH-HV) image of study 

area 

 

Table 1: ALOS PALSAR mosaic data details 

Sensor mode Polar

izati

on 

Off 

nadir 

angle 

Inciden

ce 

range 

Swath 

width 

Pass 

designa

tion 

Cove

rage  

Fine Beam 
Dual 

polarization 

HH+
HV 

34.30 36.60~
40.90 

70 km Ascend
ing 

 

Glob
al  

In this study we used the PALSAR 50-m 

Orthorectified Mosaic Product HH (horizontally transmitted and 

horizontally received) and HV (horizontally transmitted and 

vertically received) polarizations has been used and data 

contains HH/HV backscatter images (DN values). 

ALOSPALSAR 50-m mosaic product product details shown in 

table 1. 
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Figure 2. Land cover map of Odisha for 2005-06. It showing 

main land cover classes contained in the study area.  

 

3. METHODOLOGY 

 

The methodology (Fig.3) of this study comprises four parts i.e. 

Ground sampling data collection, SAR image processing, 

biomass estimation and FNF SVM classification. 

 

3.1. Ground sampling data collection 

 

Field inventory data was collected as part of ISRO GBP 

National Carbon Project in 2009-10 and planned a common 

inventory design over the entire country with the sample plot 

size of 0.1 ha. Sample sites were carefully selected to ensure 

adequate coverage of all major forest types and forest density 

classes. Forest inventory parameters (Diameter at breast height 

(DBH), tree height, species, tree density and forest types) were 

collected from sample sites. Tree level measurements were 

converted to biomass density using regions and species specific 

volume equations and wood densities. Forest inventory 

parameters and their relationship with tree volume has been 

used to assess plot biomass (table2) using the allometric model 

developed for this study area.  

 Ground sampling pints for forest / non-forest classes 

were taken from field inventory data and high resolution Google 

maps. Forest sampling locations are taken from forest field 

inventory data (as explained above). The Non-forest locations 

are collected using Google maps and taken from Agriculture, 

Urban/settlement, water bodies and Scrub land areas and 

considered as one class (Non-forest) because the main aim of 

this effort is forest and non-forest classification. The number of 

training and test samples used for the study area is given in 

Table 3. 

Table 2: Summary of AGB measured within all the sample 

plots. 

sample 

size (n) 

Minimum 

(t/ha) 

Maximum 

(t/ha) 

Mean 

(t/ha) 

Standard 

deviation (t/ha) 

183 11.60 293.01 61.35 47.94 

 

3.2. Calculation of backscattering coefficient 

  

The dual-polarization PALSAR 50 m mosaic data set was as 16-

bit Unsigned Integer data with digital number (DN) ranging 

from 0 to 65,535 for each of polarization. The backscatter 

coefficient ( ), or Normalized Radar Cross Section (NRCS), 

for HH and HV polarization components was obtained from 

following equation:  

 

           (1) 

 

Where DN = digital number, and CF = sensor calibrated 

constant, set at -83.0 dB. 

 

 

Fig. 3. Overall methodology flow chart 

The converted backscattering coefficient images 

( ), HH/HV are used for biomass modelling and texture 

measurement analysis. 

 

3.3. Biomass modelling and mapping 

  

In this research we have used linear regression models with log 

transformation of field biomass data for establishing 

relationship between ALOS PALSAR backscattering coefficient 

( ) and field biomass (AGB). Before applying regression 

analysis between PALSAR backscatter and ground sampling 

data, an average of 3x3 HH/HV backscatter pixels was used for 

reducing GPS geo location error. The PALSAR HH and HV  

 values are extracted at corresponding locations of measured 

AGB of sampling plots. Both variables (  and AGB) of each 

plot were correlated to produce empirical models in which the 

best correlation was selected and used for AGB prediction for 

whole study area. The predicted AGB was presented in a 

thematic layer showing the distribution of AGB t ha-1 over the 

study area. 

 

3.4. Extraction of texture features on HV backscattering 

image  
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Textural information has proven to be efficient for natural target 

monitoring even if no unique solution has been used to 

incorporate such information into a classification method 

(Saatchi et al., 2000; Simard et al., 2000; Kuplich et al., 2005). 

Two-point statistics such as the grey-level co-occurrence 

features are among the most commonly used tool for texture 

characterization (Nicolas Longépé et al., 2011). The Grey Level 

Co-occurrence Matrix (GLCM) is a statistically based method 

of obtaining textural information from remotely sensed imagery 

of all types. The GLCM is computed from a relative 

displacement vector (d, ϴ), which is based on the spatial 

distribution of grey level pairs of pixels separated by a distance 

(d) in a particular direction (ϴ). From this information, a 

number of textural measurements can be derived (Hralick, 

1979) out which eight texture features are frequently used i.e. 

Mean, Variance, Entropy, Variance, Contrast, Dissimilarity, 

Homogeneity, Correlation, Second Moment and Mean, all of 

which have been shown to be useful in discriminating between 

tropical forest types (Podest et al., 2002). A detailed description 

of each texture measure can be found in Haralick (1979). Eight 

image texture measures were extracted for HV backscatter 

image. Selecting an appropriate window size for texture 

analysis is critical, as small window sizes often exaggerate 

differences, while large window sizes cannot effectively extract 

texture due to smoothing (Lu and Batistella, 2005). Rather than 

deciding upon a particular window size to generate texture 

measures in advance, all eight texture measures were generated 

for a window size 3x3 pixels. Texture was then derived for four 

commonly used directions within the window (450, 900, 1350 

and 00), with the central pixel value derived from integrating all 

four values. To reduce computational effort the GLCM matrix 

was constructed using a 64 grey level quantization, since high 

image quantization levels can generate sparse GLCMs, which 

may compromise the accuracy of the probability estimates for 

GLCM and, thus any derived texture measures (Bijlsma, 1993). 

All eight texture measures on HV and HH, HV, HH-HV 

backscatter images were used as input band layers for SVM 

forest/non-forest classification.  

Textural features to be selected by the SVM based methodology 

for the features selection 

PALS
AR 

chann

el 

 

Image 
quantization 

GLCM 
computati

on 

window 
size  

 

Haralick’s features 

method 

 

Numbe

r of 

levels 

HV Histogr
am 

equaliz

ation 

64 3x3 Mean, Dissimilarity, 
Entropy, Second 

moment, 

Homogeneity, 
Contrast and 

Variance 

 

3.5. Support Vector Machine (SVM) 

 

SVM was initially proposed to construct an optimal separating 

hyper plane when data are linearly separable. The hyper plane is 

constructed to achieve the maximum margins between training 

samples from different classes based on support vectors, which 

is defined as the nearest vectors from each class to the hyper 

plane. When data cannot be linearly separated, kernel function 

was introduced to project the original data to higher 

dimensional space, in which an optimal separating hyper plane 

can be derived. When misclassification of some training 

samples cannot be avoided, a parameter C is introduced to 

indicate the trade-off between penalty of misclassification 

against simplicity of the hyper plane. A smaller C value 

indicates more tolerance of misclassification. It was reported 

that SVM method is largely influenced by the parameters of 

kernel function and penalty parameter C but not type of kernel 

function (Vapnik, 1995). In the past, three types of kernel 

functions were often used: polynomial function, Radial Basis 

Function (RBF) and sigmoid function. In this study, we used the 

RBF as the kernel function given the fact that it is independent 

of data size and dimensionality while achieving good 

performance. Specific form of the RBF is provided in the 

following equation, 

 

         (2) 

 

In which  is a critical parameter that represents the spatial 

extent that a particular training sample can reach. The smaller 

the value of , the further distance it can influence. 

 In this study, we developed a scheme to combine a 

grid search method and cross validation (CV) to determine the 

optimal values of  and C when the RBF kernel is applied. The 

grid search method aims to alternate  and C in an efficient 

way, in which an initial lower bound of  and C is first defined. 

Then,  and C will independently increase on an exponential 

pace at each step until  and C reach their upper bound (Hsu, 

Chang, and Lin 2003). Associated with each pair of  and C 

values, a CV is carried out in the following manner. First, all the 

training samples are equally split into several folds. Then, an 

iterative process is introduced to treat one fold as the validation 

set while the remaining as training ones. A classification was 

conducted every time when the training and test samples 

alternated. Then, an average accuracy (over all accuracy) of 

classification can be calculated from all the training and test sets 

in the iteration. Consequently, the optimal  and C values are 

those that yield the highest average classification accuracy. 

  

Table 3: Samples used for forest/non-forest classes 

class Forest 

           

Non-forest 

Training samples 31 103 

Testing samples 71 100 

Support Vector Machine performs supervised 

classification on sigma naught images plus GLCM texture 

measures to identify the class associated with each ground ROIs 

pixel. In this study eight texture bands (Mean, Variance, 

Dissimilarity, Contrast, Correlation, Homogeneity, Entropy and 

Second moment)  and two backscattering images (HH, HV), 

one difference image (HH-HV) were used as the input bands for 
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SVM. These eleven band combination improved the accuracy of 

forest-non forest classification. In this study 102 forest samples 

and 203 non-forest samples are randomly (shown in fig 4) 

selected for SVM training and accuracy assessment. These 

sample data locations are overlay on the ALOS PALSAR bands 

and converted as the ‘region of interest’ (ROI) for forest and 

non-forest class’s tools provided by ENVI version 5. The total 

forest, non-forest ROI’s selected for training is 31 and 103 

respectively and for the validation 71 and 100 are taken from 

different locations. Accuracy validation of the classified maps 

was based on the independent validation samples as presented 

above.                                                                                                                                                                                       

 

Fig. 4. The spatial distribution of ground sampling locations 

over India. The Regions of Interest (ROIs) used for the 

algorithm training and results validation. 

 

4. RESULTS AND ANALYSIS 

 

4.1. Biomass modelling and validation 

 

The major forest types found in all sampling plots were dry 

deciduous and moist deciduous. The number of sample plots are 

183 and the biomass range of these plots between 11.6 and 293 

t/ha. The majority of the plots measured AGB were <100 t/ha, 

the distribution of the AGB within all the sample plots is 

summarized in Table2 and depicted in Fig.5. 

 
Fig. 5. The percentage of sample plots in distributed AGB  

 The extracted HH and HV σ0 (dB) variables were 

correlated with the AGB that was obtained from the sample 

plots. Both of these, HV polarization backscattering coefficient 

showing significant response with AGB up to 150 t/ha, after 

that response is very less and constant. The HV backscatter 

gave the highest correlation with a coefficient of determination 

(R2) of 0.508 as compared with HH. Scatter plots showing 

correspondences of AGB with HH and HV variables are shown 

in Fig. 6 and summary of models produced is listed in Table 4. 

The correlation analysis indicates that the AGB has a 

logarithmic relationship with the variables. 

                                                                                                      

Fig. 6. Relationships between PALSAR HH and HV 

backscattering coefficient versus plot biomass values shown in 

(a) and (b) respectively. 

 

 

Table 4. Logarithmic correlations and coefficients of 

determination (R2) of AGB and image variables of L-band 

PALSAR polarizations. 

Variable Model R2 

HH y = 0.7818ln(x) - 10.167 0.219 

HV y = 1.7383ln(x) - 19.782 0.508 

 

 Based on the correlation analysis, the backscatter of 

HV polarization was selected as the AGB prediction model as it 

gave the best R2 compared to HH. The HV backscatter of all 

corresponding plots in the study area ranged from -20.39 to -

11.07 dB, with a mean of -13.09 dB. The trend line indicates 

that the biomass component has a logarithmic correlation to the 

backscatter. The relationship is asymptotic, increasing rapidly at 

lower AGB levels (i.e. up to 100 t/ha) but constant towards 
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higher AGB levels. The scatter plots clearly show that the HV 

backscatter gave a good response with AGB at <100 t/ha. A 

relatively low AGB (i.e. <100 t/ha) was correlated well with 

low backscatter (i.e. -19 up to -12 dB). The HV backscatter was 

similar as the AGB increased levelling at around -12 dB. This 

confirmed that the saturation level of AGB in deciduous forest 

was at ~100-150 t/ha. 

 The saturated backscatter value depends mainly on 

the orientation, size and dielectric constant distribution of the 

backscattering and forward scattering functions of the 

individual scatterers (Chen et al., 2009). SAR backscattering 

will start to saturate when the above ground biomass level 

reaches at 150 t/ha (Held et al., 2003; Quinones et al., 2004). 

This means that if the AGB increases to more than 150 t/ha, the 

backscatter will become almost constant. This was consistent 

with the findings observed in the study; the backscatter 

increased rapidly as the biomass increased from 11 t/ha but the 

sensitivity reduced slightly when biomass exceeded 90 t/ha. 

 Referring to Table 5, the root mean square error 

(RMSE) of estimation model was calculated based on the 

validation plots that were established in the study area. A total 

of 28 validation plots, which supported an AGB between 11.60 

and 219.76 t/ha were used to validate the estimates. An absolute 

accuracy – a measure of the error between a derived/predicted 

biomass from satellite image and the actual biomass measured 

on the ground – was calculated for predicted model (Table 5). 

The absolute accuracy is expressed as the RMSE, such that: 

 

                       (3) 

Where 

n           the number of validation plots 

AGBo    measured biomass at plot i 

AGBp    derived/predicted biomass at position i 

µ           Average of biomass difference 

 

The observed RMSE for all validation plots is ±46.54 

t/ha. To further investigate factors contributing to this RMSE, a 

scatter plot of observed AGB against the predicted AGB was 

produced by using the same validation plots as illustrated in Fig. 

7. The propagation of errors were found to be significantly 

higher at an AGB >150 t/ha and became larger as the amount of 

biomass increased. 

 

Table 5: Used model equation for predicted biomass map 

Variabl

e Model R2 RMSE (± t/ha) 

HV AGB= 2163.3*e0.2922*HV 0.508 46.54 
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Fig. 7. Scatter plot of error propagation obtained from the 

prediction AGB map. The straight line indicates model fit line 

between predicted and observed AGB and the dashed curves 

represent the confidence/error resulted from the estimation. 

 

4.2. Predicted above ground biomass distribution 

 

The spatial distribution of above ground biomass produced from 

model equation for the study area is shown in Fig.8. The spatial 

distribution of the AGB in the forest area shows majority of the 

area was at <150 t/ha, a smaller amount of pixels was related to 

AGB above 150 t/ha. 

Biomass ( t/ha )

1 - 50

50 - 100

> 150

100 - 150

 

Fig. 8. Spatial distribution of AGB in the study area 

 

4.3. Classification accuracy and SVM forest/non-forest map  

 

ALOS PALSAR HH, HV and HH-HV bands and texture 

features were used as input to the SVM method. The eight 

GLCM texture features were extracted with window size 3x3 

and quantization level 64 on the HV backscattering image, for 

this combination we carried out classification and got good 

overall accuracy. We select =1 and C=10 as it provides less 

penalty to misclassification of training samples and thus be 

more generalized. It is confirmed by previous studies (Nicolas 

Longépé et al., 2011; Le Wanga et al., 2014). 
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Table 6: Confusion Matrix for forest/non-forest classified map 

Overall Accuracy = 92.54%   

Kappa Coefficient = 0.84 

Class Forest Non-forest User Acc. (%) 

Forest 83.15 0.79 98.69 

Non-forest 16.85 99.21 89.22 

Prod. Acc. (%) 83.15 99.21  

 We tested the classification performance of SVM with 

produced final forest/non-forest classified map. The confusion 

matrix for produced forest/non-forest classified map over the 

whole study area is shown in Table 6. This table summarizes the 

accuracy associated with forest and non-forest classes. It is 

clearly shows that the SVM method based on ALOSPALSAR 

data and its textural features have the good capability in forest 

and non-forest discrimination with an overall accuracy of 

92.54% and kappa coefficient of 0.84. Furthermore, this method 

yielded the highest producer’s accuracy (83.15%) and user’s 

accuracy (98.69%) in forest classification. It should be noted 

that the areas used for training and the validation were prepared 

independently. The final map of forest and non-forest for 2010 

is shown in Fig.9. 

Forest

Non-Forest

 

Fig. 9. PALSAR SVM based Forest-Non forest classified map 

for 2010 of Odisha. Overall classification accuracy is greater 

than 90%.  

  

5. DISCUSSION AND CONCLUSION 

 

The produced spatial above ground biomass ranges has to be 

confirmed from previous results for the study area and more 

comparison analysis has to be done in future. The relation 

between SAR backscatter and ground biomass has to be 

improved more because the coefficient of determination from 

present result 0.508 is not that much good. This study 

confirmed that with the help of empirical relation for 

ALOSPALSAR HV backscatter and AGB, we can estimate 

above ground biomass accurately up to 150 t/ha and above this 

limit the PALSAR signal is not good response for AGB. 

 The final forest / non-forest classified map estimated 

the total forest cover of 50214 km2 with an overall accuracy of 

92.54%. The comparison with the standard forest cover map of 

Forest Survey of India (FSI) and corresponding published area 

of 50575 km2, ALOSPALSAR data underestimate the area with 

around 361 km2. Using ALOSPALSAR data the SVM 

methodology some cases considering scrub land, plantations 

and trees outside forest are classifying under forest class. This 

remarkable misclassification will be reduced in further 

improvement of forest/non-forest cover map. Present estimated 

forest/non-forest map with overall accuracy 92.54% is well 

agreement with previous published results that ALOSPALSAR 

and LANDSAT based forest/non-forest map with overall 

accuracy 92.4% (Wayne et al., 2010). 
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