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ABSTRACT: 

 

Forest pest is one of the most important factors affecting the health of forest. However, since it is difficult to figure out the pest areas 

and to predict the spreading ways just to partially control and exterminate it has not effective enough so far now. The infected areas 

by it have continuously spreaded out at present. Thus the introduction of spatial information technology is highly demanded. It is 

very effective to examine the spatial distribution characteristics that can establish timely proper strategies for control against pests by 

periodically figuring out the infected situations as soon as possible and by predicting the spreading ways of the infection. Now, with 

the UAV photography being more and more popular, it has become much cheaper and faster to get UAV images which are very 

suitable to be used to monitor the health of forest and detect the pest. This paper proposals a new method to effective detect forest 

pest in UAV aerial imagery. For an image, we segment it to many superpixels at first and then we calculate a 12-dimension statistical 

texture information for each superpixel which are used to train and classify the data. At last, we refine the classification results by 

some simple rules. The experiments show that the method is effective for the extraction of forest pest areas in UAV images. 
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1. INTRODUCTION 

Increasing forest pest has caused huge damage to a huge amount 

of forest in China. It’s significant to monitor and detect the pest 

areas as soon as possible to prevent the pest from spreading. 

However, the traditional methods for the detection of pest area 

in forest are usual performed with laborious and time-

consuming field sampling (Lavoie et al., 2005; Pellerin et al., 

2008). 

Since spatial information technology have a great deal of 

advantages such as wideness, rapidity, simultaneity, and 

economy, the needs and the interests of remote senses among 

professionals as well as general persons have greatly increased 

these days. Even in the field of forest damages by disease and 

insect pests it was proved to possibly use various analysis 

methods by spatial information, and studies on this field are 

actively working. Now, more and more remote sensing related 

techniques and algorithms (such as segmentation, clustering, 

feature expression and supervised classification) are applied in 

the detection of forest pest these years (Coops et al., 2006; 

Heurich et al., 2010; Ortiz et al., 2013). Multi-spectral infrared 

(IR)-imagery derived from high flying aircraft (Yu et al., 2006; 

Medlin et al., 2000), commercial satellites, or multi-temporal 

public datasets like the ASTER or Landsat Thematic Mapper 

satellite system (Franklin et al., 2003; Lawes et al., 2008; Hais 

et al., 2009; H. G. Wu and Q. W. Zeng., 2008; J. Y. Su and J. 

Ni., 1995), has also been extensively used for conservation and 

forest restoration monitoring (Milton et al., 2005; Ecker et al., 

2008). However, it’s also relative expensive or complicated to 

obtain the high flying aircraft imagery and commercial satellites 

imagery. Now, the rapid development of unmanned aerial 

vehicle (UAV) offers a cheap and fast way to get the high-

resolution images of forest areas which are the foundation of the 

subsequent image process to detect the pest areas. The proposed 

approach is make use of UAV imagery to rapidly and 

effectively extract pest areas based on image process and 

analysis algorithms. 

This paper is organized as follows. Section II describes the 

proposed method, followed by the pest areas extraction results 

and analysis. Section III concludes this study and identifies 

some aspects for improvement. 
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Figure 1. Workflow of the proposed approach. 

 

2. METHOD AND RESULT 

The workflow of the proposed approach for forest pest areas 

extraction proposed in this study is shown in Figure 1. The 

major steps include segmentation of the image, feature 

extraction of the segmentation objects, training and 

classification using the random forest classifier. Initially, an 

image is segmented into superpixels so that the descriptors of 

each superpixel can be computed to form a feature vector for 

classification. Training data must be selected to represent the 

variety of pest and non-pest segments. The random forest 

algorithm is then applied to discriminate pest and non-pest 

regions. The key of the method is to deal with the training and 

classification based on superpixels which can reserve more 

texture information. 

 

2.1 Image Segmentation 

Image segmentation is a process of dividing an image into 

different regions such that each region is nearly homogeneous. 

Since many pest areas in the forest imagery composed of just a 

bit of pixels, we must make sure that the segmentation couldn’t 

be too big. So we segmented images to superpixels.  

There are many approaches to generate superpixels, each with 

its own advantages and drawbacks that may be better suited to a 

particular application. For example, if adherence to image 

boundaries is of paramount importance, the graph-based method 

of (Pedro Felzenszwalb and Daniel Huttenlocher., 2004) may be 

an ideal choice. However, if superpixels are to be used to build 

a graph, a method that produces a more regular lattice, such as 

(Jianbo Shi and Jitendra Malik., 2000), is probably a better 

choice. While it is difficult to define what constitutes an ideal 

approach for all applications, we believe the following 

properties are generally desirable (R. Achanta et al., 2012): 

 

1. Superpixels should adhere well to image boundaries. 

2. When used to reduce computational complexity as a 

preprocessing step, superpixels should be fast to compute, 

memory efficient, and simple to use. 

3. When used for segmentation purposes, superpixels 

should both increase the speed and improve the quality of 

the results. 

 

Take the above factors in consideration, in our proposed 

method, image segmentation is performed by the simple linear 

iterative clustering (SLIC) algorithm proposed by R. Achanta in 

2012(R. Achanta et al., 2012). SLIC clusters pixels in the 

combined five-dimensional (5-D) space of color and image 

plane to efficiently generate compact, nearly uniform 

superpixels. The zero parameter version of the SLIC algorithm 

is used for choosing an adaptive compactness factor (R. 

Achanta et al., 2012).  

SLIC is simple to use and understand. By default, the only 

parameter of the algorithm is k , the desired number of 

approximately equally-sized superpixels. For color images in 

the CIELAB color space, the clustering procedure begins with 

an initialization step where k  initial cluster centers 

[ , , , , ]T

i i i i i iC l a b x y  are sampled on a regular grid spaced 

S pixels apart. To produce roughly equally sized superpixels, 

the grid interval is /S N k . The centers are moved to 

seed locations corresponding to the lowest g E  radient position 

in a 3 3  neighborhood. 

Next, in the assignment step, each pixel i  is associated with the 

nearest cluster center whose search region overlaps its location. 

Once each pixel has been associated to the nearest cluster center, 

an update step adjusts the cluster centers to be the mean 

[ ]Tl a b x y  vector of all the pixels belonging to 

the cluster. The 2L  norm is used to compute a residual error 

E  between the new cluster center locations and previous 

cluster center locations. The assignment and update steps can be 

repeated iteratively until the error converges. The entire 

algorithm is summarized in Table 1. 
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/* Initialization */ 

Initialize cluster centers [ , , , , ]T

k k k k k kC l a b x y  by 

sampling pixels at regular grid steps S . 

Move cluster centers to the lowest gradient position in a 

3 3  neighborhood. 

Set label ( ) 1l i    for each pixel i . 

Set distance ( )d i   for each pixel i . 

repeat 

/* Assignment */ 

for each cluster center 
kC  do 

for each pixel i  in a 2 2S S  region around kC  

do 

Compute the distance D between kC  and i . 

If ( )D d i  then 

set ( )d i D  

set ( )l i k  

end if 

end for 

end for 

/* Update */ 

Compute new cluster centers. 

Compute residual error E . 

until thresholdE   

 

Table 1. SLIC superpixel segmentation. 

 

The result of the SLIC segmentation is shown in Fig. 2. 

Training data

Spuerpixels
 

Figure 2. Superpixels segmented by SLIC; the image (top) and 

the patches (bottom) extracted from the upper image. 

2.2 Feature Extraction 

The extraction of texture feature for each superpixel is shown in 

Fig. 3. 

 
Figure 3. Extraction of feature 

 

As in Figure. 3, , , , , ,Aver Aveg Aveb Varr Varg Varb  

denote the average and variance value of corresponding RGB of 

the pixels belonging to the superpixel, 

, , , , ,Maxr Maxg Maxb Minr Ming Minb  denote the 

maximum and minimum value of corresponding RGB of its 

pixels. Our experiments demonstrate that the texture 

information expressed by those simple statistical values of RGB 

can distinguish forest pest areas from else and they are also 

efficient to calculate so that our algorithm is able to process a 

huge amount of images.  

 

2.3 Training and Classification by Random Forest 

We train a random forest model by the 12-dimensional feature 

calculated from training data and use the model to classify the 

test images by the same dimensional feature extracted from 

them. 

Random Forest is an ensemble learning method for 

classification by a multitude of decision trees at training time 

and outputting the class that is the mode of the classes. It’s 

proposed in (Ho and Tin Kam., 1995) and developed further in 

(L. Breiman., 2001). The multiple decision trees of the RF are 

trained on a bootstrapped sample of the original training data. 

At each node of every decision tree, one among a randomly 

selected subset of input parameters is chosen as the best split 

and used for node splitting (Liaw and Wiener., 2002). Each tree 

uses only a portion of the input samples (typically two-third) for 

the training while the remaining roughly one-third (referred to 

as Out-Of-Bag (OOB)) of the samples are used to validate the 

accuracy of the prediction. In general, RF increases the diversity 

among the decision trees by randomly resampling the data with 

replacement and by randomly changing the parameter subsets 

for node splitting at each node of every decision tree. Random 

forest has been widely applied in tracking (V. Lepetit and P. 

Fua. Keypoint., 2006) and object recognition missions (F. 

Moosmann et al., 2006; J. Winn and A. Criminisi., 2006). 

We choose random forest because it’s invariant to monotonic 

transformations of the input variables and robust to outlying 

observations. Moreover, as has been noted by (J. Winn and J. 

Shotton., 2006), it’s much faster in training and testing than 

traditional classifiers (such as an SVM). At last, it also enable 

different cues to be “effortlessly combined”. 
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The main steps of Random Forest are described in Table 2 (Du, 

P et al., 2015). It is a combination of tree predictors in which 

decision trees are constructed using resampling technique with 

replacement, the inducers randomly samples the attributes and 

chooses the best split among those variables rather than the best 

split among all attributes. The assignment of class label of an 

unknown instance is performed using majority voting strategy. 

Due to the important advantages such as handling very large 

number of input attributes and low time cost, Random Forest 

has widely attracted the interests of researchers from the context 

of remote sensing image classification (Waske, B and Braun, M., 

2009; Gislason et al., 2004; Qi et al., 2012; Samat et al., 2014). 

 

Input: DTI (a decision tree inducer), T (the iterations numbers), S (train sets), r (sampling ration), N (number of attributes used in 

each tree) 

Train: for i = 1 to T 

Get sample St from S with replacement using r; 

Build classifier Mt based on the inducer randomly samples N of the attributes and choose the best split. 

Classification: new instance classified by classifiers 
( 1,..., )t t TM 

 then performed using majority vote. 

Table 2 Algorithmic steps of Random Forest. 

2.4 Experimental Results and Analysis 

Some examples of pest extraction from the image can be seen in 

Figure 4. The intermediate results of segmentation and final 

outputs of the proposed method are illustrated. The final outputs 

are refined from the classification results of random forests 

following the rule that pixels whose red value being smaller 

than green value or blue value won’t belong to pest area. 

Test data

Superpixels

Results

 
Figure 4. Examples of pest extraction by our method. Top images are test images, middle images are the demonstration of 

corresponding superpixels segmented by SLIC and below images are forest pest extraction results of our approach, the purple areas 

are pest areas. 

 

The experimental results show that the proposed approach can 

effectively detect all of the visually salient pest areas from the 

UAV imagery of forest. The overall advantages of our method 

can be concluded: 1) it does not require multitemporal images; 

and 2) it can process images quickly because the program takes 

superpixels as input and calculate simple but effective texture 

features.

3. CONCLUSION 

In this study, random forest and object-based classification for 

forest pest detection in UAV aerial imagery are proposed. 12-

dimensional descriptors are extracted from all of the pixels of 

each superpixel, which is then used as the input vector to build 

the random forest classifier. A number of various images are 

tested. The results show the effectiveness of the proposed 

method. The developed method provides a general framework 

for detecting pest areas in a wide variety of UAV images by 

sampling, feature extraction, training, and classification. 
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The results demonstrate the potential of UAV aerial imagery for 

forest pest infestation monitoring. It can be found that the 

presented approach has a strong positive economic advantage 

over the traditionally applied ground based forest pest detection 

workflow, since we would dramatically reduce temporal and 

financial cost. 

Due to the limitation of the amount of data, we train our model 

on about tens of images and haven’t tested the proposed 

algorithm on different conditions. 

Future work includes training and testing on larger datasets with 

different light conditions and employing more different features. 

More complex probabilistic models (such as conditional 

random fields) could be involved in the algorithm for the 

consideration of semantic information. 
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