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ABSTRACT: 

 

Laser-induced fluorescence (LIF) served as an active technology has been widely used in many field, and it is closely related to 

excitation wavelength (EW). The objective of this investigation is to discuss the performance of different EWs of LIF LiDAR in 

identifying plant species. In this study, the 355, 460 and 556 nm lasers were utilized to excite the leaf fluorescence and the 

fluorescence spectra were measured by using the LIF LiDAR system built in the laboratory. Subsequently, the principal component 

analysis (PCA) with the help of support vector machine (SVM) was utilized to analyse fluorescence spectra. For the three EWs, the 

overall identification rates of the six plant species were 80%, 83.3% and 90%. Experimental results demonstrated that 556 nm 

excitation light source is superior to 355 and 460 nm for the classification of the plant species for the same genus in this study. Thus, 

an appropriate excitation wavelength should be considered when the LIF LiDAR was utilized in the field of remote sensing based on 

the LIF technology. 

 

                                 
Corresponding author 

1. INTRODUCTION  

The diversity of vegetation is very important to the entire 

ecological system. In recent decades, a large number of 

technologies (Gong, et al. 2012; Vauhkonen et al. 2013), 

including passive and active remote sensing, have been 

proposed to monitor vegetation species. For passive remote 

sensing, spectral reflectance measurements of vegetation 

territory can provide the relative area covered by vegetation 

chlorophyll with respect to the total area being scanned (Du et 

al. 2014). These data are valuable, particularly when monitoring 

changes in the local vegetation cover. However, the using of the 

acquired spectral data disenables the accurate classification and 

identification of plant species or groups. In addition, this 

technology was also restricted by many other factors, such as 

weather condition, measurement time etc. (Wu et al. 2009). 

Hence, researchers hope to be able to develop new techniques 

that can overcome these deficiencies. Then, LiDAR was 

proposed in the field of remote sensing (Koukoulas et al. 2005). 

It was not limited by the weather condition and measurement 

time, and displayed the advantage of high temporal-spatial 

resolution and non-destructive. Therefore, it has been widely 

applied in vegetation monitoring. In addition, Gong et al. (2012) 

proposed multi-wavelength canopy LiDAR (MWCL) 

containing both the spatial and spectral information for remote 

sensing of vegetation. This technology has been successfully 

utilized to distinguish the coniferous from broad-leaf forest and 

can be employed to monitor the nutrient stress of crops. 

In the past decade years, an active remote sensing technology 

was proposed by Chappelle et al. (1984), which utilizes 

ultraviolet (UV) light as the excitation light source to acquire 

plant fluorescent characteristics. As part of active remote 

sensing technology, the feasibility of laser-induced fluorescence 

(LIF) for detecting the status of vegetation has been tested in 

aircrafts (Rogers et al. 2012). LIF technology exhibits the 

advantages of quick response, high sensitivity, and non-

destructive property (Apostol et al. 2007). Then, LIF has the 

potential to become a significant approach for vegetation 

detection (Günther et al. 1994). At present, LIF is usually 

employed with an emission spectra measured at UV excitation 

wavelength (EW) because the fluorescence quantum efficiency 

of the fluorophore at 355 nm is higher than those at other EWs 

(Agati 1998). A lot of researches have taken place since the 

early studies of Chappelle et al., where LIF was mainly used to 

monitor the status and biomass of vegetation with UV 

excitation (Ramos and Lagorio 2004). Chappelle et al. (1985) 

analysed the differences among monocots, dicots and 

hardwoods based on the characteristics of vegetation 

fluorescence peaks. The LIF is that the energy of a specific 

wavelength was absorbed by fluorophore and emitted the light 

at longer wavelengths. Thus, the LIF technology is closely 

related to EW. At present, a large number of investigations have 

been conducted on the correlation between fluorescence spectra 

and different EWs (Yang et al. 2016). To data, however, few 

studies have been done on the EWs analysis of LIF LiDAR for 

the classification of plant species based on the principal 

component analysis (PCA) combined with support vector 

machine (SVM). 

Therefore, this study is mainly to investigate the effect of EW 

on the identifying of plant species based on LIF technology. 

The LIF LiDAR was built in laboratory, and three different 

excitation light sources (355, 450 and 556 nm lasers) were 

utilized to induce the leaf fluorescence of plant species. These 

fluorescence spectra data measured were stored in a 
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fluorescence spectral database. PCA was utilized to analyse 

these fluorescence spectra by extracting the major attributes and 

reducing the dimensionality of variables. It found that over 90% 

of the total variance can be explained by using the first three 

principal components (PCs). Then, SVM algorithm based on 

these PCs served as input variables was employed to identify 

these plant species included those of the same family. 

 

2. MATERIALS AND METHODS 

2.1 Samples 

In this experiment, the leaves of eight typical plant species 

(including Cerasus yedoensis, Cerasus dielsiana, Cinnamomum 

kotoense, Salix babylonica Linn., llex chinensis Sims, Magnolia 

denudata Desr.) were gathered from the subtropical zone of 

central China at 30°32′ N and 114°21′ E. The data of sample is 

11 July 2015. These samples were sealed in plastic bags, kept in 

an ice chest, and then immediately transported to the laboratory 

for LIF spectra measurements. 

 

2.2 Experimental system  

The schematic of the experimental instrument is shown in 

Figure 1. The instrument consists of three main parts: the signal 

acquisition part, the optical receiver assembly, and the 

excitation light source. The UV excitation light source is 355 

nm and is emitted by a frequency-tripled Nd:YAG laser. The 

460 and 556 nm lasers were manufactured by Spectra-Physics. 

The three EWs are relatively easy to be obtained, and represent 

the UV, blue, and green excitation light. Maksutov-Cassegrain 

telescope was used to collect the emission fluorescence signals 

of leaf. Then, a single-mode optical fiber with a diameter of 200 

um was utilized to transmit the fluorescence collected between 

the telescope and spectrograph. The slit of the spectrograph was 

set to 0.5 mm. LIF signal variation with wavelength was 

detected by using an intensified charge-coupled device (ICCD) 

camera. The fluorescence data was stored in a personal 

computer. In this study, the spectral range of fluorescence, 

which was excited by 355 nm laser, was 360-800 nm and with a 

0.5 nm sampling interval. The fluorescence excited by 460 and 

556 nm ranged from 630 to 790 nm and sampling interval was 

0.5 nm (Figure 2). 

 

 
Figure 1. Schematic of LIF Lidar. M1 and M2: completely 

reflecting mirror, VS: vegetation sample, OFB: optical fiber 

probe 

 

2.3 Data analysis and methods 

The fluorescence spectra of leaves were measured by utilizing 

the LIF instrument (Figure 1), and the data collected were 

stored in a personal computer. To reduce the systematic error 

and the effects of laser energy fluctuation, all fluorescence 

spectra were repeatedly measured nine times and calculated the 

average. In this study, of which 240 sets of fluorescence spectra 

data were acquired from each of the three EWs (355, 460 and 

556 nm). To reduce the variables of the fluorescence spectra 

datasets, PCA, a traditional method of multivariate analysis, 

was utilized to analyse fluorescence spectra (Agarwal et al. 

2003) 

The PCA is a powerful multivariate statistical data analysis 

technique. The multiple variables can be converted to a few 

variables, in which each principal component (PC) is a linear 

combination of the primitive variables. These PCs extracted the 

most important information containing in the variables. Thus, 

this method has been widely used in many research fields. The 

detail introduce can be found in reference (Yi et al. 2007). 

Therefore, PCA was employed to extract the feature vectors of 

fluorescence spectra by analysing major attributes.  

SVM was then utilized to analyse the performance of 

fluorescence spectra excited by different EWs for the 

classification of plant species. The SVM is a classical 

supervised learning algorithm with a strong theoretical 

foundation in statistical theory which can convert low 

dimensional characteristics to high dimensional characteristics 

for recognizing some complex targets. The detailed describing 

can be referenced. The SVM exhibits the special advantages in 

heterogeneous classes for small samples and high dimensional 

cases. The kernel function is a critical factor for SVM analysis, 

and then the radial basis function (RBF) was utilized in this 

study.  It can be presented follows: 

 
2

( , ) exp( )i j j iK x x x x                  (1) 

 

Where   = kernel parameter,  

jx = test data   

ix = training inputs 

 

All new feature variables were then randomly separated into 

two parts: 75% as the training set to train the SVM model and 

25% as the validation set to test the model tentatively. Before 

analysis, these fluorescence spectra were denoised and 

smoothened by using a moving-window polynomial fitting and 

wavelet transform, respectively.  

 

3. RESULTS AND DISCUSSION 

The 355, 460 and 556 nm excitation light sources were utilized 

to excite the leaf fluorescence spectra of different plant species. 

The average normalized fluorescence spectra of all samples of 

the same species, which was excited by different EWs, are 

shown in Figure 2. Figure 2 demonstrates that the leaf 

fluorescence spectra of different plant species were similar at 

single-excitation wavelength (355, 460 or 556 nm). All of the 

fluorescence spectra display two main fluorescence peaks bands 

at 680~690 nm and 730~740 nm. The centre wavelengths of the 

two fluorescence peaks are 685 and 740 nm, respectively. As 

concluded by Chappelle et al. (1984, 1985), two fluorescence 

peaks at 685 and 740 nm are attributed to the centre pigment of 

Photosystem II (chlorophyll a) and antennae chlorophyll of 
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Photosystem I (chlorophyll b), respectively. In addition, the 

fluorescence induced by 355 nm laser exhibited a peak at 440 

nm which is caused by ferulic acidand contained more spectra 

information than that induced by 460 and 556 nm laser. From 

Figure 2, it can be known that the fluorescence spectra excited 

by the 460 nm laser exhibited the fluorescence peaks at 685 nm 

is more intensive than that 740 nm, and the fluorescence 

characteristics is contrary when 556 nm laser serves as 

excitation light source. The fluorescence spectra excited by 355 

nm laser show inconsistent characteristics of fluorescence peaks 

for different plant species. These results are similar with the 

investigations of Apostol et al. (2007) and Agati (1998). Thus, 

LIF LiDAR can be utilized to distinguish the plant species on 

the basis of these characteristics of the fluorescence peak. 

 

 

 

 
 

Figure 2. The normalized LIF spectra of the eight plant species 

were induced by different excitation wavelengths. (a) C. 

yedoensis, (b) C. kotoense, (c) S. babylonica Linn., (d) C. 

dielsiana, (e) I. chinensis Sims, (f) M. denudata Desr. 

 

The fluorescence spectra excited by different EWs display 

different fluorescence spectra features (Figure 2). The reason is 

that fluorescence will be re-absorbed on its path towards the 

leaf surface. It has been investigated by Agati (1998) and 

Ramos and Lagorio (2004) in detail. The previous investigation 

found that carotenoids and chlorophylls in green leaf have a 

broad absorption band in the 400-500 nm spectral regions and 

the re-absorption process by the chlorophyll pigments in the 

upper layer leaf cells at emission fluorescence spectra between 

730-740 nm is much smaller than that between 680-695 nm. In 

this study, the 460 nm excitation light will not penetrate very 

deeply in the leaf and the fluorescence excited by 460 nm laser 

is mainly generated in the mesophyll cells. Therefore, the re-

absorption of fluorescence is weak. The fluorescence excited by 

556 nm laser is generated deeper in the leaf tissue than that 460 

nm laser. It will result in a longer pathway and the stronger re-

absorption. Hence, these fluorescence spectra excited by 460 

and 556 nm lasers exhibited different spectral shapes. However, 

it cannot explain the spectra measured by 355 nm excitation 

light and still needs to further study in the future. 

Then, PCA was used to reconstruct the fluorescent feature 

vectors and to reduce the dimensionality of the spectra by 

analysing major attributes. It was found that when the number 

of PCs exceeded three, the increase of the explained variance 

with additional PC was reduced to less than 1%. Then, in the 

three-dimensional coordinate system on the basis of PC1 and 

PC2, six plant species cannot be distinguished from each other, 

(Fig. 3). 

 

 

 
 

Figure 3. The principle component analysis scores of eight 

vegetation species under different excitation wavelengths: (a) 

355 nm; (b) 460 nm; (c) 556 nm.  
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In order to comprehensively analyse the ability of 

fluorescence spectra excited by different EWs for the 

identification of plant species, the SVM was then employed to 

distinguish these plant species on the basis of the variables 

calculated by PCA. 240 sets of experimental data of each EW 

were randomly separated into two groups: 180 sets designated 

as the training set for training SVM and the remaining 60 sets 

employed as the testing set to verify the tentative performance 

of the model.  

 

4. CONCLUSION 

In summary, the fluorescence spectra of eight plant species 

excited by different EWs (355, 460 and 556 nm) were analyzed 

and found that different EWs will result in different 

fluorescence spectra shapes. The probable explanation is that 

the effect of the re-absorption process of the chlorophyll 

pigments on the fluorescence spectra. The fluorescence peak at 

685 nm is more intensive than that 740 nm when 460 nm laser 

served as excitation light source, and the fluorescence spectra 

excited by 556 nm laser display the contrary cases. The 

fluorescence spectra, which were excited by 355 nm laser, 

exhibited inconsistent characteristics of fluorescence peaks for 

different plant species. The specific reason still needs to further 

study in the future. Then, PCA combined with SVM was 

employed to analyze the fluorescence spectra excited by 

different EWs for identifying plant species. When 355, 460 and 

556 nm lasers served as excitation light sources, the overall 

identification rates of the eight plant species were 80%, 83.3% 

and 90%, respectively. Experimental results demonstrated that 

the 460 nm EW is superior to 355 nm EW for the classification 

of the plant species of the same genus, and is inferior to 556 nm 

EW in this study. Therefore, an appropriate EW should be 

chosen based on practical application requirements and this 

study can provide investigators with a reference. 
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