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ABSTRACT:  
Airborne hyperspectral imaging is constantly being used for classification purpose. But airborne thermal hyperspectral image usually 

is a challenge for conventional classification approaches. The Telops Hyper-Cam sensor is an interferometer-based imaging system 

that helps in the spatial and spectral analysis of targets utilizing a single sensor. It is based on the technology of Fourier-transform 

which yields high spectral resolution and enables high accuracy radiometric calibration. The Hypercam instrument has 84 spectral 

bands in the 868 cm-1 to 1280 cm-1 region (7.8 μm to 11.5 μm), at a spectral resolution of 6 cm-1 (full-width-half-maximum) for 

LWIR (long wave infrared) range. Due to the Hughes effect, only a few classifiers are able to handle high dimensional classification 

task. MNF (Minimum Noise Fraction) rotation is a data dimensionality reducing approach to segregate noise in the data. In this, the 

component selection of minimum noise fraction (MNF) rotation transformation was analyzed in terms of classification accuracy 

using constrained energy minimization (CEM) algorithm as a classifier for Airborne thermal hyperspectral image and for the 

combination of airborne LWIR hyperspectral image and color digital photograph. On comparing the accuracy of all the classified 

images for airborne LWIR hyperspectral image and combination of Airborne LWIR hyperspectral image with colored digital 

photograph, it was found that accuracy was highest for MNF component equal to twenty. The accuracy increased by using the 

combination of airborne LWIR hyperspectral image with colored digital photograph instead of using LWIR data alone. 

 
1. INTRODUCTION 

 

Remotely sensed data acquired using hyperspectral sensors 

contains hundreds of spectral bands acquired over contiguous 

wavelength range (T. M. Lillesand et al, 2004). These narrow 

contiguous spectral bands helps in distinguishing various types 

of materials. But thermal hyperspectral technique opens up new 

possibilities in remote sensing. These imagers acquire data in 

long wave infrared region (8–12 μm). Using thermal infrared 

data it is possible to extract land surface temperature and 

spectral emissivity (Martin Schlerf et al, 2012). Some of the 

methods are already available in the literature for multispectral 

thermal sensors like classification method, Gray body 

emissivity method etc. However, it is hard to get accurate land 

surface temperature and emissivity easily by multispectral 

temperature and emissivity separation (TES) methods (José A. 

Sobrino et al, 2006). The usefulness of airborne LWIR 

hyperspectral data lies in the fact that the imagers can be flown 

in day as well as at night also. Mapping in this region has many 

advantages over visible region like detection of buried 

landmines and camouflage detection etc. Hence, thermal 

hyperspectral remote sensing technique is a powerful technique 

for land use/land cover applications.  

 

In hyperspectral images there is a lot of redundancy in the data 

and storage problem as well. This redundancy occurs due to 

high correlation between the bands. This correlation decreases 

the classification accuracy. Now, the data volume to be 

processed is huge and the training samples are limited so, there 

occurs a phenomenon called Hughes Phenomenon. It is also 

called curse of dimensionality. According to this phenomenon 

the accuracy of classification first increases and then starts 

decreasing after some value. So it becomes an important task to 

overcome this phenomenon. To mitigate this problem we can 

reduce the data dimensions using data dimensionality reduction 

techniques like PCA, MNF, and ICA etc. This research intends 

to develop a methodology to use the concept of object 

identification from the airborne thermal hyperspectral data. The 

“curse of dimensionality” is dealt with data dimensionality 

reduction technique called minimum noise fraction MNF.  

 

2. DATA DIMENSIONALITY REDUCTION APPROACH: 

MNF (MINIMUM NOISE FRACTION) 

 

In hyperspectral imagery the spectral resolution is fine but as it 

has large number of spectral bands therefore, it increases 

complexity. As the number of bands in hyperspectral imagery is 

very large so there may be some redundant information in it. So 

various data dimensionality reduction approaches have been 

developed which reduces the number of bands without losing 

the information content and also segregated the noise in the 

data. Various techniques are minimum noise fraction MNF, 

principal component analysis PCA etc (Zhang lianpeng et al, 

2010). Minimum noise fraction (MNF) transforms is an 

important technique as far as target detection is concerned. It 

works on the principle that it segregates noise from information 

content and also reduces the variance in the data. MNF 

transform consists of two cascaded principal components. The 

difference between Minimum noise fraction (MNF) transform 

and principal component analysis is that MNF takes into 

account the sensor noise and also it orders the image in terms of 

signal to noise ratio SNR. On the other hand PCA consider the 

data variance not the sensor noise. 

       

The MNF consists of two steps. The first step transforms the 

data with unit variance and ensures no band to band correlation. 

It decorrelates the data. In the second step it applies principal 

component to the noise whitened data. The images are called 

eigen images The more large eigen vales signifies more useful 

information. Eigen values close to one indicates noise affected 

data. Now the first requirement in the process is to estimate 

sensor noise. Mathematically, Consider the input image matrix 

as 

                                  Y =[y1, y2,… yp]
T  

It is p× N matrix. 

Where, p = number of spectral bands 

           N= data length of each band 

Equation 1 represents how the noise is added to signal.                                                                                   

Y = S+N                                                                                   (1) 

Where, S = Signal and N= Noise 

Covariance matrix can be written as:  

                                 D(Y) = Σ = ΣS + ΣN 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, 2014
ISPRS Technical Commission VIII Symposium, 09 – 12 December 2014, Hyderabad, India

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-8-827-2014

 
827



MNF is a linear transform and it can be written as:  

                                        Z= ATY 

STEP1:   

Eigen values and Eigen vector of ΣN are found. Eigen vector 

matrix of ΣN is denoted by U. Make ΣN to be a diagonal 

matrix. The diagonal matrix is shown in equation 2.            

                                    DN =UT ΣN U                                     (2)    

DN is the eigenvalue of ΣN  

Now find  P = UN-1/2  such that, PT ΣNP=I 

Where, I = identity matrix.  

To project original image to new space apply P to image data Y 

X = PY  , Noise in the transformed data is unit variance. 

STEP2: 

The input data is transformed by using PCA i.e. principal 

component analysis as shown in figure 3.                                                   

                                 C D- adj = PT ΣP                                  (3)                                             

Make C D- adj  as diagonal matrix,     

                           VT C D- adjP = D D-adj  

Where D D-adj = is a diagonal matrix and its elements are the 

eigenvalues of C D- adj. V is the vertical matrix of 

corresponding eigenvectors.  

Transformed matrix is obtained, A= PV 

This will arrange the data according to the SNR values. The 

major information is contained in first some of the MNF 

components and information content decreases as number of 

components increases. Hence, minimum noise fraction (MNF) 

is a linear transform which reduces the dimension, removes 

noise and reprojects the input data in which whole of the noise 

is removed which is better than PCA. 

 

3. TARGET DETECTION ALGORITHM  

 

The Constrained Energy Minimization (CEM) technique is a 

target detection technique which is quite popular for 

hyperspectral image (Chang et al, 2001). It uses a linear 

operator and performs matched filtering (Gass, T et al, 2010). It 

maximizes the response of the target signature and suppresses 

the signature of background pixels. At its background it 

estimates the correlation matrix for obtaining the background 

pixels. In short it enhances the contrast between the target and 

background spectra. So this is quite efficient technique 

especially in hyperspectral domain. In addition to its 

advantages it has some of the anomalies in its performance. It 

doesn’t perform satisfactorily in presence of low probability 

background. In the end it produces abundance image i.e. grey 

level images for each class. In case of similar spectral 

signatures of different classes this algorithm doesn’t perform 

well (Yin et al, 2010). Finite set of observations are 

                                      S = {r1,  r2, ….,  rN }  

Where, ri = (ri1, ri2,…., riL)T  is a input pixel vector 

Desired signature d is known a priori. The objective of CEM is 

to design a finite impulse response (FIR) linear filter with L 

filter coefficients {w1, w2,…., wL}. The constraint n the filter 

is that the noise should be suppressed i.e. the average output 

power of noise should be minimized. Equation 4 represents the 

constraint applied for FIR filter (Settle J, 2002). 
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Now, the  output of FIR filter is weighted sum of input image 

pixels which is shown in figure 5. 

yi = output of FIR filter 
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The average output power will be as shown in figure 6. 
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So, the average output power produced by the observation set 

S and the FIR filter with coefficient vector 
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CEM operator is given by: CEM = (w* )T r. Value of this 

operator represents the estimated amount of fraction of the 

object signature d contained in input image pixel r. The image 

which we get from CEM filter is a grayscale image. The gray 

level value of each image pixel gives the detected amount of the 

desired object presented in the input pixels (Puckrin, E et al, 

2010). After this the object detection is performed which is 

based on the resulting gray scale image, and classification is 

performed by detecting the desired objects in separate images. 

Due to this reason, the only required knowledge for the CEM is 

the desired target not all the signatures of all objects. CEM is 

used vastly for the detection and classification of hyperspectral 

images (Ren H., 2003). However, CEM is completely 

determined by the information used to describe the desired 

target signature. Thus CEM is very sensitive to the noise.  

 

4. TEST DATA AND STUDY AREA 

 

The study area for this research work has been obtained with 

Hyper-Cam, an airborne LWIR hyperspectral imager. The 

region includes a variety of natural and man-made objects. It is 

located in Black Lake area of Thetford Mines, province of 

Québec, Canada (46.047927N, 71.366893W) and the Google 

Earth image with the color digital photograph is shown in figure 

2. The dataset used is long-wave infrared (LWIR, thermal 

infrared) airborne hyperspectral data which is acquired by an 

84-channel imager that covers the wavelengths between 7.8 to 

11.5 μm with approximately 1-m spatial resolution. The 

airborne LWIR hyperspectral imagery consists of 84 spectral 

bands in the 868 to 1280 cm^-1 region (7.8 μm to 11.5 μm), at a 

spectral resolution of 6 cm^-1 (full-width-half-maximum). It 

has been calibrated to at-sensor spectral radiance units, in W/ 

(m^2 sr cm^-1).  

 
Figure 1: Airborne LWIR hyperspectral data 
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Figure 2: Google earth image of Study Area along with the 

digital color photograph 

 

The average height of sensor above ground was 2650 ft (807 

m). The airborne LWIR hyperspectral imagery is shown in 

figure 1. Other dataset used was color digital photograph which 

was acquired with a digital color camera (2 Megapixel). The 

airborne visible imagery consists of uncalibrated, high spatial 

resolution, digital data with sparse ground coverage over the 

same area as the LWIR hyperspectral imagery. The spatial 

resolution of the colored digital photograph is 0.2 m. The two 

airborne data sets were acquired simultaneously on May 21, 

2013, between the times 22:27:36 to 23:46:01 UTC. The 

characteristic of the two datasets used have been mentioned in 

Table 1. The airborne LWIR hyperpsectral image is having 84 

bands whereas , colored digital photograph has 3 bands. The 

LWIR imagery cover infrared region from 7.8 μm to 11.5 μm. 

The average height of sensor for both the imageries is 807m. 

The spatial resolution of LWIR image is 1 m and for color 

digital photograph is 0.2m.  

 

     

Specifications 

Airborne LWIR 

Hyperspectral Inage  

Colored digital 

photograph 

No. of bands 84 bands 3 bands 

Spectral Bands 868 to 1280 cm^-1 

region 

7.8 μm to 11.5 μm  

R 

G 

B 

Average height 

of Sensor 

2650 ft (807 m) 2650 ft (807 m) 

Spatial 

resolution 

1 m 0.2 m 

Table 1: Specification of datasets used 

 

 
 

Figure 3: Ground truth image with legend 

 

 

6. METHODOLOGY ADOPTED 

The overview of the methodology adopted in this research is 

depicted in Figure 4. A broad division of the workflow into 

classification and proposed approach of dimensionality 

reduction (DR) and classification (each segment is explained 

subsequently) is illustrated and discussed in this section. 

 

 
Figure 4: Methodology adopted 

The overview of the methodology is that first the data set is 

subjected to minimum noise fraction MNF and then 

classification algorithm is applied to it. Firstly the airborne 

LWIR hyperspectral imagery is subjected to minimum noise 

fraction MNF which reduces the 84- bands data into a fewer 

component imagery and also separates the noise present in the 

dataset. MNF decorrelates the data using the variance matrix of 

LWIR data. Here it started from MNF component equal to two 

and then go until MNF component equal to twenty. Because 

accuracy starts decreasing after 20th component. These MNF 

components one by one go into the constrained energy 

minimization algorithm. Accuracy assessment is performed for 

each of the classified image for each and every MNF 

component. Then the class with highest user’s accuracy is 

identified which means it is best classified among all classes. 

 

Then, the similar procedure is applied to the combination of 

LWIR image with the colored digital photograph. For this 

firstly the airborne LWIR hyperspectral image is combined with 

the colored digital photograph. Then this image is subjected to 

minimum noise fraction. MNF component equal to two to 

twenty are given into the constrained energy minimization 

algorithm CEM. Accuracy assessment was conducted for each 

of the class.  At last comparison of both the datasets is made 

based on the user’s accuracy of each class. 

 

7. RESULT AND DISCUSSION 

 

The present research elaborates the possible effect of a classifier 

i.e. constrained energy minimization CEM on various number 

of MNF components on both the datasets. The two datasets are 

LWIR image and the LWIR image combined with the colored 

digital photograph. Firstly, the classified results of airborne 

LWIR hyperspectral data are shown in figure 5 to 8 and then 

the classified results for combination of both LWIR and color 

Vegetation 

Concrete Roof 

Grey Roof 

Red Roof 

Trees 

Road 

Unclassified 

Bare Soil 
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digital photograph are shown in figure 9 to 12. Individual 

classified images using CEM (Constrained Energy 

Minimization) algorithm are described. The results are for 

MNF components equal to 20 and separate classified images 

for each class are shown in figure 5 to 8 . The component 

selection of minimum noise fraction (MNF) rotation 

transformation is analyzed in terms of classification accuracy 

using Constrained Energy Minimization (CEM) as a classifier 

for airborne LWIR hyperspectral image. Further all the 

classified images for MNF = 2 to 20 are analyzed, through 

which it is interpreted that MNF component = 20 is best for the 

classification purpose for airborne LWIR hyperspectral data. 

This has been verified by examining the user’s accuracy values 

for each class in the classified image. Figure 5 shows results for 

tree and road for airborne LWIR hyperspectral image. Red roof 

and concrete roof are shown in figure 6, whereas figure 7 

shows vegetation and bare soil. Grey roof image is shown in 

figure 8. 

 

S.No CLASS USER’S 

ACCURACY 

1. Tree 50% 

2. Road 88% 

3. Vegetation 55.56% 

4. Bare Soil 83.34% 

5. Red Roof 50% 

6. Concrete Roof 42.85% 

7. Grey Roof 71.72% 

 

Table 2: User’s accuracy of each class for MNF component 20 

using CEM classifier for airborne LWIR hyperspectral image 
 

MNF-20 is best in all MNF component groups in terms of 

user’s accuracy which is clearly seen in table 2. This also 

shows that the CEM classifier is better able to classify road 

with 88% accuracy, bare soil with 83.34% accuracy and grey 

roof with 71.72% accuracy for airborne LWIR hyperspectral 

data as their user accuracy is highest among all classes. Tree, 

vegetation and red roof shows similar accuracy with 50%, 

55.56% and 50% accuracy respectively. Concrete roof shows 

less than 50% accuracy i.e. 42.85%.  
 

 

Figure 5: Classified image of individual trees (right) and 

classified image of road (left) using CEM (Constrained Energy 

Minimization) algorithm for LWIR imagery 

 

Later, the combination of LWIR imagery and colour digital 

photograph is subjected to MNF and then classification is 

performed using CEM algorithm.  Results were examined for 

the same. Individual classified images for each class using 

CEM (Constrained Energy Minimization) algorithm for MNF 

components equal to 20  are shown in figure 9 to 12. The 

component selection of minimum noise fraction (MNF) 

rotation transformation is analyzed in terms of classification 

accuracy using Constrained Energy Minimization (CEM) as a 

classifier for airborne LWIR hyperspectral image. 

 

 

Figure 6: Classified image of red roof (right) and classified 

image of concrete roof (left) using CEM (Constrained Energy 

Minimization) algorithm for LWIR imagery 

 

 

Figure 7: Classified image of vegetation (right) and classified 

image of bare soil (left) using CEM (Constrained Energy 

Minimization) algorithm for LWIR imagery 

 

 

Figure 8: Classified image of grey roof (right) using CEM 

(Constrained Energy Minimization) algorithm for LWIR 

imagery 

 

Further all the classified images for MNF = 2 to 20 are 

analyzed, through which it is interpreted that MNF component 

equal to 20 is best for the classification purpose for combination 

of airborne LWIR hyperspectral data with colored digital 

photograph. This has been verified by examining the user’s 

accuracy values for each class in the classified image. In this 

also 20th MNF component reveals the highest accuracy in terms 

of user’s accuracy for each class. Figure 9 shows results for tree 

and road for airborne LWIR hyperspectral image. Red roof and 

concrete roof are shown in figure 10, whereas figure 11 shows 

vegetation and bare soil. Grey roof imagery is as shown in 

figure 12. 
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S.No CLASS USER’S 

ACCURACY 

1. Tree 50% 

2. Road 88% 

3. Vegetation 62.50% 

4. Bare Soil 71.42% 

5. Red Roof 55.56% 

6. Concrete Roof 66.60% 

7. Grey Roof 83.34% 

Table 3: User’s accuracy of each class for MNF component 20 

using CEM classifier for combination of LWIR with colored 

digital photograph 

 

Figure 9: Classified image of individual trees (right) and 

classified image of road (left) using CEM (Constrained Energy 

Minimization) algorithm for combination of LWIR imagery 

with colored photograph 

 

Figure 10: Classified image vegetation (right) and classified 

image of red roof (left) using CEM (Constrained Energy 

Minimization) algorithm for combination of LWIR imagery 

with colored photograph 

 

Figure 11: Classified image of bare soil (right) and classified 

image of concrete roof (left) using CEM (Constrained Energy 

Minimization) algorithm for combination of LWIR imagery 

with colored photograph 

This approach is better able to classify three classes i.e. road, 

concrete roof and grey roof as their user’s accuracy is highest 

among all classes. Table 3 explains that MNF-20 is best in all 

MNF component groups in terms of user’s accuracy. Road, bare 

soil and grey roof are better classified with 88%, 71.42% and 

83.34% accuracy. Tree and red roof are classified with similar 

accuracy i.e. 50% and 55.56% accuracy. Whereas, vegetation 

and concrete roof are classified with 62.50% and 66.60% 

accuracy.  

 

 

Figure 12: Classified image of grey roof (right) using CEM 

(Constrained Energy Minimization) algorithm for combination 

of LWIR imagery with colored photograph 

CONCLUSION 

 

The Airborne thermal hyperspectral image usually is a 

challenge for conventional classification approaches. Due to the 

Hughes effect, only a few classifiers are able to handle high 

dimensional classification task. MNF rotation is a 

dimensionality reducing approach to segregate noise in the data. 

In this, the component selection of minimum noise fraction 

(MNF) rotation transformation is analyzed in terms of 

classification accuracy using constrained energy minimization 

(CEM) algorithm as a classifier for Airborne thermal 

hyperspectral image and for the stack of LWIR and colour 

digital photograph. By comparing the user's accuracy obtained 

from the classification of airborne LWIR image and from the 

LWIR with colour digital photograph we can draw the 

inferences that there was no change in the classification of trees 

and road as can be deduced from the user's accuracy which is 

50% for trees and 88% for the road. For some of the classes the 

user's accuracy increased in the LWIR with colour digital 

photograph.  For vegetation user's accuracy increased from 

55.56% to 62.50%. For red roof user's accuracy increased from 

50% to 55.56%. For concrete roof user’s accuracy increased 

from 42.85% to 66.67%. For grey roof user's accuracy 

increased from 71.42% to 83.34%. In contrast, the user's 

accuracy for one class i.e. bare soil decreased from 83.34% to 

71.42% in LWIR with colour digital photograph, which means 

that there were some misclassifications for this class in LWIR 

with colour digital photograph. This result also suggests that too 

few MNF components (e.g. only using first 5 or 10) will result 

in misclassification due to bring in too little information. 
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