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ABSTRACT: 

 

Drought is an extreme condition due to moisture deficiency and has adverse effect on society. Agricultural drought occurs when 

restraining soil moisture produces serious crop stress and affects the crop productivity. The soil moisture regime of rain-fed agriculture 

and irrigated agriculture behaves differently on both temporal and spatial scale, which means the impact of meteorologically and/or 

hydrological induced agriculture drought will be different in rain-fed and irrigated areas. However, there is a lack of agricultural 

drought assessment system in Indian conditions, which considers irrigated and rain-fed agriculture spheres as separate entities. On the 

other hand recent advancements in the field of earth observation through different satellite based remote sensing have provided 

researchers a continuous monitoring of soil moisture, land surface temperature and vegetation indices at global scale, which can aid in 

agricultural drought assessment/monitoring. Keeping this in mind, the present study has been envisaged with the objective to develop 

agricultural drought assessment and prediction technique by spatially and temporally assimilating effective drought index (EDI) with 

remote sensing derived parameters. The proposed technique takes in to account the difference in response of rain-fed and irrigated 

agricultural system towards agricultural drought in the Bundelkhand region (The study area). 

 

The key idea was to achieve the goal by utilizing the integrated scenarios from meteorological observations and soil moisture 

distribution. EDI condition maps were prepared from daily precipitation data recorded by Indian Meteorological Department (IMD), 

distributed within the study area. With the aid of frequent MODIS products viz. vegetation indices (VIs), and land surface temperature 

(LST), the coarse resolution soil moisture product from European Space Agency (ESA) were downscaled using linking model based on 

Triangle method to a finer resolution soil moisture product. EDI and spatially downscaled soil moisture products were later used with 

MODIS 16 days NDVI product as key elements to assess and predict agricultural drought in irrigated and rain-fed agricultural systems 

in Bundelkhand region of India. Meteorological drought, soil moisture deficiency and NDVI degradation were inhabited for each and 

every pixel of the image in GIS environment, for agricultural impact assessment at a 16 day temporal scale for Rabi seasons (October – 

April) between years 2000 to 2009. Based on the statistical analysis, good correlations were found among the parameters EDI and soil 

moisture anomaly; NDVI anomaly and soil moisture anomaly lagged to 16 days and these results were exploited for the development 

of a linear prediction model. The predictive capability of the developed model was validated on the basis of spatial distribution of 

predicted NDVI which was compared with MODIS NDVI product in the beginning of preceding Rabi season (Oct – Dec of 2010).The 

predictions of the model were based on future meteorological data (year 2010) and were found to be yielding good results. The 

developed model have good predictive capability based on future meteorological data (rainfall data) availability, which enhances its 

utility in analyzing future Agricultural conditions if meteorological data is available. 

 

1. INTRODUCTION 

 

1.1  General Introduction 

 

Drought is a phenomenon having slow onset, progress and 

ending. The impact of drought could create vegetation stress 

leading to serious damages which is well shown by 

Breshears et al. (2005). For decades, it has always been a 

challenge for the decision makers to monitor the arrival and 

growth of drought and identify its end. Although the drought 

events are initiated by the deficit in precipitation, simply 

rainfall as an indicator for assessing severity of drought and 

its resultant impacts is insufficient. Combination of various 

reasonable indicators must be included with regular 

observation for an effective drought assessment system to 

examine both drought severity and its consequences. 

 

1.2 Agricultural and Meteorological Drought 

 

Agricultural drought refers to a period with declining soil 

moisture content and consequent crop failure (Mishra and 

Singh, 2010). The deficiency of water from either 

meteorological or hydrological sources reduces water supply 

for crop production.  This water is supposed to be stored in 

soil as soil moisture which is ultimately affected as well. As 

a result, the restraining soil moisture produces serious crop 

stress and affects the crop productivity. The agriculture, if 

practiced as rain-fed system, is directly affected by 

meteorological drought and therefore this regime of 

agriculture can be directly related to meteorological events 

observed. On the other hand, the irrigated systems can be 

affected by meteorological drought, only if the ingoing water 
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supply scheme in addition to meteorological contribution 

fails to meet the crop water requirement. 

 

1.3  Drought Index 

 

Drought indices are developed for decision making in 

response to drought.  It quantifies of severity of a drought 

event at scales of watershed, region, province, nation, or 

globe. The drought indices are classified according to the 

input data requirement, application purpose, or both such as 

meteorological, hydrological, agricultural and/or remote 

sensing data derived drought index. 

 

Meteorological events in sense of rainfall could act as 

practical indicator for agricultural drought occurrence. The 

“Rainfall Anomaly Index” (RAI), (Rooy, 1965) was one the 

most popular and basic Meteorological drought index in 

earlier days. Being dependent on long term meteorological 

rainfall observations completely, the RAI displays the 

relation between a regional humidity index and the Van 

Rooy actual evaluation of dry periods during the rainy 

seasons. The demerit of using the observations from only 

rainfall overcomes its simplicity in estimation. The “Palmer 

Drought Severity Index” (PDSI) (Palmer, 1965) was 

developed for Meteorological drought assessment using 

precipitation, evapotranspiration and soil moisture conditions 

as the key inputs. It is based on hydrological accounting and 

a number of assumptions which are either empirically 

developed or location specific. It uses the supply and demand 

concept of water balance and also includes 

evapotranspiration in the concept for calculation. The PDSI 

is efficient in addressing the intensity of drought and its onset 

and offset time, which most of drought indices lack. 

However, its complicated computation process and long term 

observations requirement of multiple parameters makes it 

usable at only limited regions. It has some other limitations 

too, due to which, the conventional time series models may 

not be able to capture the stochastic properties of PDSI 

(Alley, W.M., 1984). 

 

The PDSI even being one of the most used drought indices in 

conditions of US, still lags in the property definition of small 

time scale. The need of a drought index for global standards 

led to the development of “Standardized Precipitation Index” 

(SPI) (McKee, 1995) with characteristic of a variety of time 

scale flexibility. It is a potential Meteorological drought 

index which is easily calculable, requires modest data, 

independent of the magnitude of mean rainfall and 

comparable over a range of climatic zones (Agnew, 2000). 

Guttman (1997) explained the advantages of SPI being 

probabilistic in nature and thus, its usability in risk and 

decision analysis over other drought indices. The 

identification of extreme drought with SPI presents a better 

spatial standardization as compared to the PDSI (Hughes and 

Saunders, 2002). The use of SPI is standardized to a variety 

of time scales i.e. 1, 2, 3, 6, 12, 24, 26, 48 months. It 

overpowers the traditional drought indices as it can be 

applied for any location at small time scales, and it makes 

SPI a suitable indicator accepted around the world. The 

positive value of SPI represents wet conditions whereas the 

negative values show drought conditions. The intensity of 

drought is signified by the standardized numbers ranging 

from 0 to (-2 and less). The SPI have also a constraint of 

minimum time scale of 1 month. Enormous studies had been 

carried out for the development of a Meteorological drought 

index, which can overcome the limits of the most widely 

known Meteorological drought index ever i.e. SPI. The 

“Effective Drought Index” (EDI) (Byun and Wilhite, 1999) 

can overcome to the limitations of SPI. An innovative 

concept of effective precipitation is incorporated for the 

computation of EDI. The effective precipitation is the 

accumulation of the parts of precipitation of the certain days 

before estimation time, which affects the available water 

resources at the estimation time (e.g., rainfall of 3 days prior 

to present day can affect soil moisture of present day). This 

different perception is based over certain limitations that 

most of the drought indices display. Firstly, most of the 

indices are not accurate in detection of arrival and end of the 

drought and its accumulated stress. Secondly, the time scale 

for even some of the very advanced drought indices is 

limited up to one month step, which restricts their usefulness 

in monitoring ongoing drought. Finally, the majority of them 

are incapable of differentiating the effects of drought on 

subsurface and surface water supply. 

 

In a comparative study between EDI and SPI, the EDI was 

found to be better than SPI in detecting long term, extremely 

long term and short term drought, short term rainfall and also 

dealing with the problem of over estimation and under 

estimation (Byun and Kim, 2010). Morid et al.(2006) 

compared seven Meteorological drought indices in Iran out 

of which EDI was found to be capable of perceiving the 

drought‟s onset, it spatial and temporal deviations with a 

good consistency, and it was suggested for operational 

drought monitoring as well. The forecast by EDI carried 

better RMSE and MAE errors than SPI in an experiment 

done by Morid et al. (2007), concluding EDI as a better 

forecasting Meteorological drought index. The assessments 

by EDI have been found closer to accuracy and its 

predictions carry less error than that of other meteorological 

indices. Thus, EDI is a reliable meteorological drought 

index. 

 

1.4  Remote Sensing and GIS for Agricultural Drought 

Studies 

 

The remote sensing community have defined drought 

specifically as a period of abnormal dry weather, which 

affects the vegetation cover (Heim, 2002). Drought is one of 

the most dominant causes for crop loss (Wilhite, 2002). The 

requirement of drought assessment system dedicated towards 

agricultural drought assessment led to development of 

numerous approaches with explicit characteristics. They 

included traditional solutions based on the theories of 

meteorological factors. The traditional approaches for 

drought monitoring that uses ground-based data are 

laborious, difficult and time consuming (Prasad et al., 2007). 

 

Meanwhile, biosphere measurements by satellite sensors 

have emerged with importance in various aspects including 

the drought studies. Remote sensing and GIS technologies 

are better than traditional techniques in terms of spatial 

dynamics and coverage area. 

 

1.4.1 Drought Index Derived from Remote Sensing: The 

“Normalized Difference Vegetation Index” (NDVI) (Tucker, 

1979) is the most prominent vegetation index to be used in 

identification and monitoring of vegetation. The first most 

application of NDVI in drought monitoring is presented by 

Tucker and Choudhury (1987). The NDVI is not only used in 

its primary form but also its derivatives could be used in 

several other forms to relate with the phenology of the 

vegetation cover which reflects the seasonal cycle of rainfall 

(Chen et al., 2001; Lee et al., 2002; Stockli and Vidale, 
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2004). Similar approaches have been used in forming 

drought monitoring, assessment and prediction systems 

around the globe. The NDVI is a simple, yet an effective 

remote sensing derived index for agricultural drought studies. 

 

1.4.2  Satellite Sensors for Agricultural Drought Studies: 
Several innovative approaches have been developed to 

extract information from past and real time remote sensing 

data for the purpose of drought studies. This remark was 

achieved first, after the launch of AVHRR, on June 27, 1979 

onboard obtained from National Oceanic and Atmospheric 

Administration (NOAA). The most successful RS data 

regarding agricultural drought studies is AVHRR NDVI 

which is used as primary data for input to generate vegetation 

specific drought information product called as (Vegetation 

Drought Response Index) VegDRI (Brown et al., 2002 & 

2008). NASA‟s Terra and Aqua Moderate-Resolution 

Imaging Spectroradiometer (MODIS) presents a generational 

advancement over AVHRR. MODIS products are available 

since 1999 provides data with improved sensitivity to 

vegetation than AVHRR. The narrower spectral bandwidths 

in MODIS for the red band and NIR band, which have 

increased sensitivity towards chlorophyll and water vapour 

absorption respectively, makes it more efficient for thematic 

applications (Huete et al., 2002). The spatial resolution of 

NDVI offered by MODIS is at 200m, 500 m and 1000m. 

Ozdogan and Gutman (2008); Thenkabail et al. (2009); 

Dheeravath et al. (2010) illustrated the valuable use of 

MODIS NDVI for identification of the mapping of irrigated 

agricultural areas. Son et al. (2012) illustrated the use of 

monthly MODIS normalized difference vegetation index 

(NDVI) and land surface temperature (LST) data to monitor 

Agricultural drought along with integration to precipitation 

product estimated by remote sensing. 

 

However, sole remote sensing derived agricultural drought 

assessment systems are unproductive concerning to accurate 

results. Tadesse et al. (2005) integrated AVHRR NDVI 14 

day dataset along with Meteorological drought indices from 

climate data and some biophysical parameters like land 

cover, eco-regions etc. to predict drought related vegetation 

stress over U.S. Central Plains. Integration with other fields 

like ground-based climate, hydrological, biophysical and 

surface datasets enhances not only the accuracy in severity 

quantification, but also the spatial distribution quality. 

 

1.5  Soil Moisture in Agricultural Drought Studies 

 

Soil moisture monitoring is generally a superior executive 

mean for agricultural drought assessment than precipitation 

(www.fao.org). In India, rain-fed agriculture dominates over 

irrigated agricultural systems, due to which precipitation is 

considered as the indicator for agricultural drought. But only 

precipitation cannot serve as reliable indicator for assessment 

of agricultural drought because of variability in water supply 

modes (Irrigation from canal, ground water, storage tank, 

rainfall harvested and rain-fed water). Only rain-fed 

agricultural practices have a strong relationship between 

rainfall amount and soil moisture. Contrastingly, frequent 

water supply makes agricultural areas under irrigation to face 

less chance of agricultural drought and that too irrespective 

of rainfall. Hence, agricultural drought occurrence can be 

explained by soil moisture condition at different areas 

following different water supply. 

 

 

The parameter, soil moisture impacts other parameters like 

soil temperature, evaporation, water available for plants, 

biological activities and soil compaction. The soil chemical, 

physical, and biological properties are directly or indirectly 

affected by soil moisture and thus the agriculture for which, 

it is remarked as an important agricultural drought indicator. 

 

New and improved methods of remote sensing have 

tremendously increased such as passive and active 

microwave remote sensing which can measure soil moisture. 

It works at a wavelength range from a few millimeters to 

several meters. It is highly sensitive to the moisture content. 

Microwaves have the capability to penetrate by clouds and 

into the ground, so it can operate in all weather conditions 

and regions. It can provide us the possibility of obtaining 

frequent, global sampling of soil moisture over a large 

fraction of the Earth's land surface. So, it has the potential to 

be used in agricultural drought assessment. There are several 

mission/projects running globally which provides products 

derived from microwave remote sensing. The greater 

contribution in soil moisture mapping is shared by passive 

over active microwave remote sensing due to its global 

coverage and high temporal resolution. But the passive 

microwave data cannot directly contribute in agricultural 

drought assessment/monitoring due to the limitation of 

spatial resolution ranging from 25 – 100 km. 

 

1.6  Spatial Downscaling of Remote Sensing Soil Moisture 

Products 

 

New streams of research have come up to bring the low 

spatial resolution geophysical product to high spatial 

resolution called as spatial downscaling. Various such 

disaggregation were made earlier with different datasets and 

approaches for different regions. Merlin et al., (2009 and 

2010) have presented a model which requires information on 

soil properties, surface micrometeorological and atmospheric 

observations for the spatial downscaling of soil moisture 

from AMSE-E. The linking model based on Triangle method 

(Carlson et al., 1994) is another method which utilizes 

remote sensing data for downscaling coarse resolution soil 

moisture and it has a statistical approach over the spatial 

extent. The triangle method has the potential to utilize large 

image data sets and turn out non-linear solutions for 

availability (Carlson, 2007). It uses a land surface 

temperature vs. vegetation index plot for predicting regional 

soil moisture condition. Approaches for disaggregation of 

soil moisture supported by the surface 

temperature/vegetation index have significant physical 

principles (Wang et al., 2007). The linking model based on 

Triangle method have been used for downscaling of retrieved 

soil moisture from satellite sensors like SMOS (Piles et al., 

2011) and AMSR-E (Kim and Hogue, 2012). The 

involvement of the in-situ measurements could be a valuable 

element towards for a closer accurate spatial downscaling 

approach (Kaheil et al., 2008). In another relative approach, 

Kim and Hogue (2012) have illustrated after the work of 

Jiang and Islam (2003) the spatial downscaling of AMSR-E 

soil moisture by derivation of a soil wetness index at MODIS 

scale, and utilization of the index as a factor for downscaling. 

The spatial downscaling is a more appropriate technique than 

simply resampling, when the spatial disaggregation is meant 

for parameters like soil moisture, because its variability does 

not rely on neighboring conditions. 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-8, 2014
ISPRS Technical Commission VIII Symposium, 09 – 12 December 2014, Hyderabad, India

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XL-8-89-2014

 
91



2. MATERIALS AND METHODS 

 

2.1  Study Area 

 

The Bundelkhand region of India was selected as the study 

area for this research project. This region comprises of 13 

districts; 7 districts from southern parts of Uttar Pradesh 

(UP) namely (Jhansi, Jalaun, Lalitpur, Hamirpur, Mahoba, 

Banda and Chitrakoot) and 8 districts from northern parts of 

Madhya Pradesh (MP) namely (Datia, Tikamgarh, 

Chattarpur, Damoh, Sagar and Panna). The total 

geographical area of the study area is approximately 29418 

km2 which extends from 23°10‟N to 26°27‟N in Latitude 

and 78°40‟E to 81°34‟E in Longitude (Figure 1).  

 

 
 

Figure 1. Bundelkhand region, India 

 

The range of altitude in the study area varies from 600 m 

above the mean sea level in the southern parts to 150 m near 

above the mean sea level in the northern parts near the 

Yamuna River. The climate of the Bundelkhand region is 

semi-arid. This region falls under two important Agro-

Ecological systems; Northern Plains in the northern and 

upper central Bundelkhand; Central Highlands (Malwa and 

Bundelkhand) in lower central and southern Bundelkhand. 

The two major agro-climatic zones are shown in Figure 2 (a). 

 

The minimum temperature varies from 6°C to 12°C and the 

maximum temperature variation is from 38°C to 48°C. 

Bundelkhand gets a moderate annual rainfall, fluctuating 

from 750 mm in the north-western parts, to 1250 mm in the 

south-eastern parts. However rain is an inconsistent; an 

inundation is generally trailed by stretched period of no rain. 

The occurrence of rainfall events over this region is twice in 

a year due to which two major agricultural seasons namely 

Kharif and Rabi exist. The major rainfall events show during 

the month of July to end of the month of September because 

of Monsoon from east. These events contribute around 90% 

of total rainfall in the region and support the entire Kharif 

season for the maturity of Kharif crops as well as the sowing 

of Rabi crops. The minor rainfall events appear during the 

month of January and February down to Western 

disturbances. The occurrence of these trivial events is 

important for the Rabi season as the agriculture of a large 

part in the Bundelkhand region depends on it. The Rabi 

sowing (69%) leads over Kharif (31%) in Bundelkhand 

region conflicting to other agro-ecologies, which is an irony 

regarding to Indian agricultural system (NRAA, 2008, 2011). 

 

A total of 51% and 43% of geographical area of 

Bundelkhand region is under cultivation in UP and MP 

respectively. Most of the agricultural areas of the 

Bundelkhand in UP are under irrigated water supply whereas 

the maximum agriculture in MP is dependent upon rain-fed 

practice. Larger part of the agriculture in Bundelkhand 

region is rain-fed as compared to irrigated practice. The 

combined population of Bundelkhand region from UP and 

MP is approximately 50 million out of which 80% 

population rely on agriculture. The agriculture dependent 

population includes marginal, small, medium and large 

farmers whose 96% income is earned by crop and livestock 

enterprise. The agricultural water supply systems of 

Bundelkhand from are shown in Figure 2 (b) respectively. 

 

 
 

Figure 2. (a) Agro-climatic zones of Bundelkhand region and 

(b) Agricultural water supply followed in Bundelkhand 

region. 

 

2.2  Data Description 

 

 2.2.1 Satellite Data: The data from satellite remote sensing 

used for the study were as follows. 

 

(a) MODIS products: The MODIS data used for this work 

are the MODIS/Terra daytime 8-day Land Surface 

Temperature (LST) composite  of 1 km resolution 

(MOD13A1) and MODIS/Terra 16-day NDVI product of 1 

km resolution (MOD13A2). The NDVI composite is free 

from cloud, while the LST composite is not. These products 

were used for the time period from year 2000 to 2010. The 

MODIS products are freely distributed by the U.S. Land 

Processes Distributed Active Archive Center 

(http://lpdaac.usgs.gov) or USGS Global Visualization 

Viewer (http://glovis.usgs.gov). 

 

(b) ESA CCI global soil moisture: The global soil moisture 

data from (European Space Agency) ESA‟s Climate Change 

Initiative (CCI) program, which is generated using active and 

passive microwave space borne instruments for 32 years 

(1978 to 2010), was used for this study. The passive data is 

generated by the VU University Amsterdam in coalition with 

NASA by the passive microwave observations from Nimbus 

7 SMMR, DMSP SSM/I, TRMM TMI and Aqua AMSR-E. 

The soil moisture of the Bundelkhand region was clipped out 

of global coverage from year 2000 to 2010. The global soil 

moisture is freely distributed by ESA at website 

(http://www.esa-soilmoisture-cci.org/). 

 

2.2.2 Meteorological Data: The Meteorological data for 

Bundelkhand region was procured from India Meteorological 

Department (IMD), Pune. It consisted of the daily 

precipitation records from year 1975 to 2010, total of 36 

years with some data gaps in some of the stations in the 

entire period. Making the meteorological data compatible 
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with other remote sensing data was requirement of this study, 

due to which daily rainfall data was chosen. 

 

2.2.3 Ancillary Data: Command area map was obtained 

from India Water Resources Information System (India 

WRIS) an Indian Space Research Organization (ISRO) 

initiative. Also the agro-climatic zone map was acquired 

from (NBSS&LUP). The administrative boundary map was 

procured from Survey of India (SOI). All these ancillary data 

were extracted out for the Bundelkhand region for utilization 

as informative layers. 

 

2.3 Methodology 

 

The entire methodology includes four parts. The first part is 

preparation of rainfall distribution images for the study area; 

preparation of the Meteorological drought condition images 

out of them and identification of drought effected Rabi 

seasons within the study period. The second part is pre-

processing in which all the datasets from remote sensing 

being used in this study are brought to a common platform in 

terms of temporal extent. It is followed by the third part that 

includes spatial downscaling of soil moisture from low to 

high spatial resolution and the sensitivity analysis of 

meteorological and remote sensing derived parameters. The 

sensitivity analysis has been done with the anomalies 

prepared for the RS data, which are probable to be sensitive 

with Meteorological drought indicator. This has been 

accomplished for irrigated and rain-fed areas separately to 

create an effective Agricultural drought assessment model 

for the region. 

 

 

The final part of the methodology involves the assessment 

and prediction of the Agricultural drought in the region by 

incorporating future climatic parameter. The schematic flow 

diagram of the methodology followed is shown in Figure 3. 

 

2.3.1 Rainfall Distribution and Meteorological Drought 

Condition: The rain station point layers with rainfall 

observations in mm, at each point (station) were prepared 

from the IMD data. It was used as basic input for preparation 

of required meteorological datasets. 

 

(a) Rainfall distribution maps: Inverse Distance Weighted 

(IDW) interpolation technique was used to generate daily 

rainfall distribution maps (raster format, 1 km spatial 

resolution) using all points in the study area. The reason for 

selecting IDW technique for interpolation is that, it 

distributes the value in cells with an assumption that things 

that are more close to one another are alike than those that 

are farther apart. However, a station with the existence of 

data gaps was excluded in the interpolation for those periods. 

Figure 4 shows the rain station map prepared from the 

information of meteorological station‟s location, which is 

used to interpolate the rainfall distribution images. 

 

(b) Meteorological drought condition maps: The Effective 

drought index (EDI) (Byun and Wilhite, 1999) was selected 

as the Meteorological drought condition indicator, because of 

the advantage of well-suited flexibility to daily time scale. 

The EDI was calculated for each day from year 1975 to 

2010. It is assumed in this research that, rainfall even three 

days prior have a lasting effect on the soil moisture of an 

existing day. The following equations were used to calculate 

EDI: 

 
Figure  3. Schematic flow diagram of the methodology followed for Agricultural drought assessment and prediction model. 
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Figure 4. Rain station map, Bundelkhand 
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 DEP3 = EP3 – MEP3  (2) 

 EDI3 = DEP3 / SD(DEP3)  (3) 

where, EP3 is effective precipitation of a particular day 

accumulated for three days, Pm is the precipitation for a day 

m days prior to a specific day, DEP3 is deviation of EP3 from 

the mean of EP3 i.e. (MEP3), and was calculated for each 

calendar date, in present case the mean value is estimated 

using 36 years of data, EDI3 is the Effective drought index 

value and SD (DEP3) is the standard deviation of DEP3 in 36 

years range (1975 – 2010). 

 

2.3.2 Pre-processing: The datasets used for the study were 

incompatible with each other due to difference in their spatial 

properties and temporal scale. The aim of pre-processing was 

to get all the datasets to a common time scale and a common 

projection & coordinate system for a study period. 

 

(a) Selection of the study period: The study period was 

selected as Rabi agricultural seasons of year (2000 – 2001) to 

(2009 – 2010) because of the following reasons: 

 

i. The agricultural production of Bundelkhand region 

in Rabi season dominates to that of Kharif season 

(NRAA, 2011). 

 

ii. The cloud cover over the study area in Kharif 

season made it difficult to get continuous remote 

sensing data, whereas Rabi season was mostly 

cloud free. 

 

(b) Temporal scaling and reference system: The highest 

time scale among the datasets was for MODIS NDVI 

composite i.e. 16 days. Therefore, 16 days was decided as the 

base time scale for temporal scaling. The 16 days‟ time 

scales in terms of Julian days for which processing and 

analysis were done are as follows: (273 – 288), (289 – 304), 

(305 – 320), (321 – 336), (337 – 352), (353 – 365), (1 – 16), 

(17 – 32), (33 – 48), (49 – 64), (65 – 80), (81 – 96), (97 – 

112)  and (113 – 127). Composites of 16 days were derived 

for other datasets (viz. LST, soil moisture, and EDI). The 

EDI condition for the base time scale was calculated as the 

average of 16 days EDI conditions. 

 

The MODIS datasets and ESA CCI soil moisture were 

having their coordinate systems as (UTM, Sinusoidal) and 

(Geographic Lat-Lon, WGS 1984) respectively and spatial 

resolution of 1km and 0.25 decimal degrees respectively. 

Therefore, they were brought to a common projection & 

coordinate system i.e. (UTM, WGS 1984) with the linear unit 

in „m‟. While modifying the spatial reference of datasets, the 

pixel values were maintained in order to keep it undisturbed 

for further analysis. 

 

To convert the soil moisture data with a course resolution of 

pixel size (0.25 decimal degrees ≈ 27750 km) to a product 

with fine resolution of pixel size 1 km, spatial downscaling 

was necessary. 

 

2.3.3 Spatial Downscaling of Course Resolution Soil 

Moisture: The Linking model based on Triangle method was 

used in the study. It has a statistical approach over the spatial 

extent. According to Carlson, (1994), the theoretical Triangle 

plot from VI vs. LST defines soil moisture dependency on VI 

and LST. So, to predict the downscaled soil moisture, a 

second order multivariate polynomial regression model was 

derived with soil moisture as dependent variable and EVI* & 

LST* as independent variables over the spatial domain. 

 

The EVI* map is derived from the parameter, Enhanced 

Vegetation Index (EVI) which is available with the MODIS 

NDVI product. EVI is selected in the Linking model over 

NDVI because of less soil background interference in EVI 

(Huete et al., 2002). Similarly, LST* map is derived from 

Land Surface Temperature. The equations to find LST* and 

EVI* are in equations (4) and (5) respectively. The purpose 

of LST* and EVI* maps were to standardize the values of 

LST and EVI maps from 0 to 1. 

 

      
          

             
  (4) 

      
          

             
  (5) 

where, EVI is Enhanced vegetation index, LST is Land 

surface temperature, the subscript  max and min represents 

the maximum and minimum parameter value over the spatial 

extent respectively. 

 

Sufficient observations for EVI*, LST*, and course 

resolution soil moisture value at same geographic location 

were extracted. These observations were used for the second 

order polynomial regression generating a regression equation 

as in equation (6). 

 

SMcoarse =∑ ∑                 
   

 
    (6) 

where, SMcoarse is the coarse resolution soil moisture, aij 

represents the set of coefficients from the second order 

polynomial regression. Equation (6) generates a set of 

coefficients (aij) which were used in Equation (7) to predict 

the downscaled soil moisture values. 

 

SMfine  =∑ ∑                 
   

 
    (7) 
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where, SMfine is the fine resolution soil moisture at the same 

location as that of SMcoarse. This process was followed for 

each and every pixel of either EVI* or LST* at a spatial 

resolution of 1 km. 

 

2.3.4 Statistical Validation of Downscaled Soil Moisture: 
It was important to validate the downscaled soil moisture 

product before utilization. Therefore, the Root Mean Square 

Error (RMSE) of downscaled soil moisture image was 

checked against coarse resolution soil moisture. 

 

Also, the change in spatial variability of soil moisture in 

downscaled product was compared to that of coarse 

resolution soil moisture. The purpose was to check the 

degradation occurred in soil moisture while distribution was 

done by downscaling. It was done by comparing the spatial 

average of soil moisture values at randomly selected areas 

common for both the course resolution and downscaled soil 

moisture. 

 

2.3.5 Sensitivity Analysis: It is essential to understand the 

parameters on which occurrence of agricultural drought and 

its magnitude are dependent. Since, moisture status of soil 

depends on many factors along with the rainfall, healthy 

vegetation is dependent on soil moisture; soil moisture, 

rainfall and vegetation share mutual relationships. In this 

study, the vegetation index was considered as indicator of 

agricultural drought (occurrence or existence). The 

underlying assumption here was that the negative deviation 

in vegetation index values in the drought affected areas is 

because of water shortage to the crops only. Hence, to test 

this assumption the sensitivity analysis between 

Meteorological drought index, soil moisture and vegetation 

index was formatted for the study area. Since the drought is 

the main objective of this study, to avoid the voluminous 

data analysis, the sensitivity analysis of the anomalies of all 

the parameters mentioned above was done instead of the real 

data. 

 

(a) Anomaly preparation: Anomaly means percentage 

deviation of the value of a parameter (soil moisture or 

vegetation index) from its long term mean. The anomaly 

maps for 16 day composites of soil moisture and NDVI were 

made by the equation (8). 

 

 Xa = [(X16 - Xm)/ Xm] ×100  (8) 

 

where, Xa is the anomaly of a 16 day composite image, X16 is 

the 16 days composite image, Xm is the long term mean of 

the 16 day time step for which the anomaly is being derived. 

 

Statistical analysis was carried out in combination between 

remote sensing derived parameters (NDVI anomaly, soil 

moisture anomaly) and meteorological drought indicator 

(EDI) to find out the sensitivity to each other. 

 

 (b) Statistical analysis: The sensitivity of soil moisture 

anomaly and NDVI anomaly with EDI and sensitivity of 

NDVI anomaly with soil moisture anomaly was analyzed 

using statistical measures (correlation coefficient). This was 

done to utilize the behavior of these parameters, which could 

help in developing agricultural drought assessment model. 

To find the best assessment and prediction result possible, 

the remote sensing derived parameters were correlated to the 

EDI having a no lag, 16 days lag and 32 days lag. Various 

ground studies have revealed soil moisture as a better 

parameter than meteorological measures, to be related to 

preceding vegetation conditions (www.fao.org/). Therefore, 

effort was made for developing relationship between soil 

moisture anomaly and NDVI anomaly. 

 

It is well known that the deficiency in soil moisture is not 

very frequent in irrigated agriculture. But, some parts of 

irrigated agriculture are supposed to behave like going 

through arid conditions. It is because these regions might not 

be frequently irrigated even being within the command area. 

Such regions are prone to be victimized by agricultural 

drought. However, the rain-fed areas rely on rainfall and 

experience aridity during deficient rainfall. Therefore, it is 

quite essential to test the sensitivity of all the parameters in 

irrigated and rain-fed areas as distinct domains. Hence, the 

sensitivity analysis for irrigated and rain-fed areas was done 

separately. Additional criterion of varying agro-climatic 

zones was also added because of the vastness of study area 

and different crop practice according to rainfall pattern in 

each zone. 

 

2.3.6 Agricultural Drought Prediction and its Validation: 
The relationships between Meteorological drought index and 

soil moisture anomaly; soil moisture anomaly and vegetation 

anomaly were used to make a model having capability of 

assessing impact of meteorological drought condition on 

agricultural drought. This model was separate for irrigated 

and rain-fed areas of different the agro-climatic zones The 

agricultural drought assessment/prediction capability of this 

model is tested using rainfall data for the year (2010 – 2011) 

onset of Rabi as the only input for the study area. The 

accuracy of Agricultural drought and vegetation condition 

prediction was been assessed using satellite observed 

vegetation index. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 EDI in Bundelkhand 

 

Frequent occurrence of mild to severe meteorological 

drought conditions over Bundelkhand region with a 

consistency in negative values in Rabi seasons of years (2000 

– 2001) to (2009 – 2010) were revealed (Figure 5). 

 

  
 

Figure 5. Variability of EDI in Bundelkhand in Rabi seasons 

of years (2000 – 2001) to (2009 – 2010). 

 

3.2 Spatial Downscaling by Linking Model based on 

Triangle method 

 

The satellite soil moisture data used for the current study was 

having very coarse spatial resolution which needed 

disaggregation. 

 

3.2.1 Spatial Downscaling of Soil Moisture 

 

Coarse resolution soil moisture was successfully downscaled 

from a resolution of around 27 km to a fine resolution of 1 
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km for the study area in time period October – April of (2000 

– 2001) to (2009 – 2010). The basic inputs of downscaling 

model (Linking model based on Triangle method) are EVI, 

LST and soil moisture (Figure 6 (a), (b), and (c) and its 

output is downscaled soil moisture (Figure 6 (d)). 

 

 

 
Figure 6. (a) Enhanced Vegetation Index, (b) Land Surface 

Temperature, (c) Course Resolution Soil Moisture, 

(d)Downscaled Soil Moisture, Bundelkhand region  (day 337 

– 355, year 2009) 

 

3.2.2 Statistical Validation of Downscaled Soil Moisture:  

 

(a) RMSE of Downscaled Soil Moisture: Figure 7 shows the 

RMSE between coarse resolution soil moisture and 

downscaled soil moisture values for Rabi seasons of year 

(2000 – 2001) to (2009 – 2010). The downscaled soil 

moisture contains predicted values, based on the finer 

resolution of LST and EVI of the study area. The RMSE 

never exceeded 0.05 (m3/m3) from which it was deduced 

that, the use of downscaled soil moisture is acceptable. 

 

 
 

Figure 7. RMSE between coarse resolution soil moisture and 

downscaled soil moisture values for Rabi seasons of year 

(2000 – 2001) to (2009 – 2010). 

(b) Spatial variability of downscaled soil moisture: The 

random patches selected for testing spatial variability of 

downscaled soil moisture is shown in Figure 8. The 

observations from testing of spatial variability infer that, the 

difference between spatial average of downscaled and 

satellite soil moisture never exceeded ±0.05 (m3/m3) with a 

greater part as slightly under predicted (Figure 9). Therefore, 

it can be said that the soil moisture variability have changed 

within the acceptable level. 

 
Figure 8. The random patches selected for testing spatial 

variability of downscaled soil moisture 

  

 
 

Figure 9. Difference between spatial average of downscaled 

and satellite soil moisture. 

 

3.2.3 Sensitivity Analysis: Since, majority of the area of 

Northern Plains is covered by irrigated system; agricultural 

drought for this agro-climatic zone is estimated on the basis 

of irrigated system. Similarly, the Central Highlands is 

assessed for rain-fed type agriculture. Sensitivity analysis 

includes the analysis of relationship between meteorological 

parameters (EDI), soil moisture anomaly, vegetation health 

indicators (NDVI anomaly) in Rabi seasons (2000 – 2001 to 

2009 – 2010). 

 

The sensitivity analysis revealed direct relationship between 

soil moisture anomaly and EDI; also discovered good 

relationship between NDVI anomaly to soil moisture 

anomaly lagged to 16 days. It is clearly seen that in majority 

of portion in the graph, the soil moisture anomaly increases 

or decreases from its average in the same way as EDI does, 

except for few cases. (Figure 10 (a), (b)). A similar situation 

was observed in (Figure 11 (a), (b)) between NDVI anomaly 

and soil moisture anomaly lagged to 16 days, for the same 

agricultural water supply system and agro-climatic zones. 

 

 
Figure 10. (a) Variability of soil moisture anomaly changing 

with variability of EDI in irrigated areas of Northern Plains. 

a 
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Figure 10. (b) Variability of soil moisture anomaly changing 

with variability of EDI in rain-fed areas of Central 

Highlands. 

 

 
 

Figure 11. (a) Variability of NDVI anomaly changing with 

variability in soil moisture anomaly in irrigated areas of 

Northern Plains 

 

 
 

Figure 11. (b) Variability of NDVI anomaly changing with 

variability in soil moisture anomaly in in rain-fed areas of 

Central Highlands 

 

 

 
 

Figure 12. (a) Soil moisture anomaly estimation model 

(Input: EDI), (b) NDVI anomaly estimation model (Input: 

Soil moisture anomaly), for irrigated areas in Northern 

Plains. 

 

 

 
Figure 13. (a) Soil moisture anomaly estimation model 

(Input: EDI), (b) NDVI anomaly estimation model (Input: 

Soil moisture anomaly), for rain-fed areas in Central 

Highlands. 

 

Correlation coefficient for relationship between soil moisture 

anomaly with EDI for irrigated areas of Northern Plains and 

rain-fed areas of Central Highlands were found as 0.64 and 

0.70 respectively, after removing outliers. Similarly, the 

correlation coefficient for relationship between NDVI 

anomaly with soil moisture anomaly lagged to 16 days for 

irrigated areas of Northern Plains and rain-fed areas of 

Central Highlands were found as 0.77 and 0.80 respectively. 

It was found that the relationships of EDI to soil moisture 

anomaly and soil moisture anomaly to NDVI leading by 16 

days could be used to develop an assessment model capable 

of predicting NDVI anomaly 16 days earlier from its 

occurrence. 

 

3.2.4 Model Development: The Agricultural drought 

assessment and prediction model contains a set of equations, 

developed by linear regression between the identified 

parameters from sensitivity analysis. The soil moisture 

anomaly and the NDVI anomaly estimation models for 

irrigated areas of Northern Plains are presented in Figure 12 

(a) and (b). Similar estimation models for rain-fed areas of 

Central Highlands are shown in Figure 13 (a) and (b). 

 

These set of equations were developed individually for 

irrigated areas in the Northern Plains and rain-fed areas in 

Central Highlands. 

 

The developed Agriculture assessment model requires 

rainfall data as the only input. The rainfall data includes 

rainfall records from three day prior to the period for which 

drought condition has to be estimated and the information 

regarding the zone in which the rainfall data lies (Northern 

Plains/ Central Highlands).  

 

The effective precipitation as input to the agricultural 

drought estimation/prediction model needs to be calculated 

from the input rainfall data as: 

 

EPp =∑  
 

   
 ∑   

 
     ⁄ ]   (9) 

b 

a 

b 
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Figure 14. Spatial averages of long term mean NDVI, 

predicted NDVI and NDVI observed from MODIS product 

for Irrigated areas in Northern Plains. 

 
 

Figure 15. Spatial averages of long term mean NDVI, 

predicted NDVI and NDVI observed from MODIS product 

for rain-fed areas in Central Highlands. 

where, EPp is effective precipitation of a particular day 

accumulated for three days, Pm is the precipitation for a day 

m days prior to a specific day. The EDI computation is 

followed by including EPp as: 

EDIcal = (EPp-Xp) / Yp   (10) 

where, EDIcal is EDI to be estimated, Xp is the mean of 

effective precipitation and Yp standard deviation of 

difference between observed effective precipitation and Xp 

for the pth Julian day. 

 

3.2.5 Validation of Model Predictive Capability: The 

agricultural drought assessment model was used for 

estimation of NDVI for 16 days period starting on day 289, 

305, 321, 353 of year 2010 and 1st  day of 2011. As these 

periods were never included for the model development, it 

can also be considered as a prediction case for the model. In 

most of the cases, spatial average of the predicted NDVI 

shows similar behavior to that of MODIS NDVI in both the 

irrigated areas of Northern Plains and rain-fed areas of the 

Central Highlands (Figure 14, Figure 15). Therefore, the 

model has a good predictive capability for both irrigated and 

rain-fed areas of Bundelkhand region. 

4. CONCLUSION 

 

This paper presents a study to incorporate satellite observed 

soil moisture data in Agricultural drought assessment 

technique, as the soil moisture is supposed to have strong 

impact on agriculture system. The coarse spatial resolution 

satellite soil moisture data is downscaled to a finer 

resolution. The spatial resolution of soil moisture product 

was improved from around 27 km to 1 km using Linking 

model based on Triangle method. The RMSE and spatial 

variability of downscaled soil moisture against initial soil 

moisture has been found to be within acceptable range 

(RMSE values in the range of 0.05 m3/m3), which justifies 

the technique used for soil moisture downscaling and the 

potential applicability of downscaled soil moisture data. 

 

The sensitivity analysis has been carried out in which, 

sensitiveness of downscaled soil moisture and NDVI has 

been tested with respect to meteorological drought indicator 

EDI of same time step as well as lagged time steps. Since, 

majority of the area of Northern Plains is covered by 

irrigated system; agricultural drought for this agro-climatic 

zone is estimated on the basis of irrigated system. Similarly, 

the Central Highlands is assessed for rain-fed type 

agriculture. The effect of EDI on soil moisture anomaly is 

found to be most strong for simultaneous period (same time 

step) with a correlation coefficient over 0.64 in irrigated 

areas of Northern Plains and 0.77 in rain-fed areas of Central 

Highlands. However, rain-fed areas have a better sensitivity 

of soil moisture anomaly to EDI than irrigated areas. The 

reason for this difference can be frequent water supply in 

irrigated regions and persisting arid conditions in rain-fed 

areas.  

 

In the following analysis, NDVI anomaly with soil moisture 

anomaly was found to have correlation coefficient values 

0.77 & 0.80 in irrigated areas of Northern Plains and rain-fed 

areas of Central Highlands respectively. It shows that there is 

a strong relation of vegetation with soil moisture, irrespective 

of water supply system. 

 

Sensitivity analysis for different agricultural system 

(irrigated/rain-fed) of different agro climatic zone (Northern 

Plainss/Central Highlands) was helpful for development of 

an agricultural drought assessment model. The predictive 

capability of the agricultural drought prediction model was 

checked against real time MODIS data. Predictions of the 

model were found to be slightly over-predicting or under-

predicting, but it still satisfies the temporal pattern of 

predictions. 

 

4.1.1 Limitations: The downscaling of soil moisture through 

Linking model based on Triangle method works on the basis 

of second order polynomial regression between soil moisture, 

EVI and LST. Since it is a statistical model, problem of over 

fitting and under fitting exists. Often the approximation 

under the prediction surface attains negative values, which is 

rare in case, but unreasonable. Such downscaled pixels with 

these negative values, needs to be avoided. 

 

Spatial resolution dealt in this research was kept up to 1 km 

due to which it is limited to be used for further sub regions 

(land parcel/agricultural field level). 

 

The developed model is limited to assess or predict only the 

NDVI and Soil moisture in irrigated and rain-fed agriculture 

and not the crop parameters. The reason is unavailability of 
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crop yield and crop production data in irrigated and rain-fed 

areas with respect to drought conditions. 

 

4.1.2 Recommendations for Future Works:  Future sensors 

like on boarding Soil Moisture Active Passive (SMAP), an 

American environmental research satellite to be launched in 

2015, with higher spatial resolution of soil moisture products 

can be utilized to downscale soil moisture to further fine 

resolution. This can be used for better agricultural drought 

assessment in sub region (village level/field level). It can 

enhance the agricultural drought assessment in spatial 

domain. 

 

To overcome the negative prediction in downscaling of 

coarse satellite soil moisture, it is suggested to use a better 

downscaling technique incorporating in-situ measurements. 

 

The agricultural drought assessment model can serve as base 

for the estimation of crop yield and crop production, if the 

crop factors stated above are implemented. These factors 

when included in the model can estimate other crop 

parameters also. 
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