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ABSTRACT: 

 

Satellite remote sensing can provide information on plant status for large regions with high temporal resolution and proved as a 

potential tool for decision support. It allows accounting for spatial and temporal variations of state and driving variables, influencing 

crop growth and development, without extensive ground surveys. The crop phenological development and condition can be 

monitored through multi-temporal reflectance profiles or multi-temporal vegetation indices (VI), such as the Normalized Difference 

Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI). At the same time, Process based dynamic crop growth 

simulation models are useful tools for estimating crop growth condition and yield on large spatial domains if their parameters and 

initial conditions are known for each point. Therefore, combined approaches integrating remote sensing and dynamic crop growth 

models for regional yield prediction have been developed in several studies. In these models the vegetation state variables, e.g., 

development phase, dry mass, LAI are linked to driving variables, e.g., weather condition, nutrient availability and management 

practices. Output of these models is usually final yield or accumulated biomass. The model outputs are a summary containing an 

overview of the main development events, water and nitrogen variables, yield and yield components. In the present work, IRS P6 

AWiFS derived vegetation indices like NDVI and NDWI are computed to study the growth profile of wheat crop in Sirsa district of 

Haryana along with crop growth simulation model DSSAT-CERES from 2008-09 to 2012-13.several iteration of wheat crop 

simulation are carried out with four sowing dates and four soil types varying with respect to the fertility parameters to represent the 

average simulation environment of Sirsa district in Haryana state of India. Four years time series NDVI and NDWI are used to 

establish the correlation between the spectral vegetation indices and simulated wheat yield attributes at critical growth stages of 

wheat. This work is a basic investigation towards assimilation of remote sensing derived state variables in to the crop growth model.  

.

  

1. INTRODUCTION 

 

The use of crop growth models on large areas for diagnosing 

crop growing conditions or predicting crop production is 

hampered by the lack of sufficient spatial information about 

model inputs. Therefore, many different studies have attempted 

to estimate crop yield in combination of crop growth model and 

satellite data. Remote sensing and cropping systems modeling 

are two distinct technologies that have been developed to 

address diverse agronomic issues at field-level and regional 

scales (Whisler et al., 1986; Moran et al., 1997; Batchelor et al., 

2002; Xie et al., 2008). Although these technologies have often 

been studied independently, there is growing interest in 

utilizing information derived from remote sensing to update or 

drive cropping systems model simulations because the two 

technologies are naturally complementary (Maas, 1988a; 

Moulin et al., 1998; Inoue, 2003; Dorigo et al., 2007). For 

example, whereas the daily time-step simulation capabilities of 

cropping systems models are excellent for crop growth analyses 

in the temporal domain, remote sensing images offer great 

opportunity to understand spatial crop growth patterns. 

Conversely, detailed model input requirements have limited the 

use of cropping systems models for spatial crop growth 

analyses. With the integration of these technologies, the 

problems associated with one can be compensated by the 

benefits of the other. Remote sensing techniques have the 

potential to provide information on agricultural, crops 

quantitatively, instantaneously and, above all, non-destructively 

over large areas Remote sensing can also be used to derive crop 

phenological information (Karnieli, 2003; Xin et al.,2002). 

Knowledge of plant phenology is essential for most agro 

ecosystem models since it governs the partitioning of 

assimilates. Therefore, a precise knowledge of the phenological 

status of the plants will greatly improve the results obtained by 

agro ecosystem models (Dele´colle et al., 1992). Remote 

sensing data are used to infer canopy biophysical variables like 

LAI (leaf area index), or Cab (chlorophyll a & b) among others, 

which are involved in the important physical and/or 

physiological processes governing crop growth processes.LAI 

is the main vegetation structure variable and one of the main 

drivers of canopy primary production (Weiss, 1999). 

 

Spatialisation of crop models needs to link different scales. For 

example, the scale on which the processes are described by the 

model, (Moulin et al.,1998) the scale on which input data or 

information (model parameters and input variables) must be 

available, or the scale on which output results are expected or 

sought. Thus, spatialisation often requires some kind of change 

of scale, and in this aspect remote sensing plays a vital role in 

providing spatialised inputs for crop simulation on regional 

scale. The present study was carried out with the objectives as 

follows. 

 Evaluation of CERES wheat model embedded in 

DSSAT for Sirsa district of Haryana 

 Analyzing the relations between spectral vegetation 

indices and wheat yield attributes like leaf area index 

(LAI), and total dry matter (TDM) etc. 

 

2. STUDY AREA 

 

The district is situated in South-Western part of Haryana state, 

latitude 29.250 North, longitude 75.40 East and at an altitude to 

202 meters above main sea level. The climate of the district is 

extreme and arid. The maximum temperature is recorded in the 

month of May and June when is goes up as high is 470c and 

minimum touches 1.50c in December and January. Dust storms, 

which adversely affect the cotton sowing in sandy areas of the 

district, are common in summer. The rainy season starts from 

July and lasts up to September. July and August have 

widespread rain and 75% of the rain is received during these 
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months. The rainfall however is uneven and scanty. The 

average rainfall varies considerably from year to year. The 

main crop rotations are paddy-wheat, cotton-wheat, cotton-

raya, guar-wheat.and guar-raya. The soil of the district is coarse 

sandy loam and sandy and a few pockets of clay loam. The PH 

ranges from 8.1 to 8.6 

 

3. METHODOLOGY 

 

3.1 Crop growth model 

 

Process based crop simulation models have been used 

extensively to evaluate the potential effects of environmental, 

biological and management changes on crop growth and 

development (Hoogenboom, 2000). Important model state 

variables such as above-ground biomass, leaf area index and 

specific canopy characteristics such as chlorophyll or nitrogen 

content can be estimated from remote sensing observations and 

can therefore be used for calibration and validation purposes.  

 

Remote sensing information allows identification of the timing 

of phenological events such as maximum vegetative phase, 

flowering and maturity etc. which can be used to adjust 

simulation models (Dadhwal et al, 2002; Nain et al, 2002). 

Estimates of the dynamics of soil characteristics such as soil 

moisture content and crop characteristics (i.e. biomass, leaf area 

index, canopy structure and chlorophyll contents) can be 

provided by simulation models. This feature has great potential 

in filling in missing remote sensing data due to unfavourable 

climatic conditions such as clouds or due to technical problems. 

Although remote sensing and crop growth simulation modelling 

each has proven its usefulness and applicability in various 

areas, such uses have in principle been separately, and not in 

combination. An attempt has been made to use remote sensing 

derived information with crop simulation model to monitor 

wheat growth in Sirsa district from 2008-09 to 2011-12. 

 

The CSM-CERES-Wheat, a part of Decision Support System 

for Agrotechnology Transfer (DSSAT) Cropping System 

Model V4.0 (Hoogenboom et al., 2002), has been used in this 

study. The model has been documented extensively since its 

initial development and evaluation (Ritchie and Otter-Nacke, 

1985; Ritchie et al., 1998). It simulates the effects of weather, 

genotype, soil properties and management on wheat growth and 

development, yield, soil and plant water and nitrogen dynamics. 

The crop growth model considers phase-wise development with 

nine growth stages, from pre-sowing to harvest, in relation to 

thermal time. The model calculates biomass accumulation as 

the product of radiation use efficiency and photo-synthetically 

active intercepted radiation. The number of growing leaves is a 

function of leaf appearance rate (phyllochron interval, degree 

days) and duration of grain filling. Organ extension depends on 

potential organ growth and is limited by sub-optimal 

temperature and water and nitrogen stresses. Partitioning 

coefficients of dry biomass in plant parts are influenced by 

phase-wise development. Grain yield is modeled as a product of 

grain number, plant population, and grain mass at physiological 

maturity. Daily soil water balance is modeled in relation to 

rainfall/irrigation, runoff, infiltration, transpiration and drainage 

from the soil profile. 

 

Soil input such as layer-wise soil attributes like texture, sand 

(%), silt (%), clay (%), bulk density (g/ cm3), field capacity 

(cm3/cm3), permanent wilting point (cm3/cm3), saturated soil 

water content (cm3/cm3), saturated hydraulic conductivity 

(cm/h), organic carbon (%), pH and electrical conductivity 

(dS/m) are required to run the model. The NBSSLUP soil map 

and secondary information from district database maintained by 

CRIDA (Central Research Institute for Dry Land Agriculture) 

and WISE global soil database (Gijsman et al. 2007) have been 

used for preparing the respective district soil input files. 

 

As weather input, daily average maximum, minimum 

temperature (0C), rainfall (mm/day) and solar radiation (MJ/m2) 

are the prerequisites for running DSSAT CERES model. For 

model calibration and validation, historical weather data from 

1998 to 2013 were used, while for rabi 2008-09 to 2011-12, 

IMD AWS data have been used. 

 

3.2 Remote sensing derived indices 

 

NDVI is one of the most well known and most frequently used 

VIs. The combination of its normalized difference formulation 

and use of the highest absorption and reflectance regions of 

chlorophyll make it robust over a wide range of conditions. 

NDVI is very useful for deriving vegetation biophysical 

parameters, such as the leaf area index (LAI), the fraction of 

absorbed photosynthetically active radiation (fAPAR) and 

percentage of green cover. NDVI saturates in dense vegetation 

conditions when LAI becomes high. The value of NDVI ranges 

from -1 to 1; the common range for green vegetation is 0.2 to 

0.8. Comparing current NDVI images with older ones it is 

possible to assess the positive and negative deviations that 

occur during the growing season of vegetation and evaluate the 

state's relative values can be averaged over time to establish 

‘normal’ growing conditions in a region for a given time of 

year. When analyzed through time, NDVI can reveal where 

vegetation is thriving and where it is under stress, or changes in 

plants’ phenological stage. The NDVI is defined as (Rouse et 

al. 1973): 

 

NDVI = λNIR -  λRed/ λNIR  +  λRed (1) 

 

where  λNIR = spectral reflectance in near infrared region  

λRed = spectral reflectance in red region 

 

NDWI is a satellite-derived index from the near- I (NIR) and 

short wave IR (SWIR) channels: 

 

NDWI = λNIR - λSWIR/ λNIR + λSWIR (2) 

 

where  λNIR = spectral reflectance in near infrared region  

            λSWIR = spectral reflectance in shortwave infrared region 

 

NDWI index is a good indicator of water content of leaves and 

is used for detecting and monitoring the humidity of the 

vegetation cover. The SWIR reflectance reflects changes in 

both the vegetation water content and the spongy mesophyll 

structure in vegetation canopies, while the NIR reflectance is 

affected by leaf internal structure and leaf dry matter content 

but not by water content. The combination of the NIR with the 

SWIR removes variations induced by leaf internal structure and 

leaf dry matter content, improving the accuracy in retrieving the 

vegetation water content. NWDI holds considerable potential 

for drought monitoring because the two spectral bands used for 

its calculation are responsive to changes in the water content 

(SWIR band). The value of NDWI ranges from -1 to 1. The 

common range for green vegetation is -0.1 to 0.4. 

 

4. DATA USED 

 

Data used for the study comprised of satellite data from IRS 

and MODIS, meteorological data from IMD and ancillary data. 
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4.1 Satellite Data 

 

Multi-temporal AWiFS datasets from Resourcesat-2 - starting 

from first fortnight of October to end of February/March were 

selected for each year during 2008-2012 based on crop calendar 

in the districts. The data was subjected to Top-of-Atmosphere 

(TOA) correction by using the saturation radiance values of the 

four AWiFS bands along with the sun elevation angle as on the 

date of pass. 

 

4.2 Meteorological data  

 

The maximum and minimum temperatures from Automatic 

Weather Station (AWS) of IMD were used in the study. The 

weekly averages were generated for the test sites. Since the 

historical data from AWS is not available, the nearby 

meteorological observatory data is being used. 

 

In addition, ancillary datasets viz., historical data of crop 

statistics, crop calendar of the district, soil and land degradation 

and irrigation infrastructure were also used for analysis. 

 

5. METHODOLOGY 

 

Required weather and soil files were prepared according to 

DSSAT format and crop simulation was carried out for the six 

above mentioned districts. Standard management practices 

were followed to simulate the wheat yield. As district level 

yield was compared, the simulated yield was averaged over a 

number of sowing dates and soil conditions. Simulations were 

iterated taking three sowing dates for each location. The soil 

condition was also varied in different simulations taking the 

major soil of the district as the representative one. Thus, the 

simulated yield was averaged over a district and compared with 

the observed average yield for the corresponding year. 

 

The growth and development modules of the CERES model use 

different sets of species, ecotype and cultivar coefficients (P1V, 

P1D, P5, G1, G2, G3 and PHINT) which define the phenology 

and crop growth in time domain. The DSSAT-CERES wheat 

model was calibrated and validated for HD 2329 variety (one of 

the most popular varieties of the region) from 1998 to 2009. For 

calibration, the cultivar coefficients were obtained sequentially, 

starting with the phenological development parameters related 

to flowering and maturity dates (P1V, P1D, P5 and PHINT) 

followed by the crop growth parameters related with kernel 

filling rate and kernel numbers per plant (G1, G2 and G3) 

(Hunt and Boot, 1998; Hunt et al., 1993). The analysis showed 

that the most sensitive and, therefore, most important 

parameters were P1D for wheat phenology, and G1 and G2 for 

crop components and yield structure. These parameters were 

adjusted based on the data for the year 2006/08 and their 

optimum was finally determined where the root mean square 

error (RMSE) of the simulated and observed plant development 

stages, yield/yield components and yield structure was at 

minimum. The calibration was validated based on crop 

development and yield data from the years 2008/09 to 2011/12. 

 

6. RESULTS 

 

6.1 Calibration and Validation of CERES  

 

To evaluate the quality of the simulations different quality 

measures were applied. For a quick overview of the modeling 

quality, graphs of the measured against the simulated values 

were drawn together with the linear regression, the correlation 

coefficient and the 1:1 line. Without any model error, the 

measured and simulated values are identical and all points 

should lie on the 1:1 line. The points of good quality 

simulations should lie close to the 1:1 line, the slope of the 

linear regression should be close to one and the correlation 

coefficient should be close to one. The simulated wheat crop 

attributes for a representative year are presented in Table 1. 

Correlation coefficients r2 values for observed vs. simulated 

district average wheat yield are presented in Figure. 1. The 

mean biased error (MBE) and the Root Mean Square Error of 

model calibration are 123.3 and 165.6 kg/Ha respectively.  

  

Variables                            Simulated 

Emergence (DAP)                              3 

Anthesis (DAP)                              103 

Maturity (DAP)                              138 

Product wt (kg dm/ha;no loss)     4321 

Product unit weight (g dm)          0.028 

Product number (no/m2)             15431 

Product number (no/group)               10.7 

Product harvest index (ratio)               0.46 

Maximum leaf area index                   4.0 

Final leaf number (one axis)             14.2 

Final shoot number (#/m2)           1446 

Canopy (tops) wt (kg dm/ha)        9296 

Vegetative wt (kg dm/ha)              4975 

Root wt (kg dm/ha)                         647 

Assimilate wt (kg dm/ha)           12276 

Senesced wt (kg dm/ha)               1595 

Reserves wt (kg dm/ha)               2109 

 

Table 1 Overview of wheat crop simulation in Sirsa using 

CERES 

 

 

 
 

Figure. 1 Observed and simulated wheat yield in Sirsa for the 

study period 

 

6.2 Time Series Vegetation Indices 

 

Multi-temporal FCCs and corresponding NDVI images were 

used as inputs for classification using hierarchical decision 

rules (NRSA, 2007). Total wheat cropped area was estimated 

by February end. The AWiFS data of the historical years (2008-

09 to 2011-12) for the rabi period were analyzed in the current 

study. Time series FCC of AWiFS images for Sirsa districts 

were used to derive the spectral vegetation indices. The wheat 

crop area was delineated from the FCC and as a representative 

year the wheat area in Sirsa district for 2009-10 is presented in 

Figure.2 along with the time series FCC for the same period. 
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Figure. 2 Resourcesat 2 AWiFS derived FCC and wheat mask 

for Sirsa district during rabi 2009-10 

 

NDVI and NDWI were computed for all the study years and 

presented in Figure.3 and Figure.4 respectively. From the time 

series NDVI and NDWI images, zonal statistics were extracted 

for the wheat season during 2008-09 to 2011-12.The NDWI 

and the scaled values of NDVI for 2009-10 is presented in 

Table.2 

 

 
Figure. 3 Time series NDVI of Sirsa for a representative year 

(2009-10) 

 

 
Figure.4 Time series NDVI of Sirsa for a representative year 

(2009-10) 

 

Date DAS Scaled NDVI NDWI 

27 October 2009 No crop 62.437 -0.052 

20 November 2009 13 55.976 -0.06 

24 December 2009 47 62.203 -0.052 

31 January 2010 84 88.668 0.085 

14 February 2010 98 89.149 0.124 

Table 2 Scaled NDVI and NDWI profile with days after sowing 

(DAS) 

 

6.3 Simulation of Wheat yield attributes  

 

Wheat crop was simulated using callibrated CERES crop 

simulation model embedded in DSSAT 4.Temporal profiles of 

the yield attributes like LAI,TDM and yield are depicted in 

Figure 5, Figure 6 and Figure 7. 

 

 
Figure.5 Temporal profiles of simulated LAI of wheat crop in 

Sirsa district 

 

 
Figure.6 Temporal profiles of simulated TDM of wheat crop in 

Sirsa district 

 

 
Figure.7 Temporal profiles of simulated grain yield of wheat 

crop in Sirsa district 
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It is seen that the observed district average yield of wheat is 

close to the simulated grain yield over the years though the 

model under estimate LAI values. In this study the temporal 

course of simulated LAI was given importance in order to 

evaluate the model performance .These simulated parameters 

were correlated with the spectral vegetation indices like NDVI 

and NDWI and the corresponding graphs for a representative 

year (2008-09) are presented in Figure. 8 and Figure 9. 

 

 
Figure.8 Temporal profiles of scaled NDVI of wheat crop in 

Sirsa district 

 

 
Figure.9 Temporal profiles of NDWI of wheat crop in Sirsa 

district 

 

 
 Figure.10 Scatter plot of NDVI vs LAI 

 

It is observed that NDVI profiles for 2008-09 and 2010-11 

follow similar trend where as NDVI values for 2009-10 are 

relatively lower. For all the years NDWI values gradually tend 

to positive as the crop moves to maturity. There exists an 

exponential relationship between simulated LAI and scaled 

NDVI (Figure.10).An exponential model was fitted to the 

scatter plot of LAI vs. NDVI. Further, correlation coefficients 

between simulated   grain yield and NDVI  were computed  for 

different growth stages for different years and it  was found that 

r2 is significantly high (>0.8) for all growth stages over the 

years. 

 

7. SUMMARY AND CONCLUSIONS 

 

This study was carried out to evaluate the performance of crop 

simulation model CERES for wheat crop in Sirsa district. The 

model was well calibrated and validated for the study period 

using the one of the most popular wheat variety .Though the 

simulated district average yield was closer to the observed one 

over the years, the yield attribute like LAI found to be under 

simulated and it requires further calibration with field 

experiments. Significantly high correlation coefficient was 

observed for NDVI and yield at all the growth stages over the 

years. This is a basic study towards spatialisation of crop 

simulation model for wheat crop using remote sensing derived 

bio-physical parameters. 
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