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ABSTRACT:

Hyperspectral image contains fine spectral and spatial resolutions for generating accurate land use and land cover maps. Supervised
classification is the one of method used to exploit the information from the hyperspectral image. The traditional supervised classification
methods could not be able to overcome the limitations of the hyperspectral image. The multiple classifier system (MCS) has the
potential to increase the classification accuracy and reliability of the hyperspectral image. However, the MCS extracts only the spectral
information from the hyperspectral image and neglects the spatial contextual information. Incorporating spatial contextual information
along with spectral information is necessary to obtain smooth classification maps. Our objective of this paper is to design a methodology
to fully exploit the spectral and spatial information from the hyperspectral image for land cover classification using MCS and Graph cut
(GC) method. The problem is modelled as the energy minimization problem and solved using α-expansion based graph cut method.
Experiments are conducted with two hyperspectral images and the result shows that the proposed MCS based graph cut method produces
good quality classification map.

1. INTRODUCTION

Hyperspectral image has the potential to highlight the subtle dif-
ferences between the materials of interest in the hundreds of spec-
tral bands. The exploitation of hyperspectral image is of inter-
est in recent years for many remote sensing applications such as
precision agriculture, environmental monitoring, mineral explo-
ration, land cover management, defence and security etc (Briottet
et al., 2006, Cetin et al., 2005, Cloutis, 1996). The processing
of hyperspectral image often comes with challenges due to its
very high dimensionality and redundant information. Each of the
hyperspectral image pixel has to be converted into a meaningful
information, in accordance with application. The methods of ex-
ploring information from the hyperspectral image is still an active
area of research.

Among the many methods available in the literature, supervised
image classification is the most common used approach for ex-
tracting information from the hyperspectral image in the form of
classification map. However the supervised classification of hy-
perspectral image is limited due to the factors such as high dimen-
sion, spectral and spatial variability, and limited available ground
truth samples (Camps-Valls et al., 2014, Jimenez and Landgrebe,
1998). Different methods have been deployed in literature to
overcome the above limitation, such as feature extraction, feature
selection methods and non-parametric classifiers such as kernel
methods and neural networks etc (Amato et al., 2009, Camps-
Valls and Bruzzone, 2005, Fabio et al., 1997, Gurram and Kwon,
2014, Wang and Chang, 2006). However identifying the opti-
mal classifier for the problem at hand is a challenging task, given
the availability of numerous classifier in the literature. More-
over, determining the class, classifier and dimensionality reduc-
tion method relationship is necessary to obtain the optimal clas-
sification performance (Damodaran and Nidamanuri, 2014a).

In recent years, multiple classifier system (MCS) has evolved as
a new classification strategy to merge the advantages of multi-
∗Corresponding author.

ple classifier in a single framework to enhance the accuracy and
reliability of the classification maps (Damodaran and Nidama-
nuri, 2014b, Samiappan et al., 2013, Xia et al., 2014). In or-
der to have a successful MCS, the classifiers forming the MCS
has to be diverse. Creating the diversity among the base classi-
fiers and combination function are the two major components of
the MCS. Apart from the spectral information, hyperspectral im-
ages are also rich in the spatial information. Hence incorporating
the spatial contextual in the classification framework is essential
to achieve the smooth classified maps, otherwise it results in so
called salt and pepper noise effect.

The objective of this paper is to design a methodology to exploit
the spectral and spatial information from the hyperspectral im-
age for land cover classification using MCS and Graph cut (GC)
method. The problem is modelled as the energy minimization
problem on the graph of image pixels. The energy is computed
as the sum of the data energy term and smoothness term. The
data energy term is derived from the MCS and smootheness are
modelled using Potts model. The energy minimization problem
is solved using alpha expansion method (Boykov et al., 2001).
The proposed method has been evaluated on the two airborne hy-
perspectral images covering range of land cover categories.

The remainder of this paper is as follows: Section 2. describes
about the proposed method. Section 3. discusses the experimental
results and section 4. concludes the paper.

2. METHODOLOGY

2.1 Multiple classifier system

Let Ψ = {ψ1, ψ2, . . . , ψL} be the base classifiers forming a
MCS, and each classifier ψl, l = 1, 2, . . . , L be a function ψl :
χ → Ω from an input space χ ⊆ Rn to a set of class labels
Ω = {ω1, ω2, . . . , ωM} (M is the number of classes). For any
given x ∈ χ, classifier ψl produces a vector of decision values
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d = [dl1, dl2, . . . , dlM ] and x is assigned to the class which has
the maximum probability (decision) value. The classifiers form-
ing the MCS has to be diverse, in order to enhance the classifica-
tion accuracy. The Random Subspace Method (RSM) is a popular
ensemble generation technique and it has been used to generate
the base classifiers in the MCS.

The RSM randomly partitions the hyperspectral image bands into
L subsets and each subset contains P

L
number of bands, where P

denotes the number of bands in the original hyperspectral image.
Each subset generated from the RSM is considered as the input
data source to the base classifiers ψ in the MCS. The base clas-
sifiers can be a different classifiers or same classifier with differ-
ent parameters. The support vector machine (SVM) has demon-
strated its superior capability in classifying the hyperspectral im-
age. Hence in this paper, we have used SVM as the base classifier
in the MCS. Both the methods (RSM, and SVM) has the potential
to over the small size problem of the hyperspectral image.

The resulting decision function values (d) of the each classifier
(ψl, l = 1, . . . , L) are arranged as the decision profile matrix
(DP) as follows.
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Figure 1: Decision profile matrix of x from L classifiers.

The L classifiers decision values are combined using Bayesian
average combination function (Kittler et al., 1998).

P
(ωj

x

)
=

L∑
l=1

dl,j(x), j = 1, 2, . . . ,M (1)

where P
(ωj

x

)
is the posterior probability of the MCS, and the

class label for x is obtained as

x ∈ ωm,m = arg max
j

P
(ωj

x

)
. (2)

The P
(ωj

x

)
is considered as the pixel wise (spectral) information

in the spectral-spatial classification method.

2.2 Proposed Spectral-Spatial Classification Method

Markov random field (MRF) model is the powerful mathematical
framework to model the spatial contextual information (Moser et
al., 2013, Tarabalka et al., 2010). The spatial contextual informa-
tion of the hyperspectral image is incorporated in the MCS using
MRF model. The advantage of applying MRF model in the MCS
over the single classifier, is that the MCS results in reliable class
posterior probability values. In the effect, this could increase the
accuracy than applying the MRF on the single classifier. The
problem is formulated as the energy minimization problem as fol-
lows

E(ω) = Edata + Esmooth =

N∑
i=1

Di(ωi) +
∑
j∈Z

Wi,j(ωi, ωj)

(3)

where N is the number of pixels in the hyperspectral image,
Di(ωi) is the potential term which measures the cost of assigning
the label ωi for the pixel i, Z is the spatial neighbourhood pixels
of ith pixel, andWi,j is the interaction term between the adjacent
pixels i, and j.

The data energy term Di(ωi) is derived from the estimated class
posterior probability for each of the image pixel using MCS. This
data energy term is considered as the spectral information of the
hyperspectral image.

Di(ωi) = −ln
(
P

(
ωi
xi

))
(4)

The interaction term is expressed by using a Potts model, which
penalizes the spatial transitions among neighbouring pixels with
different class labels

Wi,j(ωi, ωj) = β(1− δ(ωi, ωj)) (5)

where δ(.) is the Kronecker function (δ(ωi, ωj) = 1 for ωi =
ωj ; δ(ωi, ωj) = 0 for ωi 6= ωj), and β is the positive constant
parameter that controls the trade-off between the data energy term
and the spatial smoothness term. The equation 3 is solved using a
efficient α−expansion graph cut based algorithm (Boykov et al.,
2001).

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1 Datasets

we adopted two benchmark hyperspectral images with different
land cover settings (one in urban area and one in agricultural area)
captured by two different sensors (ROSIS, AVIRIS) to evaluate
the proposed MCS based graph cut method.

ROSIS University: The first hyperspectral dataset was collected
over the University of Pavia, Italy by the ROSIS airborne hy-
perspectral sensor in the framework of HySens project managed
by DLR (German national aerospace agency). The ROSIS sen-
sor collects images in 115 spectral bands in the spectral range
0.43 to 0.86 m with a spatial resolution of 1.3 m/pixel. After the
removal of noisy bands, 103 bands were selected for the exper-
iments. The image contains 610 x 340 pixels with nine classes
of interest. Figure 2 shows a false color composite (FCC) image
and its corresponding ground truth map. The available reference
samples in each class are shown in Table 1.

AVIRIS Indian pines: The second hyperspectral image was col-
lected by the AVIRIS sensor over the Indian pines site in the
Northwestern Indiana. The AVIRIS sensor collects images in 220
spectral bands in the spectral range 0.43 to 0.86 m at 20 m spatial
resolution. Twenty water absorption bands were removed, and
200 bands were used for experiments. This image contains 145
x 145 pixels with sixteen classes of interest. Figure 3 shows the
FCC image and its corresponding ground truth map. The avail-
able reference samples in each class are shown in Table 2.

3.2 Experimental design

From the available ground truth samples, we randomly selected
50 samples per class for training, and remaining samples were
used for testing. If the total number of available reference sam-
ples was lower than 100 samples per class, then 50% of samples
were selected for training, and remaining samples were used as
the testing samples. The experimental results were assessed by
overall accuracy (OA), average accuracy (AA), and producer ac-
curacy (PA). In order to avoid bias induced by random sampling
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Figure 2: (a) False color composite of the ROSIS University image (R: 0.8340 µm G: 0.6500 µm B: 0.5500 µm), (b) Ground truth
image and its corresponding class labels.

Figure 3: (a) False color composite of the AVIRIS Indian pines image (R: 0.8314 µm G: 0.6566 µm B: 0.5574 µm), (b) Ground truth
image and its corresponding class labels.

Table 1: Number of reference samples considered for the experi-
ment of University image

Class name Reference samples

1. Asphalt 6631
2. Meadows 18649
3. Gravel 2099
4. Trees 3064
5. Metal sheets 1345
6. Bare soil 5029
7. Bitumen 1330
8. Bricks 3682
9. Shadows 947
Total 42776

Table 2: Number of reference samples considered for the Indian
pines image

Class name Reference Class name Reference
samples samples

1. Alfalfa 46 9. Oats 20
2. Corn-notill 1428 10. Soybeans-notill 972
3. Corn-mintill 830 11. Soybeans-mintill 2455
4. Corn 237 12. Soybeans-cleantill 593
5. Hay-windowed 483 13. Wheat 205
6. Grass/Trees 730 14. Woods 1265
7. Grass/pasture-mowed 28 15.Bldg 386
8. Grass/pasture 478 16. Stone-steel towers 93
Total 10249
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of the training samples, ten independent Monte Carlo runs are
performed and the accuracies (OA, AA, PA) are averaged over
the ten runs.

RSM partitions the hyperspectral image into five random sub-
spaces. In each of these RSM, multiclass pair-wise probabilis-
tic SVM classification with the Gaussian radial basis function
(RBF) kernel was performed The SVM parameters in all our
experiments were automatically tuned with C = 2α, α =
{−5,−4, , · · · , 15} and γ = 2β , β = {−15,−13, · · · , 3} (C is
the cost function and γ is the width of the radial basis function)
through five-fold cross validation strategy of the training samples.
The proposed method are compared with the state-of-the-art pixel
wise classification methods such as SVM (fullband SVM), single
best classifier, and MCS and with spectral-spatial classification
methods such as SVM-GC, and single best classifier-GC (SBC-
GC). The constant parameter β in equation 2 is tuned from 0 to 3
manually, and the classification results with the best value of β is
reported.

3.3 Experimental Results and Discussion

3.3.1 MCS results Figure 4 shows the overall accuracy of the
base classifiers and MCS for the ROSIS University, and AVIRIS
Indian Pines hyperspectral images. The classifier which produces
the maximum overall accuracy is known as single best classifier,
and this is used as a benchmark to compare the MCS classifica-
tion results. From the figure 4, it is evident that RSM has pro-
duced diverse classification results. The maximum overall accu-
racy (single best classifier) produced by the RSM is 82.1% and
74.7% for the ROSIS University and AVIRIS Indian Pines hyper-
spectral image respectively.

Figure 4: Overall accuracy of the base classifiers in the MCS and
the combination function of the MCS (MCS accuracy) for the
ROSIS University and AVIRIS Indian Pines hyperspectral images

When the base classifiers decision function values are combined
by the Bayesian average combination function, the classification
accuracy are increased significantly. For instance, there is 2.5%,
and 5% increase in overall accuracy for the ROSIS University and
AVIRIS Indian Pine hyperspectral images respectively. This con-
cludes that the estimated class posterior probability by the MCS
are better than the single best classifier. Though the accuracy
has been increased, MCS are not able to produce good quality of
classification maps.

3.3.2 Results of MCS based graph cut method When the
spatial contextual information is incorporated using Markov ran-
dom field model along with estimated class posterior probability

from the MCS, the classification accuracy has increased signifi-
cantly. The classification accuracy of the MCS based graph cut
method is shown in Table 3. The proposed MCS based graph
cut method has achieved 12%, 11% increase in overall accuracy
over the pixel wise classification (MCS) results. In order to high-
light the potential of the proposed method, it is compared with
the state-of-the-art pixel wise and spectral-spatial classification
methods (see Table 3). When compared with the pixel wise clas-
sification methods, the proposed method has yielded an increase
about 12-14% accuracy points for the ROSIS University image
and 11-16% accuracy points for the AVIRIS Indian Pines Hyper-
spectral images respectively.

Table 3: Overall classification accuracy of our proposed method
and comparison with the state-of-the-art pixel wise and spectral-
spatial classification methods. The classification accuracy is
computed over the ten runs and the average accuracy is reported
(50 samples are randomly chosen for training and remaining sam-
ples are used for testing)

Image Proposed SVM SBC MCS SVM+ SBC+
method GC GC

University 96.3 83.8 82.05 84.47 94.7 95.2
AVIRIS 90.2 73.5 74.6 79.5 87.2 88.1

When the proposed method is compared with the spectral-spatial
classification approaches, the proposed method has yielded 2-
3% improvement in overall accuracy for both the hyperspectral
images. Further, kappa statistical significance test confirms that
the classification results are statistically significant at 95% confi-
dence interval. The classified images of the proposed method is
shown in Figure 5 and 6. From the figure 5 and 6, it is evident
that the salt and pepper noise effect is visible in the pixel wise
classified image, where as the classified image in the proposed
method is very smooth. This shows that the proposed method is
capable to produce good quality classification maps for remote
sensing applications.

Table 4: The computational time (in sec) of MCS, our proposed
method and other existing methods. The computation time in-
cludes cross validation time, training time, testing time and α-
expansion based graph cut method. The computation has per-
formed on a desktop computer with Intel i3 processor, 3.2 GHz,
3 GB RAM and 64 bit operating system

Image
Pixel wise method Spectral-Spatial method

SVM SBC MCS SVM- SBC- Proposed
GC GC method

University 18 10 11 996 980 981
AVIRIS 103 30 31 120 48 47

3.3.3 Computational time complexity Table 4 shows the com-
putational time of the pixel wise classification method, spectral
and spatial classification method. From the table 3 and 4, it is
obvious that the MCS has outperformed full band SVM classifier
in overall accuracy and computational time. It is due to the fact
that the base classifiers in the MCS are independent of each other
and it can be run parallel. Moreover, the dimension of the in-
put data sources in the MCS is reduced compared to the original
hyperspectral image. For instance, the input data dimension in
the MCS is about 20 and whereas in the full band SVM classifier
is 103 for the ROSIS University hyperspectral image. The com-
putational time of the spectral-spatial classification is high due
to computation of the smoothness term. The computation of the
smoothness term grows with the number of pixels in the image.
Once the smoothness term is computed, the computation of the
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Figure 5: Classified images of ROSIS University hyperspectral image (a) proposed method (b) SVM (c) corresponding class labels

Figure 6: : Classified images of AVIRIS Indian Pines hyperspectral image (a) proposed method (b) SVM (c) corresponding class labels

α-expansion based graph cut method is very fast and converges
to global solution.

4. CONCLUSION

In this paper, we presented the MCS based graph cut method to
exploit the spectral and spatial information from the hyperspec-
tral image. The spectral information is extracted from the MCS
and the spatial contextual information is incorporated using MRF
model. The experimental results with two airborne hyperspec-
tral image shows that the proposed MCS based graph cut method
yields accurate classification over the state-of-the-art methods.

Further, the experiments are conducted with few training sam-
ples per class. The proposed method has the potential to produce
the high quality classification map for land use/land cover appli-
cations.
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