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ABSTRACT: 
 
This research work presents a supervised classification framework for hyperspectral data that takes into account both spectral and 
spatial information. Texture analysis is performed to model spatial characteristics that provides additional information, which is 
used along with rich spectral measurements for better classification of hyperspectral imagery. The moment invariants of an image 
can derive shape characteristics, elongation, and orientation along its axis. In this investigation second order geometric moments 
within small window around each pixel are computed which are further used to compute texture features. The textural and spectral 
features of the image are combined to form a joint feature vector that is used for classification. The experiments are performed on 
different types of hyperspectral images using multi-class one-vs-one support vector machine (SVM) classifier to evaluate the 
robustness of the proposed methodology. The results demonstrate that integration of texture features produced statistically 
significantly better results than spectral classification. 
  
 

1. INTRODUCTION 

Accurate image classification is important for many 
applications including agriculture monitoring, hydrological 
science, environmental studies, military applications, and 
urban planning etc. Hyperspectral (Goetz, 2009) sensors 
capture tens or hundreds of fine contiguous spectral bands of 
an image scene from ultraviolet to infrared region. The rich 
spectral information can be helpful to more discriminately 
identify the surface material, and objects of interest. However, 
high dimensionality also possess some challenges to supervised 
classification due to limited availability of training samples 
and curse of dimensionality. On the other hand contiguous 
spectral bands are highly correlated and provide redundant 
information. Therefore, dimensionality reduction by spectral 
feature extraction or selection is often performed prior to 
classification to mitigate the high dimensionality related 
problems. Feature extraction generally transforms the original 
data into a new smaller representation such that important 
information can be preserved with minimum number of 
features. The techniques such as principal component analysis 
(PCA) (Joliffe, 2002), discrete boundary feature extraction 
(DBFE) (Lee, et al., 1993), and nonparametric weighted 
feature extraction (NWFE) (Kuo, et al., 2002), etc. transform 
the original data into new uncorrelated dataset such that only a 
small number components have the maximum data variance. 
 
The conventional pixel wise classifiers that use spectral 
features only, usually produce noisy classified maps. The 
labelling uncertainties can be minimized by combining some 
additional information in classification. In remotely sensed 
images the spatial context of a pixel can provide additional 
information as neighbouring pixels are highly correlated and 
likely to have same label. By integrating spectral and spatial 
information better classification can be performed yielding 

more accurate results. The integration of spatial information is 
usually done either by post classification refinement or by 
using joint spectral-spatial feature vector. Post classification 
refinement mostly include relaxation labelling and 
segmentation based approaches. The spatial feature extraction 
involves determining information about shape, size, co-
occurrence, and texture, etc. from a crisp or adaptive 
neighbourhood. The major approaches in this categories are 
based on Markov random field (MRF) (Farag, et al., 2005), 
Gabor filters (Grigorescu, et al., 2002), morphological 
operators, and wavelet decomposition etc. The high 
dimensionality possess the major challenge to the spatial 
feature extraction. The traditional 2-dimensional (D) 
approaches need to be adapt to 3-D structure of the 
hyperspectral imagery. 
 
Texture is an important characteristics to model the spatial 
properties of an image. The texture analysis has been widely 
used for classification and segmentation of different types of 
images. The traditional approaches to texture analysis include 
gray level co-occurrence matrices (GLCM) (Haralick, et al., 
1973), MRF models, Gabor filters, Gibbs random field models, 
and wavelet analysis, etc. The high dimensionality is the major 
challenge in texture modelling of the hyperspectral images. 
Additional efforts are required to adapt the traditional texture 
analysis methods to high dimensional data. Shi, et al. (2003) 
used Gabor filters on spectral bands of a hyperspectral image 
with reduced dimensionality to compute texture features. A 
similar approach was applied in (Rellier, et al., 2004) with a 
simplified multivariate Gaussian MRF model. Shi, et al. 
(2005) modelled hyperspectral texture using multiband 
correlation functions. Tsai, et al. (2013) extended GLCM to 3-
D GLCM and defined third-order texture measures for 
extracting texture features from hyperspectral image cube. 
 
In this research work the second order geometric moments are 
used to compute texture features and a spectral-spatial 
framework for supervised classification of hyperspectral *Corresponding author 
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imagery. The rest of the paper is organized as follows. Section 
2 provides the theoretical background, section 3 outlines the 
proposed methodology, the experimental results are presented 
in section 4, and finally section 5 concludes the work. 
   
 

2. BACKGROUND 

This section describes the methods used in this work for 
characterization of spectral and spatial information. We used 
PCA and DBFE, which are unsupervised and supervised 
techniques respectively for spectral feature extraction to 
investigate the integration of texture information with different 
types of spectral features. Both these algorithms are widely 
used and have been demonstrated to be powerful approaches. 
 
2.1 PCA 

The PCA is an unsupervised data transformation technique that 
transforms the dataset into lower dimensional space that 
retains most of the variation of original dataset into a new set 
of orthogonal variables called principal components (PCs) 
minimizing the correlations among PCs. The PCs are sorted 
such that the first PC preserves the greatest variance, second 
PC corresponds to next greatest variance, and so on. For 
hyperspectral image classification a subset of largest PCs 
corresponding to some pre-specified percentage of cumulative 
variance usually 99%, is taken.  
 
2.2 DBFE 

The DBFE was proposed by Lee, et al. (1993) who introduced 
the concept of effective decision boundary and defined 
discriminantly informative features (DIF) and discriminantly 
redundant features (DRF) for feature extraction. It is a 
supervised feature extraction technique. The DIF and DRF are 
extracted from decision boundary using a decision boundary 
feature matrix (DBFM). The eigenvectors of DBFM 
corresponding to nonzero eigenvalues are the DIFs and used as 
new feature vectors. For multiclass problem DBFMs are 
computed for each pair of classes and averaged (Castaings, et 
al., 2010). The resulting DBFM is used to obtain new feature 
vectors. 
 
2.3 Geometric Moments 

The moment invariants of an image can be used to derive 
shape characteristics, elongation, and orientation along its axis. 
Geometric moments are widely used in various image 
processing tasks such as segmentation, object detection, scene 
matching, shape analysis, and texture recognition, etc. The 
image moments within small window centred on a pixel are 
computed which are subsequently used to compute texture 
features. The geometric moments of the order of ( )p q  of a 
function ( , )f x y  with respect to origin (0,0)  are defined as 
(Tuceryan, 1994) 

 ( , ) p q
pqm f x y x y dxdy

 

 

     (1) 

where , 0,1,2,...,p q   .  For digital images, the function 
( , )f x y  is digitized into discrete version ( , )I i j  and Eq. (1) is 

approximated as follows 

 
1 1

( , )
M N

p q
pq

i j
m i j I i j

 

   (2) 

where M N  is the size of the image I. Moments of different 
order have different geometric interpretations about area, 
orientation, elongation, and shape, etc. For pixel wise texture 
analysis, the moments are computed within small windows 
centred on the pixels. As a result a new feature image pqM  is 

obtained corresponding to each such moments pqm . The 
number of such images is equal to the number of moments 
computed. These feature images are further used to compute 
texture features since moments themselves are not sufficient to 
characterize good texture features (Tuceryan, 1994). Texture 
feature of a pixel at location ( , )i j  is determined by using a 
small window ijW  of size L L  and applying some mapping 
function. We use absolute deviation of moments from their 
mean value to map moment image pqM to the texture feature 

image pqF  using following transformation  

 
1 1

( , ) ( , ) , ( , )
L L

pq pq pq ij
r c

F i j M r c M r c W
 

     (3) 

where pqM  is the mean of moments. Some other linear or 
nonlinear functions may also be used for transformation.  
 
 

3. METHODOLOGY 

The flow chart of the proposed methodology is illustrated in 
Figure 1. In panchromatic images the moments can be 
determined from the image directly. However, for 
hyperspectral images some adaptation is required due to high 
dimensionality.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flow chart of the proposed methodology. 
 

We decompose hyperspectral image by PCA and use the first 
PC, which retains the most of the variance, to compute 
moments. In this work second order ( 2)p q   geometric 
moments are used for computing texture features. For pixel 
wise texture feature extraction, 8-connected neighbourhood is 
considered. A 3 3  window centred on the pixel under 
consideration is placed and moments are computed on the local 
sub image. Similarly a 3 3  window is used again to 
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determine texture features from the moment images ( )pqM . 
The texture features are stacked with spectral features to form 
a joint feature vector, which is used for classification using 
SVM. The accuracy analysis of the results is done in terms of 
kappa coefficient ( ) (Congalton, et al., 1999). The statistical 
significance of the difference between two classifications is 
determined using Z statistics defined as follows 

 1 2
2 2

1 2[ ] [ ]
Z  

    





  (4) 

where 1 , 2  are kappa coefficients of two confusion matrices 

and 2
1[ ]  , 2

2[ ]   are their corresponding asymptotic 
variances.  The classifications are statistically significantly 
different at 5% significance level if 1.96Z   for a two-tailed 
test. However, for one-tailed test, classifier 1 is statistically 
significantly better than classifier 2 if 1.645Z   at 5% 
significance level. 
 
 

4. EXPERIMENTAL RESULTS 

In this section experimental results and their analysis are 
presented. Several experiments are performed to evaluate the 
effectiveness of the proposed methodology.  
  
4.1 Description of Datasets 

The investigations involve two different types of airborne 
hyperspectral datasets. 
 
4.1.1 University of Pavia Dataset: This dataset is captured 
by ROSIS-3 sensor over urban area of Engineering School at 
University of Pavia, Italy. It is 610 340  pixels image with 
1.3 meters pixel size. Original dataset consists 115 spectral 
bands in the range 0.43 0.86 m  but 12 bands are discarded 
due to noise. The false color composite (FCC) and ground 
reference data are shown in Figure 2. There are nine land cover 
classes of interest: Asphalt, Meadows, Gravel, Tree, Metal 
sheets, Soil, Bitumen, Bricks, and Shadow. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. University of Pavia: (a) FCC (b) Ground reference 
 

4.1.2 Salinas Dataset: It is a 512 217  pixels scene 
captured by AVIRIS sensor over the Salinas Valley, CA, USA. 
The spatial resolution is 3.7 meters/pixel. Original dataset has 
224 spectral channels out which 20 water absorbing bands are 
removed. The FCC and corresponding ground reference of 
Salinas dataset are given in Figure 3. The scene is taken over 

agriculture land, which consists of bare soil, vegetables, and 
vineyard fields.  There are sixteen ground cover classes of 
interest: Broccoli green weeds 1, Broccoli green weeds 2, 
Fallow, Fallow rough plow, Fallow smooth, Stubble, Celery, 
Grapes untrained, Soil vinyard develop, Corn senesced green 
weeds, Lettuce romaine 4wk, Lettuce romaine 5wk, Lettuce 
romaine 6wk, Lettuce romaine 7wk, Vinyard untrained, 
Vinyard vertical trellis. 
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Figure 3. Salinas: (a) FCC (b) Ground reference 

 
4.2 Classification 

The supervised classification is done using SVM, which is well 
suited to classify hyperspectral data (Camps-Valls, et al., 
2005). It can handle the issues like high dimensionality, small 
size training samples, and poor generalization, etc. better than 
the conventional classifiers. The SVM is implemented using 
MATLAB interface of LIBSVM (Chang, et al., 2011) tool. We 
used one-vs-one multi-class SVM with radial basis function 
(RBF) kernel. The parameters, cost C and the spread of kernel 
  are determined optimally using 5-fold cross validation. The 
feature extraction using DBFE is implemented with MultiSpec 
tool (Landgrebe, et al., 2003). 
 
4.3 Results 

The texture features obtained from second order ( 2)p q   
geometric moments 00 01 10 11 02 20( , , , , , )m m m m m m are combined 
with spectral feature obtained from PCA or DBFE. The length 
of feature vector is increased by six as one additional feature is 
produced by each moment image. The results are compared 
with spectral classification results to investigate the impact of 
integration of spatial information. For both spectral feature 
extraction techniques, the first few components necessary to 
retain 99% variance are kept in joint feature vector. 
 
4.3.1 University of Pavia Dataset Results: The details of 
training and test samples used in the experiments are provided 
in Table 1. The training samples are randomly chosen from the 
ground reference and remaining samples are used for 
evaluating the performance. The results reported for each 
experiment are the average of ten trials. It can be observed 
from the results in Table 1 that overall accuracy (  ) of 
spectral classification using PCA is not good. It is also 
apparent from the classified map in Figure 4 as it appears 
noisy. The spectral information from PCA is good enough to 
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Class No. of samples Class wise accuracies (  ) in % Z statistic 
No. Name Training Test PCA 

(a) 
DBFE 

(b) 
PCA+Texture 

(c) 
DBFE+Texture 

(d) 
caZ  dbZ  

1 Asphalt 548 6083 81.45 90.47 99.53 99.30 33.64 20.99 
2 Meadows 540 18109 76.80 93.66 99.10 98.96 53.82 20.01 
3 Gravel 392 1707 74.53 86.49 99.04 99.46 22.32 15.14 
4 Tree 524 2540 94.62 97.59 99.05 98.96 8.81 3.66 
5 Metal sheets 265 1080 99.91 99.82 99.72 99.72 -0.99 -0.45 
6 Soil 532 4497 79.55 93.88 99.95 99.83 31.51 15.47 
7 Bitumen 375 955 91.34 93.37 99.69 99.80 9.08 7.96 
8 Bricks 514 3168 83.10 90.05 99.22 99.29 22.77 16.14 
9 Shadow 231 716 100 99.86 99.86 99.85 -1.00 0 
 Overall 3921 38855  81.86 93.04 99.36 99.28 74.35  39.47 

 
Table 1. Classification accuracies for University of Pavia dataset. The best results are highlighted in bold typeface. ijZ  is the 

Z statistic between classifiers i and j. 
 
 

    
(a) (b) (c) (d) 

 
Figure 4: Classified maps for University of Pavia dataset: (a) PCA (b) PCA+Texture (c) DBFE (d) DBFE+Texture 

 
 

classify the samples from classes Metal sheets (99.91%) and 
Shadow (100%) only. Better results are obtained using DBFE 
with overall accuracy of 93.06%. However, as in case of PCA 
the best accuracies are obtained for “Metal sheets” (99.82%) 
and Shadow (99.86%) classes only. In both cases the accuracy 
improvements are desirable for most of the classes. The 
statistically significantly better results are obtained by 
integrating texture information both with PCA and DBFE 
features. The overall   improved to 99.36% and 99.28% using 
texture features with PCA and DBFE respectively. The 
classification accuracy for most of the classes is statistically 
significantly improved. For classes Metal sheets and Shadow 
the accuracy is reduced slightly but the difference is not 
statistically significant.  Almost 99% or more accuracy is 
achieved for all the classes in both the cases. The classified 
maps of University of Pavia are shown in Figure 4. It can be 
observed from the figure that noisy map obtained by spectral 
classifications are well smoothened by spectral-spatial 
classification. 
 

4.3.2 Salinas Dataset Results: The results of experiments 
on Salinas dataset are reported in Table 2. The experiments are 
performed for a different kind of database to evaluate the 
effectiveness of the proposed methodology. Like previous 
experiments the training samples are randomly selected from 
ground reference and remaining samples are kept for accuracy 
analysis. PCA produced overall   of 89.60% and DBFE 
performed better with 91.95%. Both PCA and DBFE yielded 
poorest results for two classes “Grapes untrained” (82.61% 
and 83.56% respectively) and “Vinyard untrained” (54.53% 
and 69.79% respectively). By observing confusion matrix it is 
found that most of the misclassified pixels of “Grapes 
untrained” are classified as “Vinyard untrained” and vice 
versa. Additional information provided by texture feature has 
helped better discriminating the different classes. By spectral-
spatial classification using PCA and texture features achieved 
more than 99% accuracy for all the classes. The overall as well 
as class wise   are statistically significantly improved. The 
texture features with DBFE also statistically significantly 
improved overall   and class specific accuracies for most of 
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Class No. of samples Class wise accuracies (  ) Z statistic 

No. Name Training Test PCA 
(a) 

DBFE 
(b) 

PCA+Texture 
(c) 

DBFE+Texture 
(d) 

caZ  dbZ  

1 Broccoli green weeds 1 252 1757 98.42 99.47 99.94 99.71 4.95 1.07 
2 Broccoli green weeds 2 474 3252 99.67 99.74 99.84 99.61 1.29 -0.90 
3 Fallow 239 1737 97.27 98.22 100 99.53 6.88 3.60 
4 Fallow rough plow 169 1225 99.17 99.00 99.25 99.09 0.23 0.21 
5 Fallow smooth 342 2336 99.02 97.73 99.29 98.53 0.97 1.99 
6 Stubble 516 3443 99.91 99.60 99.91 99.41 0 -1.06 
7 Celery 442 3137 99.70 99.36 99.93 99.32 2.11 -0.17 
8 Grapes untrained 1395 9876 82.61 83.56 99.96 99.34 40.18 37.02 
9 Soil vinyard develop 775 5428 99.67 98.99 99.94 99.67 2.99 4.11 
10 Corn green weeds 407 2871 91.55 94.17 99.45 98.57 14.35 8.74 
11 Lettuce romaine 4wk 141 927 95.45 96.19 99.24 98.59 5.10 3.24 
12 Lettuce romaine 5wk 232 1695 99.64 99.21 100 99.76 2.45 2.19 
13 Lettuce romaine 6wk 124 792 98.99 97.96 99.49 98.09 1.16 0.18 
14 Lettuce romaine 7wk 121 949 92.90 96.06 99.04 96.91 6.87 0.99 
15 Vinyard untrained 906 6362 54.53 69.79 99.96 99.08 70.35 47.34 
16 Vinyard vertical trellis 231 1576 98.44 98.12 99.94 98.90 4.63 1.79 
 Overall 6766 47363 89.60 91.95 99.81 99.20 67.47 53.38 
 
Table 2. Classification accuracies for Salinas dataset. The best results are highlighted in bold typeface. ijZ  is the Z statistic 

between classifiers i and j. 
 
 
 

    
(a) (b) (c) (d) 

 
Figure 5: Classified maps for Salinas dataset: (a) PCA (b) PCA+Texture (c) DBFE (d) DBFE+Texture 

 
 

the classes including “Grapes untrained” and “Vinyard 
untrained”. However, in this case accuracies of some classes is 
reduced but the difference is not statistically significant. The 
integration of texture information with PCA produced better 
results than its integration with DBFE with overall   of 
99.81% and 99.20% respectively. Figure 5 presents the 
classified maps for Salinas dataset. The noisy maps are 
improved by integrating texture information. 
 

5. CONCLUSION 

In this research work a spectral-spatial supervised framework 
was proposed for integrating spectral and texture features to 
classify hyperspectral data. The second order geometric 
moments were used to compute texture features. The proposed 
methodology was tested on two airborne hyperspectral datasets 
to evaluate its effectiveness. Two techniques, one supervised 
and one unsupervised were employed for spectral feature 
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reduction. The experimental results showed that integration of 
texture and spectral features produced statistically significantly 
better results than spectral classification. The texture features 
were successfully integrated with spectral features computed 
by different algorithms to reduce the label uncertainty. For 
both the datasets more than 99% accuracy was achieved in 
terms of kappa coefficient.  
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