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ABSTRACT: 

 

Land cover information is essential for urban planning and for land cover change monitoring. This paper presents an overview of the 

work conducted at the Federal Agency for Cartography and Geodesy (BKG) with respect to Synthetic Aperture Radar (SAR) based 

land cover classification. Two land cover classification approaches using SAR images are reported in this paper. The first method 

involves a rule-based classification using only SAR backscatter intensity while the other method involves supervised classification of 

a polarimetric composite of the same SAR image. The LBM-DE has been used for training and validation of the SAR classification 

results. Images acquired from the Sentinel-1a satellite are used for classification and the results have been reported and discussed. 

The availability of Sentinel-1a images that are weather and daylight independent allows for the creation of a land cover classification 

system that can be updated and validated periodically, and hence, be used to assist other land cover classification systems that use 

optical data. With the availability of Sentinel-2 data, land cover classification combining Sentinel-1a and Sentinel-2 images present a 

path for the future.  

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Information regarding land cover and land monitoring is 

essential for physical planning, updating land statistics and for 

quantifying information regarding foliage and biomass. While 

field surveys are time consuming and expensive, remote sensing 

techniques offer an efficient and fast alternative. With the 

initiation of the Copernicus programme, the whole world, and 

in our case, German federal agencies, have access to free, global 

and periodic data that can be exploited to extract land cover and 

land monitoring information. Since the Federal Agency for 

Cartography and Geodesy (BKG) is responsible for the land 

monitoring services of the Copernicus programme, three 

projects have been initiated, one of which is described in this 

paper. More information regarding the other projects is 

provided in a simultaneous publication (Wiatr et al. 2016). 

Sentinel-1a, launched in 2014, was the first satellite to be 

launched within the Copernicus programme. It is equipped with 

a C-band (5.6cm) Synthetic Aperture Radar (SAR) that provides 

weather independent images of the Earth taken during the day 

and night. A SAR sensor is a coherent, active sensor that 

transmits a pulse in the microwave frequency onto the Earth’s 

surface and measures the backscattered signal. The strength and 

phase of the backscattered signal depends on the physical 

properties of the target such as geometry or roughness, as well 

as the electric properties like dielectric composition or 

permittivity. Thus, a SAR image is a 2D grayscale 

representation of the imaged Earth surface, where targets of 

high backscatter intensity will correspond to bright pixels, and 

vice versa. While modelling land cover, three dominant 

scattering mechanisms are responsible for the backscattered 

signals: Surface or odd bounce scattering by the vegetation 

layer, double bounce scattering originating from the ground 

trunk interactions attenuated by the vegetation cover (in forests) 

and volume scattering from the canopy. With C-band frequency, 

the main interaction of the wave occurs within the top layer of 

the canopy and the strength of the backscattered signal is 

primarily dependent on the properties of the small branches, 

needles and twigs in the tree crown (Toan et al., 1992). The 

advantages of using SAR images acquired by Sentinel-1a is not 

just the high resolution and independence from daylight and 

weather conditions, but also the periodic imaging of the Earth. 

While Sentinel-1a has a 12 day repeat cycle, Germany is 

mapped every 3-4 days during the satellite’s five ascending and 

six descending orbit tracks. These SAR images can, thus, be 

used to extract land cover information in Germany, especially in 

cases where optical sensors fail due to unavailability of cloud-

free data (Bruzzone et al. 2004).  

 
Figure 1. Land cover classes in Frankfurt am Main as seen in the CLC 

2006 (left) with a coarser resolution and LBM-DE 2012 (right)  

 

The LBM-DE (LBM-DE for Land-Bedeckungs Modell- 

Deutschland), a product of the BKG, integrates the Basic 

Digital Landscape Model of the Authoritative Topographic-

Cartographic Information System (ATKIS® Basis-DLM) with 

the Corine Land Cover (CLC) to create a new land cover and 

land use product. The CLC, first established in Germany in 

1990, is a well-known and widely used European land cover 

product (Hovenbitzer et al. 2014). However, nationwide 

applications in Germany required a higher spatial and temporal 

resolution than what the CLC can offer. This prompted the 

German Federal Agency for Cartography and Geodesy (BKG) 

to create a national land cover product, titled LBM-DE, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-1187-2016

 
1187



 

formerly titled DLM-DE (Digital Landbedeckungs Modell- 

Deutschland) (Fig. 1). The LBM-DE is verified and updated 

with respect to land cover information using a semi-automated 

analysis and interpretation of multi-temporal satellite images 

from medium to high resolution. The LBM-DE uses the CLC 

nomenclature as a guideline for the land cover feature 

classification, and each ATKIS ® polygon is semantically 

classified as per CLC guidelines. Available for the years 2009 

and 2012, the LBM-DE2012 consists of separate class 

definitions for land use and land cover in comparison to the 

CLC2012. 

While methods for land cover and land monitoring using optical 

satellite data exist, and are in use, they are regularly affected by 

the lack of cloud-free dataset. Though cloud-free, SAR image 

classification techniques for land cover classification are not so 

common mainly due to the challenges posed by the special SAR 

imaging geometry, the complicated SAR scatter process and the 

presence of speckle noise (Oliver and Quegan 1998). This paper 

illustrates our first results of land cover classification using 

Sentinel-1a images. Our aim is to analyse and verify the 

methods and approaches required to implement a classifier that 

can provide the land cover classes such as in the LBM-DE 

using SAR images from Sentinel-1a. The SNAP toolbox 

(©ESA), QGIS (“QGIS Development Team Version 2.1.4 

‘Essen’, 2014) and the programming language python (Python 

version 2.7) have been used for this purpose. Two methods of 

classification are tested and the results have been reported in 

this paper. The first method involves the programming and 

implementation of a supervised rule-based land classification 

system that uses a single SAR image backscatter intensity and 

differentiates between the various land cover classes. For the 

second method of classification, a composite image is created 

from the VV and VH SAR image polarisations and a supervised 

Support Vector Machine (SVM) based classification is 

conducted. The results of the two modes of classification shows 

the scope of land cover classification using Sentinel-1a data 

when used in combination with open source software and 

programming languages. We have also provided an example of 

how more land cover classes can be detected and extracted by 

combining SAR data with optical images from Sentinel-2. The 

combination of the German public administration products like 

the LBM-DE2012 with the products and services of the 

Copernicus programme provides a cost effective and up-to-date 

solution for land cover and monitoring applications.  

 

2. TEST SITE AND DATA USED 

Sentinel-1a images in Interferometric Wideswath mode (IW) 

and Ground Range Detected (GRD) product type can be 

downloaded from the Sentinel data hub. The provided GRD 

products contain amplitude and intensity images in each 

polarisation (VV and VH) with level 1 processing which 

includes data projected to ground range using an Earth ellipsoid 

model, elevation antenna pattern and range spreading loss 

corrections and thermal noise removal. An IW and GRD image 

from the 20 Jul. 2015, acquired from a descending orbit, was 

chosen as maximum foliage is expected around this time, and 

hence, maximum land cover. The chosen Sentinel-1 image 

encloses the northern part of the state of Bavaria, in Germany, 

and covers the cities of Regensburg and Nuremburg. The SAR 

image and the area enclosed is visible in Fig. 2. The original IW 

image had a scene size of 250 x 170 km in range and azimuth, 

respectively, with incidence angle varying from 30° to 45° and 

pixel spacing of 10m in both range and azimuth.  

Typical SAR IW GRD products are not radiometrically 

corrected which means that the pixel values of the SAR image 

do not truly represent the radar backscatter of the reflecting 

surface, which is important for land cover classification. Hence, 

the SNAP toolbox, provided by ESA, was used to conduct 

radiometric calibration after which the sigma nought values 

were extracted. The sigma nought values of the SAR image 

were then converted to Decibels and the images were 

georeferenced to UTM32 to keep consistency with the 

coordinate system used by the LBM-DE.  

 
Figure 2. Spatial coverage of the Sentinel-1a image from 20 Jul. 2015. 

Background map © BKG open data maps 

 

Speckle is a multiplicative noise, caused due to the presence of 

many elemental scatterers with a random distribution within a 

resolution cell (Moreira et al. 2013) and causes strong 

fluctuations of the backscattering from one resolution to 

another. Although it is a noise, it cannot be removed by 

increasing transmit power because of its multiplicative nature. 

To reduce speckle, one technique that can be used is multi-

looking where a non-coherent averaging of the intensity in an 

image is conducted (Moreira et al. 2013). Multi-looking causes 

a reduction in the image resolution, but also reduces speckle 

and increases information content in the image. Hence, multi-

looking with looks of 2 x 2, in range and azimuth respectively, 

was conducted for the SAR image reducing the pixel spacing to 

20m.   

After the post-processing steps were completed, seven test sites 

were chosen, and subsets for each test site were created (Fig. 3). 

These sites were selected based on the foliage and the land 

cover classes visible at each test site. These subsets are 

approximately 2500 x 2000 pixels or 45 x 35 km in size, in 

range and azimuth, respectively. The purpose of selecting 

subsets from the master image was to analyse the LBM-DE 

classes in each subset, and the corresponding SAR backscatter 

for each class. These values would then be used to train the 

classifier. 
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Figure 3. Spatial coverage of the seven subsets chosen as training for 

the classifier. The black rectangle represents the extent of the original 

SAR image from Fig. 2. The test sites numbers are represented by the 

colour of the subset border, varying as per the rainbow from Violet to 

Red. This means the border for e.g. Test site No.1 is Violet and Test site 

No. 7 is Red. Background map © BKG open data maps 

 

3. METHODS  

3.1 SAR Land cover classification using a rule-based 

decision classifier applied on intensity SAR images 

The LBM-DE2012, from the year 2012, is used in our training 

dataset. It contains 36 land cover and 15 land use classes where 

different attributes are given to polygons fitting into one feature 

class, and contains a minimum object size of 1ha. Since we are 

working with land cover information, we utilise only the 36 

land cover feature classes in the LBM-DE2012. These classes 

are named similar to the CLC classes, where each land cover 

type is given a distinct three digit number, e.g. B211 is used to 

denote land cover specific to agriculture and B311 to broad 

leaved trees etc. (Bundesamt für Kartographie und Geodäsie 

2012). For the 36 land cover classes, the LBM-DE2012 groups 

together classes that are closely related to each other and each 

‘main theme’ (containing 3-6 sub-classes), is named with an 

alphabet from A to E. As a brief introduction, the 

LBM-DE2012 theme A corresponds to objects with features 

corresponding to urban settlements, B: Agriculture land cover, 

C: Green pastures, D: Mixed vegetation, E: Sparse vegetation, 

F: Wetlands and H: Water bodies. More details about the 

grouping of the LBM-DE2012 land cover classes and main 

themes are provided in the LBM-DE2012 report from the 

Bundesamt für Kartographie und Geodäsie, 2012 and in 

Hovenbitzer et al., 2014. Since our test site is in the German 

state of Bavaria, only the LBM-DE2012 for the state of Bavaria 

was used. Using QGIS (“QGIS Development Team Version 

2.1.4 ‘Essen’, 2014), the LBM-DE2012 for Bavaria was clipped 

further for the extent of the SAR image. Thereafter, the LBM-

DE2012 shape files for each test site was clipped from the 

bigger shapefile, and a vector to raster conversion was 

conducted to create a rasterised version of the LBM-DE2012 

that can be compared with the SAR images. The raster file was 

assigned numbers from 1 to 8, 1 representing urban settlements, 

or the LBM-DE main theme A, and 8 representing water, or the 

LBM-DE main theme H. 

Since the LBM-DE2012 raster and the SAR image are now in 

the same coordinate system and pixel spacing, a mutual 

comparison and analysis can be conducted. In Python, the 

LBM-DE2012 raster is, thereafter, compared to only SAR 

amplitude image in VV polarisation for each test site. For each 

LBM-DE main theme, a binary image is created where 1 

represents the pixels of belonging to a LBM-DE2012 main 

theme and 0 to the other pixels. The result of the product of this 

binary image and the SAR VV amplitude image produces a 

raster containing the pixels in the SAR image that belong to that 

LBM-DE2012 land cover theme. Every test site was analysed 

and SAR backscatter intensities of the pixels in each LBM-DE 

main theme were extracted. By analysing the backscatter 

intensities of the pixels corresponding to each LBM class and 

each test site image, and combining the mean and standard 

deviations for all the test sites, thresholds were established by 

determining the upper and lower limit backscatter intensities of 

pixels within each LBM-DE2012 land cover class. Thereafter, a 

supervised rule-based classification of the pixels in the SAR 

image is implemented, where pixels in each land cover class are 

extracted, grouped together into objects and finally a raster 

image consisting of the classified land cover classes are 

obtained (Fig. 5).  

 

3.2 SAR land cover classification using a semi-automatic 

supervised SVM classifier on a polarimetric composite SAR 

image 

With this method, we aim to evaluate the potential of a single 

radar image for land cover classification by investigating the 

correlation between the two SAR polarised images with the 

single land cover classes corresponding to the main themes of 

the LBM-DE (Classes A-H). 

The GRD data with VH and VV polarizations are used to set up 

a two-dimensional feature space. It is important to note that 

these images are raster images while the LBM-DE2012 used is 

a vector shape file. A pixel-wise supervised classification is 

performed using the Support Vector Machines (SVM) 

algorithm provided by the OTB (Chang and Lin 2011) and 

implemented in QGis (“QGIS Development Team Version 2.1.4 

‘Essen’, 2014). The training areas for the supervised 

classification are extracted from the LBM-DE2012 after it is 

modified as follows: An inward buffer of 50 m is applied to the 

polygons to eliminate errors caused by poor georeferencing 

(between the raster and vector polygons) and due to transition 

regions between the different land cover classes Small polygons 

less than 6,000m² are also removed. Thereafter, a manual 

inspection of the polygons is carried out to investigate the 

homogeneity of the training areas. From the remaining areas 

that cover the test site evenly, 50% of these areas are selected 

randomly for the training of the SVM classifier. The validation 

of the classification result is performed by setting up the 

confusion matrix as described in any standard literature, e.g. 

Richards, 2013. The LBM-DE2012 polygons with an inward 

buffer of 50m are used as ground truth. The correlation between 

single land cover classes can be identified by the matrix values 

in the confusion matrix. 

 

4. RESULTS AND DISCUSSION 

The results of the land cover classification using the two 

methods described in section 3 are discussed here. Only the 

classification results for Test site no.1 will be reported.  

 

4.1 Rule based-SAR backscatter dependent Land cover 

classification. 

The rule-based classifier was chosen because of its speed and 

ease in implementation. The classifier has been programmed 

and implemented in the programming language Python. Our 
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analysis of the backscatter intensities of the pixels within each 

LBM-DE defined main themes, shows that it is difficult to 

separate some classes from others purely based on backscatter 

intensities. It is important to note that our test sites do not 

contain a very significant quantity of pixels corresponding to 

the LBM-DE main themes of wetlands (G) and sparse 

vegetation (F). Thus, a quantitative threshold could not be set 

for these classes. Also, based on our analysis, there is an 

overlap between the backscatter intensities of the agricultural 

fields and green pastures, and hence, we grouped all these 

classes together to form a new class called open land. A similar 

correlation was seen to exist in the backscatter intensities of the 

forest regions in SAR images (green in Fig. 4) and mixed 

vegetation (Cyan in Fig. 4) and hence these two classes were 

merged into one class named Forest. This is similar to the 

classification scheme of four classes used by Strozzi et al., 

2000.  

 
Figure 4. Trend of SAR backscatter intensities of pixels belonging to 

each LBM-DE2012 land cover class with respect to the test site 

analysed. The colours represent the 8 LBM-DE2012 land cover themes 

shown in the legend 

 

Therefore, we have designed the classifier to only classify and 

discriminate pixels into four main classes. These are: Urban 

(corresponding to the land cover theme ‘Urban’ in the LBM-

DE2012), open land (combining three LBM-DE2012 land cover 

themes, mainly ‘agriculture’, ‘sparse vegetation’ and 

‘wetlands’), forests (combining two LBM-DE2012 land cover 

themes, mainly ‘forest’ and ‘mixed vegetation’ class of the 

LBM-DE) and water (corresponding to the LBM-DE2012 land 

cover theme ‘water’).  

 
Table 1. SAR land cover classification rules 

 
 

Once the thresholds for classification are determined (Table.1), 

the classifier is designed to first classify pixels belonging to the 

land cover class ‘Urban’, by checking to see which pixels in the 

SAR image lie within the set threshold. The classifier then 

produces a binary image where 1 represents the pixels that are 

within the limits for this class (Fig. 5 top right). Morphological 

operations, like binary closing, are then used to connect 

neighbouring pixels into objects and to fill holes in objects 

(Fig. 5 bottom left). A binary closing, consisting of a dilation 

(where holes are removed) followed by an erosion of the pixels 

in the image ensures that small individual objects and pixels are 

removed, and that objects are connected without holes within.  

Thereafter, the pixels that have satisfied the thresholds set for 

urban pixels are assigned the class designation 1 in the final 

image. These pixels are not considered for classification 

thereafter. The rest of the pixels in the original image are then 

classified in a similar manner, where the pixels that have been 

classified into one class are not considered for classification for 

the next. Fig. 6 shows the SAR land cover classification results 

on the image covering Test site 1. Our rule-based classifier 

processed one subset image of 2000 x 2000 pixels in 2s and 

produced an image of the four major land cover classes that can 

be visually compared to the LBM-DE raster image. 

 

Figure 5. SAR rule based classification results for the land cover class 

‘Urban’ in Test site no.1 (Fig. 3 subset with violet border) Top left: 

SAR image of test site no. 1 where backscatter intensity varies in dB. 

Top right: pixels classified in the land cover class ‘urban’, bottom left: 

objects formed from the classified pixels, bottom right: final 

classification results for the land cover class ‘Urban’. 

 

The pixels have values from 1-4 where 1 represents the pixels 

classified with Urban land cover, 2 represents the pixels 

classified with open land as the predominant land cover, 3 

pixels classified with Forest as the predominant land cover and 

4, pixels where water is the predominant land cover. The end 

result of the classification is an image colour coded with the 

same colours as the LBM-DE so that a visual analysis can be 

conducted along with the quantitative analysis. The percentages 

of correctly classified pixels is also obtained in order to quantify 

the efficiency of the classifier. Quantitative analysis of the 

number of pixels that were correctly classified, falsely classified 

and missed is also conducted by comparing with the LBM-DE 

raster image. The number of pixels correctly classified by the 

SAR classifier is reported in Table.2. These only correspond to 

the pixels in each class that have been correctly classified. 

  
Table 2. Classification efficiency for test site no.1 
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Figure 6. Top: LBM2012-DE colour coded with 4 land cover classes. 

Bottom: SAR-backscatter based classifier results with the same four 

classes and colour coding. 

 

4.2 Supervised classification on polarimetric SAR  

The supervised classification described in section 3.1.2 was 

applied to the test sites no.1 and no.6. As this approach has to 

be transferable to the whole area of Germany to support the 

production of LBM-DE, no further site-specific modifications 

of the training areas have been made. Fig. 7 shows the LBM-

DE2012 for test site no. 1 and the classification result of the 

VV-VH composite. The table 3 presents the confusion matrix of 

the classification results. The ratios between correctly classified 

pixels in a class (elements on the diagonal) and the sums of 

pixels in a class on the map (or reference) is different on both 

test sites, but the correlations between classes highlighted in the 

table 3 is common for both test sites. The class water is the only 

class that can be separated very well from all other classes 

except for agriculture. All other classes have strong correlations 

with each other, for example urban with agriculture and forest, 

green fields with agriculture and forests and, hence, cannot be 

separated efficiently using this approach. 

 
Figure 7. LBM-DE2012 source data (top) and supervised SVM 

classification results from the VH-VV composite of the SAR image 

from 20 Jul. 2015 (bottom) colour coded as eight classes 
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Table 3. Covariance matrix for the supervised land cover classification 

 
 

5. DISCUSSION AND FUTURE WORK 

Two methods of land cover classification using SAR amplitude 

images have been tested and the results have been reported in 

this paper. It is important to note that the LBM-DE2012 used 

for training and as validation for this study is from the year 

2012, whereas our SAR image is from 2015. Land cover 

changes between the years 2012-2015 is to be expected, and 

this might provide a justification for some falsely classified 

pixels in our SAR classification results in places where the 

LBM-DE2012 is not up to date. This problem will be 

eliminated in the future by comparing the SAR classification 

results with the LBM-DE2015, planned to be released by the 

end of 2016.  

We will first discuss the results of the land classification using 

only the SAR backscatter acquired in a single polarisation. For 

the rule-based classification based on SAR amplitude image, we 

were able to classify the pixels into only four land cover classes, 

rather than the seven that are produced by the LBM-DE. This is 

similar to the technique used in Taubenboeck and Thiel, 2010 

where they computed land cover classification on one 

TerraSAR-X scene with these 4 classes (urban, forests, open 

areas, water) and got substantial better results than when 

differentiating the classes into seven classes like in the LBM-

DE2012. Hence, as a preliminary result, we can already 

conclude that discrimination of seven land cover classes, such 

as the LBM-DE produces, cannot be obtained when a rule-

based classification is performed on a single SAR amplitude 

image and multi-temporal analysis of SAR images must be 

performed. Our classification results, even after merging the 

classes is still poor and, hence, it suffices to say that just a rule-

based approach based on a single image SAR backscatter is not 

sufficient for an efficient classification of land cover classes. By 

including texture features, or geometric features of objects as 

criteria for classification, our results may be further improved.  

However, the results of land cover classification using a rule-

based classifier such as the one reported in this paper are 

promising to get an overview of land cover classes in the 

region. What is immediately visible in Fig. 6 is that many pixels 

have been mis-classified as the land cover class forest, 

especially the pixels close to urban areas. This was expected, as 

the backscatter intensities of pixels in the two classes were 

observed to be very similar when we conducted our backscatter 

analysis of the training dataset. It is important to note that the 

LBM-DE2012 has certain classes, like the B113 class, which 

consists of 30%-50% manmade structures, which comes under 

the ‘Urban’ main theme of the LBM-DE2012. These areas may 

be classified as ‘Forests’ by the SAR classifier, due to the 

presence of 50% vegetation in this area, causing mis-

classification. This problem can be eliminated when using the 

LBM-DE2015 as it contains new class definitions to improve 

the class separation in areas containing manmade-objects and 

vegetation. Another reason for high backscatter in a region 

mainly covered by forests could also be due to the incidence 

angle of the SAR sensor, and a way to eliminate this problem 

will be to use another image of the same region acquired in an 

ascending orbit. This must be analysed further in the near 

future.   

Coming now to the second approach, where supervised 

classification of a VV-VH composite image is performed, we 

conclude that from only one radar scene poor classification 

results can be expected. The classes green fields and agriculture 

have a strong correlation due to their similar reflection 

characteristic of radar radiation (Taubenboeck and Thiel 2010). 

However, we attempted to classify the SAR polarimetric 

composite into seven land cover classes as our aim was to 

analyse and verify if such a classification technique could 

provide land cover classes consistent with the LBM-DE classes. 

We conclude, once again, that one SAR scene is insufficient for 

land cover classification and a large multi-temporal dataset 

needs to be used.  

The main problem of land cover classification with optical data, 

is that we acquire limited cloud free coverage per year. This 

problem can be resolved by combining the optical dataset with 

SAR images acquired on other days in a year. This fusion 

between Optical and SAR images will enhance the classification 

process. Fig. 8 shows an example of a RGB composite of an 

optical image acquired by Sentinel-2 and a SAR image acquired 

by Sentinel-1a on a different day. Different types of land cover 

like urban, forests, agriculture can be clearly distinguished in 

this composite image. Classification of image composites such 

as the one shown in Fig. 8 will be the next step for the future. 

 
Figure 8. RGB composite of Sentinel-2 (RED), Sentinel-2 (NIR), 

Sentinel-1a (VH). The Sentinel-2 image is from 16 Mar. 2016 and 

Sentinel-1a image is from 20 Jul. 2015. Urban areas are seen in pink-

violet, Agriculture in orange-light green, Forests in light blue-dark blue 

and water in black. Man-made open pits are clearly visible in yellow. 
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