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ABSTRACT: 
 
A multi-temporal/multi-sensor field experiment was conducted within the Soil Moisture Measurement Stations Network of the 
University of Salamanca (REMEDHUS) in Spain, in order to retrieve useful information from satellite Synthetic Aperture Radar 
(SAR) and upcoming Global Navigation Satellite Systems Reflectometry (GNSS-R) missions. The objective of the experiment was 
first to identify which radar observables are most sensitive to the development of crops, and then to define which crop parameters 
the most affect the radar signal. A wide set of radar variables (backscattering coefficients and polarimetric indicators) acquired by 
Radarsat-2 were analyzed and then exploited to determine variables characterizing the crops. Field measurements were fortnightly 
taken at seven cereals plots between February and July, 2015. This work also tried to optimize the crop characterization through 
Landsat-8 estimations, testing and validating parameters such as the leaf area index, the fraction of vegetation cover and the 
vegetation water content, among others. Some of these parameters showed significant and relevant correlation with the Landsat-
derived Normalized Difference Vegetation Index (R>0.60). Regarding the radar observables, the parameters the best characterized 
were biomass and height, which may be explored for inversion using SAR data as an input. Moreover, the differences in the 
correlations found for the different crops under study types suggested a way to a feasible classification of crops.  
 
 

1. INTRODUCTION 

The consolidated Earth observing remote sensing missions, 
such as the Sentinel at the Copernicus programme from the 
European Space Agency (ESA), coexist with new, 
experimental, and sometimes low cost missions, which need to 
be validated and tested. Among them, a new family of satellites 
based on the Global Navigation Satellite Systems 
Reflectometry (GNSS-R) have been explored, such as the 
upcoming satellite missions CYGNSS from NASA (launch 
October 2016), and 3Cat-2 (launch foreseen in July 2016), a 6-
unit nano-satellite mission (~10 cm x 20 cm x 30 cm) 
developed at the Universitat Politècnica de Catalunya 
Barcelona Tech (UPC), Spain. While CYGNSS will measure 
Delay-Doppler Maps at GPS L1 and C/A code, 3Cat-2 will use 
the multi-constellation (GPS, Galileo and Glonass), dual-band 
(L1&L2), and dual-polarization (RHCP&LHCP) PYCARO 
GNSS-R receiver. The application of the GNSS-R technique for 
soil moisture monitoring (Egido et al., 2012; Katzberg et al., 
2006; Rodriguez-Alvarez et al., 2011, Camps et al., 2016), and 
vegetation estimations (Egido et al., 2014; Guerriero et al., 
2013; Sánchez et al., 2015) is a challenging and open issue.  
 
So far, only the TechDemoSat-1 satellite (SSTL, 2016) is 
collecting routinely GNSS-R data. Recent studies (Camps et al., 
2016) showed the sensitivity of TechDemoSat-1 GNSS-R data 
to soil moisture at global scale over different types of surfaces, 
and for a wide range of values of the normalized difference 
vegetation index (NDVI). Over bare soils, the sensitivity to soil 
moisture was found to be as high as ~38 dB/(m3/m3), with a 

high Pearson correlation, R = 0.63. The presence of vegetation 
attenuates the GNSS signals, but there is still sensitivity to soil 
moisture. 
 
Conversely, recent radar-based missions, like Radarsat-2, 
Sentinel-1 and TanDEM-X are being explored for soil and 
vegetation estimations taking advantage of their polarimetric 
and interferometric capabilities for agriculture. The use of SAR 
polarimetry (PolSAR) in agriculture applications is based on the 
known sensitivity of microwaves to crop structure (size, shape, 
and orientation of leaves, stalks, and fruits), dielectric 
properties of the canopy (related to the water content), and the 
physical properties of the underlying soil (roughness and 
moisture). Crop structure and plant water content vary as a 
function of crop type, growth stage and crop condition. 
Consequently, different crops types, or the same type at 
different growth stages, produce different polarimetric 
signatures which can be identified in the acquired images and 
used to establish classification algorithms. Moreover, the 
dependence of PolSAR observables on scene characteristics can 
be exploited to estimate physical parameters of interest, such as 
soil moisture, plant water content and biomass (Lopez-Sanchez 
and Ballester, 2009; McNairn and Brisco, 2004).   
 
In both cases, back-scattering configuration in synthetic 
aperture radar and forward-scattering (bistatic) configuration 
GNSS-R, their synergy with optical imagery is well proven 
(Sánchez et al., 2015; Wang et al., 2004), improving the 
vegetation and soil moisture estimations. On the other hand, 
optical imagery retrievals can replace high time-consuming 
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field campaigns needed to validate and test the backscatter or 
reflectometry from other sources. Thus, the first objective of 
this work is to optimize the crop characterization through 
Landsat-8 and Moderate Resolution Imaging Spectroradiometer 
(MODIS) images, testing and validating parameters such as the 
leaf area index, the fraction of vegetation cover and the 
percentage of water content, among others, as well as its 
phenological stage. Besides, the main objective is to quantify 
and assess the temporal variation of Synthetic Aperture Radar 
(SAR) measurements over cereal and pasture fields. Thus, the 
sensitivity of radar observables to the development of crops is 
analyzed, and then the crop parameters the most impact the 
radar signal were defined. The potential biophysical 
information to be retrieved, such as growth conditions, growing 
stage and water content is of the main interest in crop 
monitoring and yield prediction. 
 

2. DATA AND METHODS 

2.1 Study area  

The field campaign took place during the growing season of 
2015 for rainfed crops (February to June, 2015) in the central 
part of the Iberian Peninsula, located in the Duero basin (Figure 
1). The measurements were taken fortnightly (n=9). In this area 
the Soil Moisture Stations Network of the University of 
Salamanca, REMEDHUS (Sánchez et al., 2012b) has been 
providing soil moisture and other agro-climatic data used in 
remote sensing and modeling applications, such as validation of 
active and passive missions (Brocca et al., 2011; González-
Zamora et al., 2015; Petropoulos et al., 2014; Wagner et al., 
2008). The area is mainly agricultural, with continental semi-
arid Mediterranean climate. Taking this network as reference, 
the field measurements took place in seven plots where the 
REMEDHUS stations were installed, namely J12, K10 and L7 
(wheat), F11 and M9 (barley), N9 (rye) and H9 (natural 
pasture). These crops are the most frequent in the area, being 
approximately 80% (Sánchez et al., 2010).  
 

 
 Figure 1. Study area and selected REMEDHUS stations. 

  
2.2 Field measurements 

The protocol of estimations followed that described in Sánchez 
et al. (2012a). Vegetation samples were collected over a frame 
of 1 m2. Average height was measured and the phenological 
stage was estimated. Zenithal photographs were taken for the 
subsequent estimation of the Fraction of Vegetation Cover 
(FVC). Leaf Area Index (LAI), fresh (biomass) and dry 
weights, vegetation water content (VWC), and percentage of 
water content (PWC, the relation in % between VWC and 
biomass) were estimated at the laboratory. The 

photosynthetically active leaves were extracted from the 
sample, and then scanned and scaled to retrieve the LAI. VWC 
was estimated as the difference between wet and dry weights 
(after been dried in an oven at 70ºC for at least 24 h) 
considering the total amount of water in the stems and leaves. 
Finally, FVC was estimated from the digital photographs using 
a supervised classification routine. Soil moisture measurements 
from the REMEDHUS stations were also collected with the 
Hydra Probes Soil Sensors (Stevens® Water Monitoring 
System Inc.) installed at 5 cm depth in each plot. 
 
2.3 Optical imagery  

Landsat 8 scenes were collected between February and July. 
The Landsat scenes were provided at Level 1T, geometrically 
and terrain corrected. Ground reflectance was retrieved using 
atmospheric correction with the module ATCOR of PCI 
Geomatics 2014 (Richter et al., 2006), applying the file 
metadata. As a well-known and widely used index, the 
Normalized Difference Vegetation Index (NDVI) was used in 
the present study as a reference of the vegetation greenness and 
vigor (Rouse et al., 1974).   
 

February-16 March-16 April-16 May-16 May-16 June-16

Field measurement Landsat MODIS Radarsat-2

 
Figure 2. Correspondence between field measurements and 

imagery acquisition dates.  

Owing the presence of clouds, several images were discarded, 
and finally only five scenes were useful (Figure 2). To fill the 
gap, the MODIS NDVI 16 days and 250 m resolution, 
MOD13Q1 product was included (4 dates).   
 
2.4 Radar imagery 

Twenty Radarsat-2 Fine Quad-Pol images acquired with 
incidence angles of 26, 31 and 36 degrees were acquired over 
the study area between February and July 2015 (Figure 2). 
Azimuth and range resolutions are 5 m approximately for all of 
them. The processing was carried out using open source 
software developed by ESA, the Sentinel-1 Toolbox. Each 
image was radiometrically calibrated, and then the coherency 
matrix T3 was generated for each pixel in the image. A 9 x 9 
boxcar filter was used to reduce speckle noise. Finally, a 
geometric correction was applied to orthorectify the images. 
After processing the images, PolSARpro was used to obtain 
SAR observables.  
 
2.5 SAR observables 

The backscattering coefficients (HH, HV and VV) have been 
analysed on the study of the SAR capabilities for agricultural 
crops monitoring (Moran et al., 2012; Larrañaga et al., 2013). 
Two ratio channels, HH/VV and HV/VV, were also analysed. 
The HV/VV ratio can be used to monitor the growth of crops 
because the normalisation reduces the effect of disturbances 
caused by irrigation and other weather events, and it serves to 
emphasize then response of the vegetation (high in the cross-
polar channel) with respect to the ground (dominant at VV). On 
the other hand, HH/VV is also a good indicator of the presence 
of plants due to both the double-bounce scattering and the 
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stronger attenuation for VV than for HH (Lopez-Sanchez et al., 
2012).  
 
The phase difference between HH and VV, also known as 
polarisation phase difference (PPD), is different from zero in 
some agricultural scenes due to the interaction between stems 
and ground and it has been analysed for rice (Lopez-Sanchez et 
al., 2012; Lopez-Sanchez et al., 2014) and other crops (Lopez-
Sanchez et al., 2013). The normalised correlation (coherence) 
between HH and VV (γhhvv) is also sensitive to the scene 
properties. It is very high (close to 1) when the scattering is 
dominated by surface scattering, e.g. at the early stages.  
 
The coherence between the first and the second Pauli channels 
(γP1P2), HH+VV and HH-VV, was already analysed in previous 
research (Lopez-Sanchez et al., 2012; Lopez-Sanchez et al., 
2013) for the identification of phenological stages of rice fields. 
To exploit the information contained in the fully polarimetric 
data set provided by Radarsat-2, we have also employed two 
parameters derived from eigenvalue/vector decomposition 
(entropy and α1), which have been used before in crop 
monitoring studies (Lopez-Sanchez et al., 2012; Lopez-Sanchez 
et al., 2013; Lopez-Sanchez et al., 2014). The dominant alpha 
angle (α1) is extracted from the first eigenvector. 
 

3. RESULTS AND DISCUSSION 

3.1 Vegetation growing cycle 

The height evolution (Figure 3) showed a similar growth pattern 
for wheat, pasture and barley (excepting F11, with some delay), 
with maxima at the beginning of May maintained until the 
senescence. The rye (N9) is much higher than the rest of covers.  
 
For the FVC (Figure 4), the higher density was for the pasture 
(H9), keeping high values since winter. It should be taken into 
account this is a natural pasture with annual cycle. On the 
contrary, the cereals showed an increasing curve until reaching 
the maxima around the first May, plateau-shaped in the case of 
the rye and wheat, and with a peak for the barley.  
 
The LAI evolution (Figure 5) showed the highest values for the 
pasture, in concordance with the FVC, owing its dense 
coverage. The barley showed the smaller LAI and a slight delay 
in comparison to wheat and rye, which early started, especially 
rye.  
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Figure 3. Height evolution for the seven plots clustered by type 

of crop.  
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Figure 4. FVC evolution for the seven plots clustered by type of 

crop. K10 is not shown. 
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Figure 5. LAI evolution for the seven plots clustered by type of 

crop.  

The biomass results (Figure 6) were the most homogeneous 
among covers and dates. All curves exhibited a similar pattern. 
The highest biomass (ranging from 1 kg m-2 to 2 kg m-2) 
corresponded to the pasture area, followed by wheat, rye and 
barley.  The biomass evolution typically represents the curve of 
crop growth and has similarities with the biomass evolution. 
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Figure 6. Biomass evolution for the seven plots clustered by 

type of crop.  

The PWC, as the ratio (%) between the VWC and the total fresh 
biomass (Figure 7), presented a very different evolution than 
FVC (Figure 4), LAI (Figure 5) and biomass (Figure 6). In this 
case the curve is evenly descending although with some 
fluctuation. It could be presumed that the consumption of water 
is constant along the cycle even though the plants use this water 
to produce a peak of biomass at the flowering stage (Figure 6), 
coinciding with the LAI maxima (Figure 5). This constant rate 
is confirmed trough the soil water evolution (Figure 8), since 
the soils exhibited a decreasing content along the growing 
cycle, even if small rainfall events occurred. Note that the 
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smallest PWC corresponded to the wheat, which conversely 
showed the highest development in terms of LAI (Figure 5) and 
biomass (Figure 6), suggesting a more efficient fresh biomass 
production for this crop.  
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Figure 7. PWC evolution for the seven plots clustered by type 

of crop. 
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Figure 8. Soil moisture evolution for the seven plots clustered 

by type of crop. Precipitation data is also shown. 

 
3.2 NDVI and field measurements relationships 

In the time evolution of the NDVI (Figure 9), three phases can 
be distinguished, crop development, mid-season and late 
(maturity and senescence). The characteristic plateau stage of 
the NDVI curve corresponding to the middle phase (when the 
growth rate keeps constant) is typically longer for well-watered 
crops (Calera et al., 2004), in this case corresponding to the 
pasture plot. For the rye and wheat, this plateau was shorter, 
showing a peak in the case of the barley. Comparing to LAI and 
biomass (Figure 5 and 6), a certain delay with respect the NDVI 
was detected, more pronounced for the biomass. This time lag 
represents the time required for green photosynthetic tissue to 
accumulate biomass in all plant tissues (Wang et al., 2005). The 
NDVI increase begins earlier than the effective development of 
leaves and biomass. For this reason, NDVI is commonly 
integrated over weeks, or part of the growing season (also as a 
whole) to estimate yield or biomass. 
 
The range of NDVI values agreed well with the FVC, LAI and 
biomass, i.e., the smaller rates correspond to the barley plots, 
followed by rye, wheat and pasture, as also occurred for FVC, 
LAI and biomass (Figures 4, 5, and 6).  
 
The correlation between NDVI and field estimations (Table 1) 
afforded poor results for the comparison with height and 
biomass. However, for the rest of estimations, the correlations 
are encouraging, especially for PWC, LAI and FVC. These 
parameters are crucial in the active microwave estimations, 

while masking or attenuating the signal reflected coherently and 
thus introducing incoherent scattering (Ferrazzoli et al., 2011). 
Thus, this proved relationship with the NDVI suggests a 
possible inclusion in the retrieval algorithms using radar or 
GNSS-R signals, as did, for example, in the SMAP soil 
moisture algorithm including the NDVI for vegetation 
correction, which resulted in robust and stable soil moisture 
retrievals (Entekhabi et al., 2010). 
 
Unexpectedly, acceptable correlations took place between 
NDVI and soil moisture in four plots, even though it was 
observed that the response of the vegetation to the soil moisture 
content suffers from a lag, varying in the literature from several 
days to several months (Li et al., 2014; Schnur et al., 2010; 
Thenkabail et al., 2004). The negative correlations indicate the 
inverse relationship between the vigor and the soil water 
content, since the plants consume most soil moisture during the 
growing season. 
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Figure 9. NDVI evolution for the seven plots  

 

 Height Biomass PWC LAI FVC SM 

F11 (Barley) -0,25* 0,36* 0,75 0,66 0,69 -0,80 

H9 (Pasture) -0,31* 0,46* 0,82 0,73 0,88 -0,56 

J12 (Wheat) -0,43* -0,18* 0,71 0,55* 0,67 -0,53* 

M9 (Barley) -0,18* 0,09* 0,56* 0,80 0,83 -0,74 

N9 (Rye) -0,72 0,02* 0,78 0,81 0,82 -0,21* 

L7 (Wheat) -0,62* 0,08* 0,77 0,77 0,95 -0,40* 

K10 (Wheat) -0,46* -0,15* 0,64 0,66 0,75 -0,68 

Table 1. Correlation (R Pearson) between field estimations and 
NDVI. Non-significant correlations at 95% confidence level are 

indicated by *. 
 
3.3 Radar estimations and field measurements 
relationships 

Apart for some particular cases, the three backscattering 
coefficients in the linear polarisation basis (HH, HV and VV) 
did not show consistent correlations to any biophysical variable 
(Tables 2 to 8). In contrast, both ratios (HH/VV and HV/VV) 
showed high correlations with biophysical variables in many 
cases. The two ratios were strongly correlated with biomass for 
all crops, and with LAI and FVC for wheat. Also, there were 
high correlations with height for barley (M9) and pasture 
(Tables 6 and 7). All these high correlations can be explained 
because these ratios indicate the evolution of the presence and 
amount of vegetation volume along the cultivation cycle, hence 
showing an increasing trend at the beginning and a decrease at 
the end, similarly to most biophysical variables. 
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The correlation between PPD and biophysical variables 
provided good results for wheat (J12, Table 2 and L7, Table 3), 
barley (M9, Table 6) and pasture (H9, Table 7), especially for 
height, biomass and LAI.   
 

SAR 
Observables Height Biomass PWC LAI FVC SM 

α1 0.74 0.90 -0.17* 0.80 0.74 -0.42* 

H 0.46* 0.51* -0.16* 0.56* 0.70 -0.38* 

HH 0.43* 0.35* -0.49* -0.11* -0.26* 0.15* 

HH/VV 0.73 0.92 -0.13* 0.83 0.77 -0.49* 

γhhvv -0.69 -0.79 0.26* -0.69 -0.67 0.31* 

HV 0.33* 0.38* -0.18* 0.20* 0.18* -0.18* 

HV/VV 0.49* 0.73 0.12* 0.87 0.91 -0.60* 

γP1P2 0.75 0.94 -0.16* 0.79 0.71 -0.46* 

PPD 0.71 0.43* -0.88 -0.35* -0.27* 0.01* 

VV -0.36* -0.57* -0.20* -0.79 -0.84 0.53* 

Table 2. Correlation (R Pearson) between SAR observables and 
field estimations for J12 (wheat). Non-significant correlations at 

95% confidence level are indicated by *. 

 
SAR 

Observables Height Biomass PWC LAI  FVC SM 

α1 0.61* 0.84 -0.19* 0.36* -0.03* -0.40* 

H 0.50* 0.78 -0.10* 0.45* 0.18* -0.83 

HH 0.39* -0.18* -0.43* -0.62* -0.75 -0.04* 

HH/VV 0.57* 0.89 -0.13* 0.49* 0.06* -0.40* 

γhhvv -0.55* -0.89 0.10* -0.44* -0.11* 0.58* 

HV 0.56* 0.23* -0.30* -0.30* -0.48* -0.81 

HV/VV 0.51* 0.90 -0.02* 0.57* 0.22* -0.67 

γP1P2 0.68 0.78 -0.37* 0.30* -0.18* -0.20* 

PPD 0.77 0.47* -0.62* -0.18* -0.54* -0.28* 

VV -0.25* -0.82 -0.13* -0.75 -0.47* 0.30* 

Table 3. Correlation (R Pearson) between SAR observables and 
field estimations for L7 (wheat). Non-significant correlations at 

95% confidence level are indicated by *. 

 
SAR Observables Height Biomass PWC LAI  FVC SM 

α1 0.53* 0.87 -0.10* 0.48* -0.03* -0.28* 

H 0.02* 0.48* 0.31* 0.54* 0.16* -0.20* 

HH 0.16* 0.25* -0.03* -0.14* -0.38* 0.15* 

HH/VV 0.60* 0.89 -0.15* 0.52* -0.05* -0.32* 

γhhvv -0.39* -0.78 0.00* -0.50* 0.04* 0.21* 

HV -0.26* 0.17* 0.51* 0.21* 0.12* 0.02* 

HV/VV 0.14* 0.67* 0.33* 0.67 0.31* -0.32* 

γP1P2 0.70 0.87 -0.30* 0.40* -0.11* -0.29* 

PPD -0.02* -0.39* -0.30* -0.52* -0.46* 0.13* 

VV -0.41* -0.58* 0.11* -0.55* -0.24* 0.38* 

Table 4. Correlation (R Pearson) between SAR observables and 
field estimations for K10 (wheat). Non-significant correlations 

at 95% confidence level are indicated by *. 

 
The correlation coefficient for γhhvv was very high with biomass 
for all crops. In this case the negative sign is a consequence of 
the opposite behaviour of this coherence, which is high in 
presence of surface scattering and low in presence of a 

vegetation volume. For pasture, instead, it was better correlated 
with height than with biomass.  
 
The coherence between the two first Pauli channels, γP1P2, 
showed high correlations with biomass for wheat (J12, L7, 
K10), barley (M9) and pasture (H9), as well as with height and 
LAI for wheat, barley and pasture. 
 

SAR 
Observables Height Biomass PWC LAI FVC SM 

α1 0.52* 0.86 0.13* 0.73 0.74 -0.43* 

H 0.42* 0.85 0.23* 0.81 0.82 -0.40* 

HH -0.07* -0.08* -0.26* -0.12* -0.11* 0.22* 

HH/VV 0.80 0.58* -0.23* 0.19* 0.21* -0.45* 

γhhvv -0.45* -0.85 -0.22* -0.78 -0.78 0.44* 

HV 0.25* 0.75 0.15* 0.75 0.76 -0.24* 

HV/VV 0.47* 0.88 0.21* 0.80 0.81 -0.44* 

γP1P2 0.26* -0.13* -0.51* -0.38* -0.36* 0.15* 

PPD 0.06* -0.25* -0.43* -0.28* -0.28* 0.39* 

VV -0.39* -0.31* -0.11* -0.17* -0.18* 0.37* 

Table 5. Correlation (R Pearson) between SAR observables and 
field estimations for F11 (barley). Non-significant correlations 

at 95% confidence level are indicated by *. 

 
SAR 

Observables Height Biomass PWC LAI FVC SM 

α1 0.89 0.91 -0.22* 0.53* 0.50* -0.44* 

H 0.88 0.92 -0.38* 0.55* 0.49* -0.50* 

HH 0.31* 0.21* -0.11* -0.15* -0.26* 0.08* 

HH/VV 0.87 0.99 -0.31* 0.58* 0.45* -0.49* 

γhhvv -0.90 -0.93 0.32* -0.55* -0.50* 0.42* 

HV 0.76 0.71 -0.24* 0.27* 0.17* -0.40* 

HV/VV 0.86 0.92 -0.27* 0.58* 0.52* -0.64* 

γP1P2 0.91 0.88 -0.43* 0.30* 0.16* -0.21* 

PPD 0.62* 0.71 -0.19* 0.58* 0.56* 0.03* 

VV -0.07* -0.22* 0.02* -0.40* -0.46* 0.30* 

Table 6. Correlation (R Pearson) between SAR observables and 
field estimations for M9 (barley). Non-significant correlations 

at 95% confidence level are indicated by *. 

 
SAR 

Observables Height Biomass PWC LAI FVC SM 

α1 0.70 0.85 -0.17* 0.74 0.01* -0.85 

H 0.79 0.36* -0.64 0.24* -0.50* -0.71 

HH 0.44* -0.11* -0.54* -0.32* -0.68 0.29* 

HH/VV 0.23* 0.75 0.18* 0.58* 0.32* -0.20* 

γhhvv -0.81 -0.57* 0.51* -0.46* 0.37* 0.68 

HV 0.74 -0.07* -0.83 -0.28* -0.90 -0.19* 

HV/VV 0.81 0.61* -0.50* 0.41* -0.33* -0.82 

γP1P2 0.07* 0.79 0.46* 0.78 0.63* -0.49* 

PPD 0.09* 0.71 0.40* 0.73 0.55* -0.57* 

VV 0.25* -0.49* -0.55* -0.58* -0.74 0.35* 

Table 7. Correlation (R Pearson) between SAR observables and 
field estimations for H9 (pasture). Non-significant correlations 

at 95% confidence level are indicated by *. 

 
Entropy was found to be highly correlated with biomass for 
barley and rye. Instead, the dominant alpha angle, α1, showed 
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high correlations with most biophysical parameters, and 
especially with height and biomass. This behaviour comes from 
the gradual change in the scattering mechanisms that dominate 
the radar response from crops along their growth, starting from 
surface scattering and moving towards volume scattering and 
then, at the end, going down again due to the reduced 
contribution from the plants. Based in this principle, alpha 
alngle was used by Lopez-Sanchez et al. (2013) to estimate the 
phenological stage of several cereals. 
 

SAR 
Observables Height Biomass PWC LAI FVC SM 

α1 0.51* 0.92 -0.25* 0.19* 0.40* -0.08* 

H 0.58* 0.78 -0.55* 0.38* 0.26* -0.31* 

HH 0.59* 0.11* -0.53* -0.67 -0.61* -0.38* 

HH/VV 0.63* 0.78 -0.31* -0.07* 0.26* -0.20* 

γhhvv -0.56* -0.91 0.40* -0.30* -0.36* 0.14* 

HV 0.64* 0.39* -0.72 -0.15* -0.39* -0.54* 

HV/VV 0.65* 0.92 -0.45* 0.28* 0.37* -0.32* 

γP1P2 0.52* 0.64* -0.18* -0.07* 0.28* -0.13* 

PPD 0.40* 0.64* -0.34* -0.11* 0.03* 0.05* 

VV -0.20* -0.70 -0.08* -0.43* -0.72 -0.08* 

Table 8. Correlation (R Pearson) between SAR observables and 
field estimations for N9 (rye). Non-significant correlations at 

95% confidence level are indicated by *. 

 
4. CONCLUSIONS 

The main phenological stages of the plants could be tracked 
through the NDVI evolution, even though a time lag is observed 
between NDVI response and biomass production. Thus, it is 
recommended to apply a certain time lag on the application of 
NDVI to estimate yield-related parameters (e.g., biomass). The 
PWC, LAI and FVC showed a relevant correlation with the 
NDVI (R>0.60), suggesting a potential synergy with the 
microwave active observations to account for the vegetation 
effects on the backscattered signal.  
 
Among the wide set of radar observables analysed in this work, 
the most significant results are provided by the ratios of 
backscattering coefficients (HV/VV and HH/VV), the 
coherence between the copolar channels and between the first 
two Pauli channels, and the dominant alpha angle. It is shown 
that biomass is the biophysical variable better correlated with 
more radar variables, followed by vegetation height. The 
differences in the correlations found for different crop types 
could be used for classification purposes, whereas the 
correlations themselves will be explored for inversion of 
biophysical variables using SAR data as an input. 
 
The results pave the way for future crops estimations using 
synergetic GNSS-R and radar observations with optical 
imagery. 
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