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ABSTRACT: 

 

In this work, we propose an integrative framework to process UAV images. The overall process can be viewed as a pipeline 

consisting of the geometric and radiometric corrections, subsequent panoramic mosaicking and hierarchical image segmentation for 

later Object Based Image Analysis (OBIA). More precisely, we first introduce an efficient image stitching algorithm after the 

geometric calibration and radiometric correction, which employs a fast feature extraction and matching by combining the local 

difference binary descriptor and the local sensitive hashing. We then use a Binary Partition Tree (BPT) representation for the large 

mosaicked panoramic image, which starts by the definition of an initial partition obtained by an over-segmentation algorithm, i.e., 

the simple linear iterative clustering (SLIC). Finally, we build an object-based hierarchical structure by fully considering the spectral 

and spatial information of the super-pixels and their topological relationships. Moreover, an optimal segmentation is obtained by 

filtering the complex hierarchies into simpler ones according to some criterions, such as the uniform homogeneity and semantic 

consistency. Experimental results on processing the post-seismic UAV images of the 2013 Ya’an earthquake demonstrate the 

effectiveness and efficiency of our proposed method. 
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1. INTRODUCTION 

1.1 Motivation and Objective 

Nowadays, Unmanned Aerial Vehicles (UAVs)-based imaging 

systems have been applied in many remote sensing applications, 

such as agriculture and forestry, natural disasters and 

environmental issues. UAVs have several advantages over 

traditional remote sensing platforms, such as high flexibility and 

lower cost in collecting image data, higher speed and more 

safety. More importantly, UAVs are able to operate rather close 

to the object, which leads to images acquired with very high 

resolution (cm to dm pixel size). The high-resolution images 

provide sufficient details for identification and extraction of 

object parameters. However, A Unmanned Aerial System 

(UAS)-based image acquisition commonly results in hundreds 

of very high resolution, small footprint images, which pose 

great challenges for subsequent applications. The large overlap 

between neighbour images makes it inefficient to analyse large 

scale area which consists of hundreds of images. A simple 

solution to this problem is increasing the UAV flight altitude 

thus a single image can cover larger area and the total amount of 

image pieces can be decreased. However, it is inapplicable since 

civilian UAV can only fly at limited altitude. An alternative is 

the stitching of small images with limited view. The stitching 

output is a large scale panorama with very high resolution 

(VHR). Thus the segmentation and classification of large scale 

VHR panorama is the important tasks for processing UAV 

image. However, the interpretation of very large scale images 

remains a great challenge for the big data volume and semantic 

complexity. 

The focus of our work is an entire per-processing chain for 

understanding UAV images, which includes several problems: 

--The large number of image pieces with abundant overlap 

requests an efficient algorithm to integrate these images into a 

panorama. UAV images are characterized with more abundant 

information of the edge and texture, thus the conventional 

stitching methods are difficult to achieve practical requirements 

due to the low efficiency, insufficient memory and sparse point 

clouds in images. In addition, the accuracy of registration plays 

a crucial role in generating the panoramic view. 

--The multi-scale VHR image representation. A VHR image is a 

unification of multi-scale objects, with large-scale objects at 

coarse level, e.g. forest, street, residential area, and small 

objects at fine level, e.g. animals, cars, humans. Thus a multi-

scale image representation is essential to the detection of multi-

scale objects in VHR images. However, how to consider the 

intrinsic properties and different features of local objects are 

still key problems in VHR image interpretation.  

--The semantic information mining in VHR images. Based on 

the hierarchical image representation of VHR image, several 

images of the same scene at different resolutions (such as low, 

medium, high and very high spatial resolution) are available. 

However, the extraction of semantic regions or urban patterns 

presents some challenges related to the image size, extraction 

accuracy and the computational complexity. In addition, how to 

describe these semantic regions in the hierarchical structure is 

also a difficulty for the information mining task. 

 

1.2 Related Works 

Regarding the solutions to the above three important tasks for 

UAV image processing, researchers have done many 
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outstanding works. For the image stitching task, one of the most 

important work is the automatic panoramic image stitching 

algorithm using invariant local features (Brown M, 2007). The 

invariant feature based approach enables reliable matching of 

image sequences despite rotation, scale and illumination change 

in the input images, which results in high-quality image 

panorama without any manual correction and registration work. 

This fully automatic computer vision based panoramic image 

stitching method is applicable to large scale mapping of UAV 

image (Yuhua X, 2016). However, the SIFT based feature 

extraction and feature matching are time-consuming for large 

data volume of image pieces. Later many interesting work on 

3D reconstruction are presented, with the foundation point 

cloud construction still applies the aforementioned stable but 

time-consuming features and complex matching algorithm 

based on kd-tree search. Meanwhile, some fast feature 

extraction and matching algorithm (Xin Y, 2014) are introduced 

in computer vision field but not used in the image stitching or 

3D construction. 

For the panoramic VHR image representation, it is very 

important to consider object differences at different scales, thus 

hierarchical structure representation is a practice of general. To 

represent images on multiple scales, three main methods are 

utilized, i.e., image pyramid (Binaghi E, 2003), wavelet 

transform (Baraldi A, 2004) and hierarchical image partitions 

(Burnett C, 2003). The pyramid structures capture both the 

absolute and relative spatial arrangements of objects, but the 

fixed regular shape and choice of analysis window size lack 

semantic difference. Wavelet decomposition is a low-pass filter 

convolution of VHR images that represents the multi-scale 

property by the coefficients in different bands. However, 

wavelet decomposition is a decimation of the original image 

which lacks consideration of the relationship between objects. 

By fully considering the semantic gap of different objects, some 

studies use object-based analysis methods and mathematical 

morphology to produce hierarchical image partitions (Gui-Song 

X, 2010; Salembier, 2000). Among these methods Binary 

Partition Tree (BPT) is a good structure with both local intrinsic 

properties and topological relationship can be well considered. 

For the semantic object mining from the hierarchical structure 

of VHR image, several approaches have been proposed. A 

representative method is the dynamic programming (DP) for a 

set of energy function (Salembier, 2015). As a greedy algorithm, 

DP traverses the tree structure in a bottom-up way to find the 

global optimal segmentation. However, the direct minimizing 

method concerns little about the balances of the overall 

information of the selected nodes. To overcome the limitation 

of under-segmentation at coarse levels and over-segmentation at 

fine levels, the uniform entropy slice (Chenliang X, 2013) is 

proposed to flatten the hierarchy into a single segmentation and 

seek a selection of objects that balances the objects’ energy 

function and the relative level.  

 

1.3 Our Contributions 

Inspired by the excellent work in the aforementioned three 

aspects, an integrative framework fully addressing the image 

stitching, VHR image representation and optimal image 

segmentation is studied in this paper. For fast mapping, an 

efficient image stitching algorithm after the geometric and 

radiometric corrections is utilized based on our earlier work of 

UAV image features extraction and matching, which combines 

the local difference binary (LDB) descriptor and the local 

sensitive hashing (LSH) matching (Huai Y, 2016). To process 

the mosaicked large scale VHR image, we use a Binary 

Partition Tree (BPT) to represent the image by an object-based 

hierarchical structure. The structure derives from the definition 

of an initial partition obtained by an over-segmentation (i.e. a 

super-pixel partition) by means of the simple linear iterative 

clustering (SLIC) algorithm. During the BPT construction, we 

fully consider the spectral, spatial information of the superpixels 

and their topological relationships, i.e. selecting a subset of the 

most interesting segmentations from the segmentation hierarchy, 

which can be obtained by monitoring the value of the merging 

threshold. Moreover, an optimal segmentation is achieved by 

dynamic programming and the uniform homogeneity slice. 

The remainder of this paper is organized as follows. Section 2 

presents the image stitching algorithm based on LDB and LSH. 

In section 3, the BPT construction and the optimal segmentation 

algorithm are introduced in detail. Some representative 

experimental results are exhibited in section 4. Finally, we draw 

the conclusion of this work in section 5. 
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Figure 1. The integrative object-based image analysis 

framework for UAV images  

Scene classification 

Object detection 

Change detection 

Figure 2. A brief schematic diagram for UAV image processing 

  

2. UAV IMAGE STITCHING 

2.1 UAV Image Pre-processing 

With the rapid development of technique, UAV systems are 

equipped with high accurate inertial navigation system, which 

can be used to speed up the image registration. It means that we 

can restrict an image only matching the spatial neighbours. The 

position evaluation based on GPS and aerial information is used 

to determine the set of images adjacent to each image. By means 

of this method, the number of unnecessary matches is greatly 

decreased.  The complexity of brute-force pairwise-match 

is 2( )O n , which can be reduced to ( )O n  under the restriction of 

position evaluation.   

In the low altitude UAV-based imaging system, image 

distortion correction is essential for promoting the quality of the 

final panoramic image. The imagery system of UAV is 

generally a central projection camera. To simplify the model, 

we just consider the radial distortion and tangential distortion, 

which can be described by Brown’s distortion model (Brown 

D.C, 1971). 
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2.2 Feature Extraction and Matching 

After the distortion correction, we are faced with the problem of 

image registration. Owing to the big volume and considerable 

overlap of  UAV images, the conventional stitching methods, 

which use SIFT and kd-tree based nearest neighbour matching, 

are time-consuming and inapplicable for UAV image 

registration. Considering SURF (Bay H, 2006) is faster than 

SIFT while comparable in detection accuracy, we decide to 

utilize SURF to detect and locate feature points. However, 

float-type and high-dimension descriptors, e.g., SIFT and SURF 

descriptor, make the matching a time-consuming task. Thus, the 

local difference binary (LDB) algorithm (Xin Y, 2014) is used 

to describe the features for its computational efficiency. Relying 

on integral images, LDB computes a binary string using simple 

intensity and gradient difference tests on pairwise grid cells 

within the patch of detected point, which yield an ultrafast 

runtime. With LDB being a binary descriptor, local sensitive 

hashing (LSH) is chosen to replace the kd-tree for ANN search 

in the feature matching procedure (Andoni A, 2004). Because 

the similarity of binary descriptors can be easily measured by 

logical AND and OR, the hash function of LSH firstly maps 

similar descriptors into different buckets, then the NN search of 

a query descriptor can be easily obtained in the bucket it 

belongs to. After the NN search, the nearest neighbour (denote 

by
1nfea  ) and second-nearest neighbour (denote by

2nfea ) of a 

query descriptor (denote by
ofea  ) can be obtained.  A robust 

match can be implemented according to the formula (1): 

 
1 0

2 0

n

n

fea fea

fea fea






,                              (1) 

where  is the mahalanobis distance, and   is the threshold 

value, which varies 0.5~0.9 in experiment. When the 

neighbours of a query descriptor satisfy eq. (1), the query 

descriptor and its nearest neighbour is accepted as a robust 

matching pair. For two overlapped image, we can get a set of 

pairwise matches. Subsequently, according to the affine 

transformation principle of 8 parameters, the RANdom SAmple 

Consensus (RANSAC) method (Fischler M, 1981) is utilized to 

get more robust matches. 

 

2.3 Pose Estimation and Global Optimization 

After the feature matching, all the overlapped images can be 

connected together according to the feature point matches. In 

practice, we select the image located at the centre of the 

stitching area as the reference plane of the mosaicking result 

based on GPS information. To initialize the pose of every image, 

we use the 8-DOF affine transformation model to initialize the 

camera parameters (focal, principal point, rotation and 

translation). Then the global objective function for pose 

estimation is  
2

ˆ ˆ( ; , ) ( ; , )all pairs i ij j j i ik k k

i jk

E x x R f x x R f   ,      (2) 

where ˆ ˆ,ij ikx x are the image point of the projection of a 3D 

point ix , R and f are the rotation matrix and focal length 

respectively. It can be observed that the global optimization is a 

non-linear least squares problem which can be solved by using 

the Levenberg-Marquardt algorithm (Madsen K, 2004) 

 

2.4 Blending  

The last step of UAV image stitching is blending all image 

pieces to a panorama according to the estimated geometrical 

transformation parameters. For two overlapped images, we first 

find the optimal seam line with the minimum cost. The cost 

consists of colour difference and geometrical difference, which 

are defined as: 
2E( , ) ( , ) ( , )c gx y E x y E x y  ,                        (3) 

where ( , )cE x y  is the  colour difference of three channels, 

( , )gE x y  is the geometrical difference which is computed by the 

convolution of sobel template. Subsequently, multi-band 

blending method (Brown M, 2007) is used to process the 

mosaicking artifacts generated by alignment errors in geometry 

and intensity differences. 

 

3. HIERARCHICAL IMAGE REPRESENTATION 

The big data volume and very high-resolution properties make 

the interpretation of UAV panorama a great challenge. The 

object-based image analysis (OBIA) methods not only preserve 

the useful information (including colour, contour and structure) 

in UAV images, but also decrease the data volume to be 

analysed. In addition, a hierarchical representation based on 

OBIA is an essential step for VHR image interpretation. This 

section mainly introduces the hierarchical representation of 

UAV panorama image. 

 

3.1 Superpixels Partition 

There are many superpixel partition algorithms in the literature, 

while each of them has its own strengths and weaknesses. 

Taking the computation speed and partition performance into 

consideration, the Simple Linear Iteration Clustering (SLIC) 

segmentation algorithm (Achanta R, 2012) is utilized to obtain 

the initial superpixels. This method can produce consistent 

superpixels with similar size and shape, as well as preserve 

objects’ boundaries. 

In this step, the VHR panorama image with complex boundaries 

is segmented into many superpixels. Each of superpixels is 

relatively homogeneous and the boundaries can be well 

preserved. Thus it is unnecessary to consider the information 

details of the internal superpixels. Furthermore, the superpixel-

based description can speed up the later processing procedure 

and preserve the useful information. According to the principle 

of SLIC, the region size and regularity of superpixels can be set 

experientially. 

 

3.2 Region Model and Similarity Criterion 

After image partition, the description of superpixels is an 

important task, which directly relates to the measurement of 

similarity between superpixels. Because the major difference 

lies in the colour, we leave out size and shape information. The 

region model is characterised by colour names (Van De Weijer, 

2009), which are linguistic colour labels based on the 

assignment of colours in the real world. The colour labels 

including 11 basic terms: black, blue, brown, grey, green, 

orange, pink, purple, red, white, and yellow, are learned from 

Google images. The learning result is a partition of the colour 

space into eleven regions. To use this colour feature, the RGB 

area of superpixel is mapped to the colour attribute space. The 

colour names of superpixel are defined as follows: 

1 2 11{ ( ), ( ), , ( )}R R R RCN p cn p cn p cn ,                 (4) 

where 

1
( ) ( | ( ))R i i

x R

p cn p cn f x
N 

  ,                       (5) 
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the variable ( 1, ,11)icn i   is the i-th colour name, N denotes 

the number of pixels in region R, ( | ( ))ip cn f x  denotes the 

probability of a colour name of pixel x. Colour names are more 

photometric invariant than other colour features because 

different shades of colour are mapped to the same colour names. 

The two important concepts in OBIA are region model and 

similarity measurement. The region model is characterised by 

colour names. For simplification, the union of some superpixels 

is modelled by the average of colour names. While the 

similarity of region R1 and R2 is measured by the weighted 

Euclidean distance: 

1 1 1 2 2 2 1 21 2( , ) R R R R R R R Rd R R N M M N M M     ,       (6) 

where
1 2
,R RM M  denote the region models for R1 and R2, 

respectively.  
1 2
,R RN N  denote the data volumes of R1 and R2, 

respectively. 

 

3.3 BPT Construction 

Based on superpixels segmentation, the bottom level of 

hierarchical structure is composed by the original superpixels. 

To build the hierarchical representation, binary partition tree 

structure based on superpixels is constructed. Every node and 

every level of the hierarchical structure BPT contain semantic 

information. The leaves represent the original superpixels and 

the root represents the entire image. we can reconstruct the tree 

on the condition of the parent, siblings and sons of every node 

are available. The building process is as follows: 

(1) build a priority queue to store all the superpixel-pairs 

(superpixel and its neighbour) in an ascending sequence 

according to similarity criterion (Eq. 6); 

(2) pop out the top pairs of the queue to merge into a  new 

region until the queue is empty; 

(3) update the adjacencies of the merged region then enter the 

queue.  

(4) output the tree structure, as figure 2. 

An example of BPT hierarchical representation of UAV image 

is shown figure 3 

 

         
(a) (b) 

 

Figure 3 representation of several levels on BPT.  

(a) An UAV image (b) several levels representation of the 

image. 

 

4. OPTIMAL SEGMENTATION 

The hierarchical structure, i.e., binary partition tree, represents 

the UAV panorama in multiple spatial scales. Based on this 

structure, hierarchical segmentation algorithms can analyse 

images at different scales simultaneously, whose output is a set 

of regions that captures different partitions of different scales.  

The optimal segmentation based on hierarchical structure can 

overcome the limitation of over-segmentation at fine levels and 

under-segmentation at coarser levels, which means the partition 

of multiple scale meaningful regions can be exactly achieved. 

Under this conception, we design an optimal segmentation 

methods based on the hierarchical structure. 

 

4.1 Setting leaf-to-root Path and Objective Function 

Considering a given UAV panorama I. Based on BPT 

construction, we denote the max hierarchical level by m, the 

node set of each level Ti is denoted by Vi, the entire tree is 

denoted by  1 2{ , , , }mT T TT , and the individual node s at 

level i is denoted by i

sV . The only node 1

0V  at T1 is the root of T. 

Because not all original superpixels are at the bottom level, we 

copy the nodes at upper level to bottom level. Thus each level 

of BPT corresponds to a partition of the image. During the 

process of BPT construction, once two nodes are merged, their 

parent node is at a new level.  

A segmentation is a non-overlapped division of an image with 

the union restore the image in its entirety. Thus a partition in the 

hierarchy is a set of nodes satisfying the principle that there is 

one and only one node selected at each leaf-to-root path in the 

hierarchy. For example, Fig.4 shows valid tree slices of a 

particular BPT.  

 

1

2 3

4 5 3

1

2 3

4 5 3

1

2 3

4 5 3
 

(a) (b) (c) 

Figure 4. All valid tree slices of a particular BPT. Each slice is 

highlighted a black curve, the nodes on the slice are darkened. 

 

In the following, we formulate the above constraint. Let P 

denotes a p n  binary matrix, where p is the number of leaf 

nodes in T, n is the total number of nodes in T. Each row of P 

denotes a leaf-to-root path. If a node is in the path, the value of 

corresponding location at P takes 1, otherwise takes 0. The 

corresponding path matrix of Fig.4 is show in Fig.5 (b). There 

are three rows in P, which represents the three leaf-to-root paths 

in the BPT. For instance, node sequence 
1 2 5( , , )V V V  is the path 

P2. Therefore the value of the second row of P is [1,1,0,0,1] . 

1

2 3

4 5 3

P2P1 P3           
(a) BPT (b) Path matrix 

Figure 5. BPT and the corresponding path matrix 

 

Because a valid tree slice x consists of one and only one node in 

each path, the valid tree slice satisfies the following formula: 

p=Px l ,                                      (7) 

where lp is a 1p  column vector. x is a 1 n vector, if a node is 

selected as a partition, the value of corresponding location is set 

as 1, otherwise set 0. Thus any x satisfies the Eq.7 provides a 

possible partition of BPT, which corresponds to a plausible 

segmentation of the UAV panorama. 

According to the constraint above, there are still many feasible 

tree slices that are proper segmentation of the image. However, 

our purpose is to find the optimal partition that is most 

meaningful. In this paper we propose a meaningful criterion 

named minimal heterogeneity, which defined as follows, 

 V1 V2 V3 V4 V5 

P1 1 1 0 1 0 

P2 1 1 0 0 1 

P3 1 0 1 0 0 
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=
i R

i R
R

R

CN CN

CN
 


,                      (8) 

where R is a node in the BPT which consists of several adjacent 

superpixels. CNR is the region model, CNi is the model of i-th 

superpixel. By using this criterion, we can obtain the entire 

heterogeneity of region R, which measures the meaning of this 

region. 

Thus the segmentation objective is to seek a slice that balances 

the overall heterogeneity of selected nodes, 

argmin ( )
s

s

V T

V



 x ,                              (9) 

which subjects to Eq.7 

 

4.2 Solving by Binary Quadratic Program 

However, directly solving Eq.9 is difficult, which requires to 

enumerate all tree slices and the answer is a degenerate 

minimum which selects all leaf nodes because their 

heterogeneity are all zero. We add a penalty term which tends to 

select nodes at coarse level. Although nodes in the coarser 

levels have relatively higher heterogeneity than nodes in the 

finer level, the number of coarser level nodes is much less than 

those at the finer levels. Thus the objective function is 

formulated as follows: 

,

,

minimize 

subject to 

                 {0,1}

s s s t x t

s s t

p

n

x x x  





 

Px l

x

                        (10) 

where 
s  denotes to a n-length vector, which makes the slice 

prefer coarser levels in BPT. 
s  is defined as follows: 

,   if i i

s sV V V   ,                                 (11) 

where iV  is the total number of nodes in i-th level of the tree. 

,s t  is an entry in an n n  matrix, which is specified based on 

neighbourhood structure, and defined as follows: 

, ( ) ( )s t s t s tV V V V    ,                       (12)  

where |Vs| and |Vt| denote the number of superpixels in Vs and Vt. 

By adding the volume factors, we can evaluate the total 

difference of two nodes. 

The objective is a typical binary quadratic program problem. 

We solve the QP by using an open source solver (OPTI 

toolbox). 

 

5. EXPERIMENTAL RESULTS 

In this section, we provide experimental results on processing 

the post-seismic UAV images of the 2013 Ya’an earthquake to 

demonstrate the effectiveness of our algorithm. The particular 

location is Yuxi village, Baosheng town, Lushan county, and 

the geographic coordinate is around 30.29°N，103.04°E. The 

sensor onboard is Canon 5D Mark II and 93 image pieces were 

acquired in total. Fig.6 shows 4 typical example images. 

 
(a) (b) (c) (d) 

Figure 6. Typical experiment datasets 

 

The experimental platform consists of Intel Core i7-4790 CPU 

and 32G RAM. We use Microsoft Visual Studio 2010, Opencv 

2.4.10 and MATLAB software. 

5.1 Experiment settings 

For the stitching algorithm, the proposed method is compared 

with the conventional stitching method using SURF descriptor 

and kd-tree based ANN matching. The performance metrics 

include the stitching time and root mean square error (RMSE) 

of all matching points. 

1

1 ˆˆ ˆRMSE ( )
2

N

i i i i i

i

H x x H x x
N 

    ,          (13) 

Where N is the total number of matching points, ˆ,i iH H  is the 

projection matrix of ˆ,i ix x , respectively. 

For the purpose of optimal segmentation, the uniform 

homogeneity slice is compared with dynamic programming 

(Salembier, 2016), which is a greedy algorithm starting from the 

initial superpixels to extract the optimal partition by minimizing 

the criterion
R

R

C  . 

i R

i R
R

R

CN CN

CN
 



 


 ,               (14) 

where   is a constant value as data regularization term which 

encourages the optimization to find partitions with a reduced 

number of regions. In the experiment we set 2   according to 

the author’s recommendation. Considering that there is no 

ground truth of these datasets, the performance comparison is in 

the form of qualitative analysis. 

 

5.2 Experiment comparisons 

5.2.1 Stitching methods analysis 

The details about stitching methods comparisons are shown in 

table 1. Where tF denotes the feature extraction time, tM denotes 

the feature matching time, tT denotes the total time of stitching, 

N denotes the number of matching points and RMSE is the root 

mean square error. 

Table 1. The stitching performance comparison 

Metric Our method Conventional method 

tF(s) 14.69 16.97 

tM(s) 28.34 153.96 

tT(s) 148.53 282.36 

N 73163 27531 

RMSE 1.8 3.01 

It can be observed that our method works slightly faster in 

feature extraction procedure, while extremely faster in the 

matching step. Under the same condition, there are much more 

correct matching points in our method, resulting in a smaller 

image stitching error. These observations demonstrate that the 

LDB descriptor is more efficient than the conventional 

descriptors in UAV image stitching. Furthermore, the LSH 

search based matching algorithm can effectively improve the 

efficiency of UAV image stitching by using LDB descriptor. 

The final stitching panorama is shown in figure 7. 
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Figure 7. The stitching panorama of the post-seismic UAV 

images of the 2013 Ya’an earthquake 

 

5.2.2 Optimal segmentation results 

As a stitching of 93 image pieces, the data volume of the 

panorama is very large. For convenience, we choose the 

inscribed rectangle to conduct the segmentation experiment. 

Figure 8 presents the experimental dataset. 

 
Figure 8. The experimental dataset (3845×1038) 

It should be noticed that the scene is very complicated and 

consists of several different semantic areas. For example, 

buildings around roads show very similar spectral information, 

shadows of building have strong impacts on the detection of the 

obscured regions. Because there is no ground truth about this 

area, here we only give a qualitative comparison as follows. 

 
Figure 9. The optimal segmentation using dynamic 

programming 

 
Figure 10. The corresponding partition of Fig.9 

 
Figure 11. The optimal segmentation using uniform 

homogeneity slice 

 
Figure 12. The corresponding partition of Fig.11 

In general, the two methods reach almost the same optimal 

segmentation, which demonstrate that these two methods are all 

applicable in the optimal segmentation on hierarchical image 

representation. However, dynamic programming uses a constant 

value   as regularization, which encourages to find partitions 

with a reduced number of regions. This value actually set a hard 

threshold for the semantic gap of a node between its two 

descendants. However, the semantic gap is rising from fine level 

to coarse level, which means the value actually selects levels 

that satisfy the constant value. Being different with this criterion, 

the uniform homogeneity slice uses a penalty term which tends 

to select nodes at coarse level which are relevant to the total 

number of nodes in i-th level. What we need to do is to change 

the weight of penalty term. In this perspective, the uniform 

homogeneity slice is more generalizable. 

For UAV image interpretation, this optimal segmentation 

scheme of UAV panorama image can be used in subsequent 

tasks, such as image classification, object detection and 

recognition, change detection. Figure 13 shows the segmented 

area of grassy land and buildings. The building area in Fig.13 is 

finely distinguished, which can be used for for extracting 

residential areas.  

   
Figure 13. The distinguished area of grassy land and buildings 

in the optimal segmentation results 

 

6. CONCLUSION 

In this paper, an integrative object-based image processing 

workflow has been proposed to understanding UAV images. 

This framework fully addresses three important tasks of UAV 

image interpretation, i.e., UAV image stitching, large scale 

image hierarchical representation and optimal segmentation, 

and provides substantial possibility for large scale VHR image 

classification, object detection, change detection and etc. The 

experimental results demonstrate that BPT representation based 

on superpixels is a very effective hierarchical structure for 

processing and analysing large scale UAV images. Furthermore, 

the uniform homogeneity slice and dynamic programming are 

all applicable for the semantic object segmentation of large 

scale UAV images. The future work will focus on target 

detection and scene classification. 
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