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ABSTRACT: 

 

The common method of LiDAR classification is Markov random fields (MRF). Based on construction of MRF energy function, 

spectral and directional features are extracted for on-board urban point clouds. The MRF energy function is consisted of unary and 

pairwise potentials. The unary terms are computed by SVM classification. The initial labeling is mainly processed through 

geometrical shapes. The pairwise potential is estimated by Naïve Bayes. From training data, the probability of adjacent objects is 

computed by prior knowledge. The final labeling method is reweighted message-passing to minimization the energy function. The 

MRF model is difficult to process the large-scale misclassification. We propose a super-voxel clustering method for over-segment 

and grouping segment for large objects. Trees, poles ground, and building are classified in this paper. The experimental results show 

that this method improves the accuracy of classification and speed of computation. 

 

1. INTRODUCTION 

With the development of technology, 3d sensors, such as laser 

sensors and cameras, are used for collecting space data. 

Nowadays, to capture the point clouds of urban area is more 

convenient than before. The laser sensors are faster and 

accurate than other 3d sensors. One of the important tasks of 

point clouds processing is classification. This would be used in 

the city road asset census and management. Based on the 

classification result of the point cloud, the automatic driving 

can be achieved. The automatic program can distinguish the 

objects in the scene which are trees, road, building or others. 

 

The two main methods of the classification of point clouds are 

based on points and clusters. The Points-based method is used 

on the point features that contain the neighboring relations. The 

method is commonly used on Markov Random Fields (MRF) 

(Li, 1995). The model of MRF is considered not only the 

internal information but also the neighboring information. 

Associate Markov Network (AMN) (Daniel et al. 2008) is 

applied to automatic-3d point cloud classification of urban 

environments. It adds edges that define the interactions 

between variables. Furthermore, Daniel at 2009 proposes a 

high-order MRFs for classification. He adds high–order cliques 

into the AMN model for efficient learning. And he successfully 

applies the approach on mobile vehicle for online analysis. 

Roman Shapovalov at 2010 presents a non-associate MRFs for 

3d point cloud. They uses the classic AMN model as a starting 

point and the general form of pairwise potentials to overtake 

the failure of AMN to detect both large and small objects due to 

over-smoothing. The pairwise potentials can allow expressing 

some natural interactions between objects, such as “roof is 

likely to be above the ground” and “tree is not likely on 

building”. The model of the above method is very complex and 

is trained more difficultly.  

The second method is based on the clusters of point clouds. 

Lim et al. (2009) describes an over-segment algorithm based on 

super-voxels. The super-voxels are computed using 3d data 

properties that contain geometry-features with color and 

reflectance intensity. And then setup Conditional Random 

Fields model for classification. Ahmad Kamal Aijaz (2013) 

proposes the similar super-voxel clustering method and 

discusses the efficacy of the color and intensity for point clouds 

classification. The classification method of Yu Zhou et al. 

(2013) is based on super-segments, which has clustering and 

grouping two stages. The large-scale man-made objects are 

tended to be detected. 

 

Using the objects features, the point clouds are clustered. The 

base-clusters method need less computation cost than the 

base-points. MRF is difficult to process the large mistake 

classified piece and must add high-order cliques terms to 

overtake it. If do this, the model is complex and the MRF 

energy function is hard to optimize. Clustering point clouds can 

reduce the computation cost and group the points which have 

similar properties.  

 

This paper is proposed a method of on-board LiDAR 

classification for urban road. Trees, lights, building and road 

are classified. The point clouds are clustered by super-voxel for 

oversegment at first. The segments are grouped by geometry 

features. Markov Random Fields model is built with unary and 

pairwise terms. The inherent features of points and the 

connective relations are contained in this model. The unary 

terms are estimated by SVM. And the pairwise terms are 

obtained by Naïve Bayes classifier. Then we use the reweighted 

message-passing algorithm to optimize the MRF energy 

function. The method framework of the classification is showed 

as the following figure. 
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 Figure 1. The overview of the classification method 

framework 

 

The paper is organized as follows. In the following section we 

briefly introduce MRF. In 3rd section the method of the 

classification is proposed in details. In 4th section we show the 

experiment of the method and then conclude the method at last. 

 

2. MARKOV RONDOM FIELDS 

For 3d points cloud, the random variable is a point which need 

be classified. A point classification depends on not only the 

point inherent features, but also on the relation around points. 

The inherent features can be learned by supervised learning. 

The neighbor relationship can be obtained by prior knowledge. 

 

Generally, two terms can be expressed above questions. They 

are unary and pairwise terms. The energy function is 

formulated as follows: 

        
1 ( , )

( ) ( , )
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Where E is the set of the pairs. 

The MRF model is also a graph model. Furthermore, it is an 

undirected graph model. The unary terms are regarded as the 

node of graph and the pairwise terms are the edge. 

 

The minimizing of the energy function is a NP-hard problem. 

But there are some methods to get an approximate result. The 

common solution for this problem is message passing 

technique. Kolmogorov at 2006 developed tree-reweighted 

message passing for energy minimization. It is proven to find 

the global minimum of the concave lower bound on the energy 

function. The graph is spanned by a set of so-called monotonic 

chains and the chains have their nodes ordered according to 

some global order on the nodes of the graph. Each node of the 

graph should be contained by at least one chain. For each chain 

there exists its own parameter vector. The tightest lower bound 

on the energy is formulated as a concave function of those 

vectors. 

 

3. METHOD 

3.1 Over-segment 

The raw LiDAR data is usually huge. It can’t be directly 

analyzed. At first, the data is cut into appropriate size pieces 

through the track.  

 

We use super-voxel clustering algorithms for segmentation. It 

aims to group point clouds into meaningful regions. Some 

points which have similar properties can be grouped together. 

These properties are below as follow: 

( , , )P x y z : point position; 

( , , )l s vS    : spectral features of local neighborhood; 

( , , )N x y z : normal vector of local neighborhood. 

The spectral features are commonly used on 3d point analysis. 

In the local neighborhood, three eigenvalues 1 2 3{ , , }     are 

calculated using PCA (Principal Component Analysis), where 

1 2 3    . 

For some points on a line,  

1 2 3    

For points on a surface,  

1 2 3    

Otherwise, if points on a volume,  

1 2 3     

So, we can define three features called spectral features: 

Line feature: 1 2 1( ) /l      ; 

Surface feature: 2 3 1( ) /s     ; 

Volume feature: 3 1/v   . 

 

In this paper, trees, building, poles and ground is classified. The 

four kinds of objects are most common and important. The 

spectral features play a role in classification. In the spectral 

features of the points labeled into trees, the volume feature 

tends to be bigger than others. The surface feature of building 

and road is bigger. The line feature of poles is bigger. As see 

Figure 2, the features can be easy to distinguish the classes. 

 

Figure 2. The spectral vectors of objects 

 

For p data points, a set of seed points are distributed in space 

on a grid with resolution Rseed. The seed point is the voxel leaf. 

Then use a region growing method to expand the seed points. 

Expansion from the seed points is governed by a distance 

measure calculated in a feature space consisting of spatial 

extent, spectral information, and normal vector. The distance is 

defined as Equation 2. 

2 2 2

c c s s n nD w D w D w D   ,         (2) 

Where Dc, Ds and Dn are spatial, spectral and normal distance. 

wc, ws and wn
 
are the weight of spatial, spectral and normal 

distance. 
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This not only prevents over segmentation but also reduces 

processing time. 

 

The result of super-voxel is showed as followed. Every color 

piece is a voxel. The similar feature points are grouped.  

 

 

Figure 3. Super-voxel clustering 

 

3.2 Grouping Clusters 

n this stage, the clusters are grouped into segments through 

region growing with respect to the connectivity and normal 

vector of clusters. Assuming Ci has m points and Cj has n pints. 

The distance between Ci and Cj is defined as Equation 3. 

 min i j

ij k lD p p   ,         (3) 

Where 
i

kp  is the position of a point in Ci, 
j

lp  is the position 

of a point Cj, 1,2k m  and 1,2l n . 

Then, we calculate the angle between the normal vector of a 

cluster and the vertical vector as Equation and the spectral 

similarity of clusters via the angle between two clusters as 

Equation 4 and 5. 

 arccos ,iv i vn n n ,          (4) 

 arccos ,ij i js s  ,          (5) 

Where si and sj are normal vectors of Ci and Cj, respectively, 

and vn  is the vertical vector (0, 0, 1). 

  

The merge method is proposed by considering the connective 

distance  ij thD D  and normal features  1 2,iv th ij th     . 

The large-scale man-made objects can be extracted by this 

method. The grouping result is presented in Figure. The 

remaining clusters are grouped by distance. 

 

Figure 4. Group into segments 

 

3.3 Unary Terms 

We use the output of support vector machine algorithm as 

unary terms. For each segment, we extract six features for 

training the SVM classifier. The six features are spectral vector, 

normal angle, height, area, edge ratio and max edge. The last 

three features are computed by the projective boundary box. 

The boundary box is obtained by the following steps: 

1. Project 3d points P of a segment to the ground plane and 

obtain P’. 

2. Compute the eigenvectors {V1, V2} of P’. The 

eigenvectors are the direction of boundary box edges. 

3. Find the min and max value in V1 and V2 direction as 

Figure 5. Then the boundary box is obtained. 

 

 

Figure 5 the boundary box in ground plane 

Spectral vector: the cluster geometry information. 

 

Normal angle: The estimated normal vector of a cluster is 

calculated by the RANSAC method, and the angle between the 

estimated normal vectors. 

 

Height: the centroid’ z value of segments. The value removes 

the min z which would be the height of ground plane. 

 

Area: The area of the projected bounding box is a feature used 

to distinguish between the large objects and small objects. 
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Edge ratio and max edge: The edge ratio is the ratio of short 

edge and long edge of the projected boundary box. The ratio of 

pole objects would be near by 1. The ratio of building would be 

less than 1. 

 

We use SVM algorithm from OpenCV. The kernel function of 

SVM is Radial basis function (RBF). The iterator number is 

10000. 

 

3.4 Pairwise Terms 

Pairwise terms are important to show any kind of inter-class 

relations. These terms are constructed as the method which is 

proposed by Shapovalov et al. (2010). For simplifying the 

model, we only obtain two neighboring features which are 

distance between segments and normal angle of them. Using 

Bayes’ theorem, the edge probability is defined as the following 

equation: 

 
   

 
1 2

1 2

1 2

| |
| ,

,

i j i j

i j

p f l l p f l l
p l l f f

p f f
 ,        (6) 

So that, we use the edge probability as pairwise terms. 

Naïve Bayes classifier is used for this problem. The two 

features are discreted into several grids. The distribution of the 

training data in the grids is the probability of the features. 

 

3.5 Inference 

Based on super-voxel, the point cloud is cut into small piece. 

We use the SVM to evaluate the class of every piece. Then 

using Naïve Bays classification, the pairwise terms are added 

into MRF model. We use the TRW-S algorithm to infer the 

final classification. 

 

4. EXPRIMENT 

4.1 Collection System 

We collect point clouds data with our company mobile 

measurement cars as Figure 6. The car is loaded with one or 

two laser scanner, CCD cameras, INS (Inertia Navigation 

System) and GPS. The laser scanner is Rigel LiDAR. The 

Figure7 shows the point clouds from the Rigel LiDAR. 

 

Figure 6. The mobile measure car 

 

 

Figure 7. The point clouds from the Rigel LiDAR. The 

grayscale is based on the intensity of the laser. 

 

4.2 Result 

At first, we label manually the point clouds for training the 

SVM model. Then check other data sets. In the experiment the 

above four classes have labeled.  

The result of the classification method is followed:  

 

 

Figure 7. The classification result. The black is ground, white 

are trees, green are poles, and brown is building. 
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Chart 1. The result of classification 

 ground trees poles building Recall 

ground 78083 356 67 1227 0.9793 

trees 1322 35368 127 7532 0.7975 

poles 344 223 1342 1048 0.4538 

building 2586 9442 835 24245 0.6533 

precision 0.9484 0.7792 0.5660 0.7120  

 

5. CONCLUSION 

In this paper we present an approach to classify the 3d point 

clouds for urban area. Based on the MRF model, we use the 

SVM method to account for directional information. The 

neighborhood relations are considered into pairwise terms. It 

constructs an accurate model for complex scene. To overtake 

the insensitivity of the MRF to the large-scale objects, we use 

super voxel for over-segment and group the clusters into 

segment for large objects. 

 

Four classes are classified in this paper. The result of the 

experiment shows the method is good for classification. 

But we must notice the classes are rough and not specific. The 

future work is focused on the small objects like lights and 

traffic signs. 
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