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ABSTRACT:

To serve seamless mapping, airborne LiDAR data are usually collected with multiple parallel strips with one or two cross strip(s). Nev-
ertheless, the overlapping regions of LiDAR data strips are usually found with unbalanced intensity values, resulting in the appearance
of stripping noise. Despite that physical intensity correction methods are recently proposed, some of the system and environmental
parameters are assumed as constant or not disclosed, leading to such an intensity discrepancy. This paper presents a new normalization
technique to adjust the radiometric misalignment found in the overlapping LiDAR data strips. The normalization technique is built
upon a second-order polynomial function fitted on the joint histogram plot, which is generated with a set of pairwise closest data points
identified within the overlapping region. The method was tested on Teledyne Optech’s Gemini dataset (at 1064 nm wavelength), where
the LiDAR intensity data were first radiometrically corrected based on the radar (range) equation. Five land cover features were selected
to evaluate the coefficient of variation (cv) of the intensity values before and after implementing the proposed method. Reduction of
cv was found by 19% to 59% in the Gemini dataset, where the striping noise was significantly reduced in the radiometrically corrected
and normalized intensity data. The Gemini dataset was also used to conduct land cover classification, and the overall accuracy yielded
a notable improvement of 9% to 18%. As a result, LiDAR intensity data should be pre-processed with radiometric correction and
normalization prior to any data manipulation.

1. INTRODUCTION

The use of airborne LiDAR data has progressively increased for
surface classification and object recognition (Yan et al., 2015).
Despite that, there still exist several knowledge gaps limiting the
use of LiDAR intensity data. Among which the striping noise
appeared in the overlapping region of mosaicked LiDAR inten-
sity data causes undesired disturbance, and such visual detrimen-
tal effect undoubtedly degrades the radiometric quality of the
data. Regardless of discrete-return or full-waveform LiDAR data,
such intensity noise is mainly caused by the signal attenuation
due to various system and environmental factors (Jelalian, 1992).
Though various correction and calibration techniques have been
proposed to reduce the intensity discrepancy based on the use of
radar (range) equation (Höfle and Pfeifer, 2007; Kaasalainen et
al., 2009; Wagner, 2010; Yan et al., 2012), only a few studies ad-
dress the striping noise issue when dealing with the overlapping
LiDAR data strips.

Luzum et al. (2004) proposed a method to normalize the observed
LiDAR intensity by multiplying a dynamic range factor to the
power of f (f = 2), where such dynamic range factor equals to the
range of the observed point divided by a standard range. Such dy-
namic range normalization method has been enhanced and used
to normalize multiple overlapping LiDAR data strips, particularly
for forest canopies, with a notable improvement in terms of clas-
sification accuracy (Korpela et al., 2010a,b; Gatziolis, 2011). De-
spite that, the method has certain drawbacks which limit its ap-
plicability in a universal environment. The selection of f (or the
two calibration parameters: a and b in (Korpela et al., 2010a,b))
highly depends on the nature of the study site (target character-
istics) and the LiDAR sensors (Hopkinson, 2007; Korpela et al.,
2010a,b). In addition, the method does not consider other system
and environment parameters except the range effect; therefore the
method is preferable to be implemented with LiDAR dataset col-

lected for rugged forest terrain within small scan angle (less than
10◦ to 15◦). The lack of consideration of incidence angle would
lead to intensity discrepancy, which can be found particularly
serious in urban environment with inclined rooftops (Jutzi and
Gross, 2010; Abed et al., 2012; Yan and Shaker, 2014). Though
there exists preliminary attempts to incorporate Phong model in
the radar (range) equation for overlap data strip correction (Ding
et al., 2013), Jutzi and Gross (2010) addressed that the Phong
model does not really outperform the traditional Lambertian as-
sumption in terms of intensity homogeneity.

Joint histogram (also comparagram or scattergram) is a two di-
mensional matrix, which describes the occurrence of any pair-
wise intensity value found within two images. Joint histogram
has been used in image processing and computer vision, includ-
ing image comparison (Pass and Zabih, 1999), change detection
(Kita, 2006), image registration (Lu et al., 2008), and estimation
of camera response function (Kim and Pollefeys, 2008). With
any two geo-registered images taken for the same scene, a ro-
bust mapping function can be defined in the joint histogram plot
so that the relationship between the intensity values of the two
images can be established with a fitted regression model (Mann,
2000). As inspired by these studies, we propose an alternative
normalization technique for overlapping LiDAR intensity data
based on the use of joint histogram technique. Unlike digital im-
age data, it is nearly impossible to identify any laser footprints
of two overlapping LiDAR data strips projected at the same lo-
cation. Therefore, we first identify all possible pairwise LiDAR
data points within a threshold distance, and then generate the in-
tensity joint histogram. A polynomial curve is subsequently fitted
and used as a transformation function to normalize the intensity
from a LiDAR data strip to a reference LiDAR data strip. Our
ultimate goal is to develop a fast and robust method to normalize
any two overlapping LiDAR data strips and significantly reduce
the striping noise appeared in the mosaicked intensity image.
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2. METHOD

2.1 Overall Workflow

Fig. 1 shows the overall workflow of the proposed normalization
method. In general, the proposed method can be applied to any
entirely or partially overlapping LiDAR intensity data. Firstly, if
those system and environmental parameters (i.e. range, scan an-
gle, atmospheric attenuation coefficients, etc.) are available, ra-
diometric correction can be applied to the original intensity (OI)
data (Yan et al., 2012; Yan and Shaker, 2014). Conceptually, the
spectral reflectance (or radiometrically corrected intensity (RCI))
is determined for each of the LiDAR data strips (XA and XB)
after radiometric correction. Such RCI derived from both LiDAR
data strips can be used to generate a joint histogram by searching
for all possible pairwise closest points, and a polynomial function
is subsequently fitted in the joint histogram. The fitted polyno-
mial curve is being treated as an intensity transformation function
to normalize the data strip XB with reference to the XA. After
radiometric normalization, the (partially or fully) overlapping in-
tensity data strips are interpolated to generate an intensity image.
To measure the degree of intensity noise, we compute the co-
efficient of variation of selected land cover features and compare
the intensity homogeneity between the OI and the radiometrically
corrected and normalized intensity data.
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Figure 1: Overall Workflow

2.2 Radiometric Correction

Various radiometric correction and calibration techniques have
been developed for discrete-return or full-waveform LiDAR data
based on the radar (range) equation (Höfle and Pfeifer, 2007;
Kaasalainen et al., 2009; Wagner, 2010; Jutzi and Gross, 2010;
Yan et al., 2012). The purpose of radiometric correction aims
to retrieve the surface reflectance of the illuminated object for
each of the received laser pulses. As shown in Eq. 1, the radar
(range) equation describes the relationship between the received
laser power (Pr) with respect to various system and environmen-
tal parameters:

Pr =
PtD

2
r

4πR4βt
ηsysηatmσ (1)

where Pt is the transmitted laser pulse energy, Dr is the aper-
ture diameter, R is the range, βt is the laser beam width, ηsys is
the system factor, and ηatm is the atmospheric attenuation fac-
tor. The laser cross section σ consists of the illuminated surface
characteristics that can be expressed as σ = 4πρAcosθ, whereA
is the projected target area along the direction of the laser beam,
θ is the laser incidence angle, and ρ is the spectral reflectance
of the illuminated surface. In Eq. 1, the surface reflectance ρ is
being treated as the radiometrically corrected intensity data, and
the original intensity I is assumed to be directly proportional to
the transmitted laser pulse Pt. In order to retrieve the surface
reflectance ρ, the aforementioned parameters, if known, can be
inputted in the Eq. 1, and those parameters which are unknown

can be assumed as constant. Since effect of overcorrection has
been reported when laser incidence angle is used in radiometric
correction, a combined use of scan angle and incidence angle can
be adopted to resolve such an issue (Yan and Shaker, 2014).

2.3 Radiometric Normalization

After radiometric correction, the intensity data of two partially
overlapping LiDAR datasets are used to generate the joint his-
togram so as to perform a robust normalization. Unlike geo-
referenced image, it is mostly impossible to find a pairwise Li-
DAR data point that are situated at the same position in a three
dimensional Euclidean space. Therefore, our proposed algorithm
has to first locate the closest LiDAR data points from two overlap-
ping LiDAR data strips within a threshold distance. The proposed
method first utilizes a LiDAR data strip with a larger intensity
range as a reference, i.e. XA = {xA1 , · · · , xAa , · · · , xANA

}, and
then any LiDAR data strip, i.e. XB = {xB1 , · · · , xBb , · · · , xBNB

},
with partial/entire overlap can be normalized with reference to
XA. For each xAa ∈ XA, we look for the closest point in XB

whose Euclidean distance d = ‖xAa − xBb ‖2 is smaller than a
given threshold dmin. yBa thus denotes the resulting closest point
where:

yBa = argmin{d(xAa , xBb )}, subject to d < dmin (2)

The resulting NC correspondence pairwise LiDAR data points
from XA and XB are denoted as:

XC = {(xAa , yBa )|i = 1, · · · , NC} (3)

Then, the intensity values of xAa and yBa are used to generate
the joint histogram H. J and K are the total number of inten-
sity bins of data strip XA and XB, respectively, provided that
J ≥ K. N(j, k) is the number of corresponding pairs of LiDAR
data points in XC having intensity value j in xAa and k in yBa .
Therefore, the joint histogram H is a form of a J by K matrix:

H =



N(0, 0) · · · N(0,K − 1)

N(1, 0)
... N(1,K − 1)

... N(j, k)
...

N(J − 2, 0)
... N(J − 2,K − 1)

N(J − 1, 0) · · · N(J − 1,K − 1)


(4)

where

NC =

J−1∑
j=0

K−1∑
k=0

N(j, k) (5)

The intensity transformation function should be in a form of lin-
ear relationship or piecewise linear relationship (Yan and Shaker,
2014). Thus, a polynomial model can be used as an approximate
solution to transform the intensity value of XB to XA.

3. EXPERIMENTAL WORK

3.1 Study Area and Dataset

The study area is located in the east of the Newmarket, Greater
Toronto Area, Ontario, Canada. The extent is bounded by the
Davis Drive to the north, Highway 48 to the east, Vivian Road to
the south, and Kennedy Road to the west, resulting in a dimen-
sion of 4.7 km by 3.5 km. Within the immediate vicinity of the
study area, farmlands, grasslands, mixed forested area (decidu-
ous and coniferous), small houses and paved roads exist. The
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proposed approach was examined on two LiDAR datasets col-
lected by Teledyne Optech’s sensors. The first dataset, including
two data strips, was collected by the Teledyne Optech’s Gemini
operating at 1064 nm wavelength. The flight mission was ac-
complished on August 24th, 2013, where the air temperature and
atmospheric pressure were 20◦C and 1027.4 millibars, respec-
tively. The Gemini sensor was operated with scan frequency 40
Hz, scan angle ±20◦, pulse repetition frequency 70 kHz and fly-
ing attitude 1,000 m. With these settings, the mean point density
yields 3.7 points/m2 for the two data strips collected. Table 1
summarizes the LiDAR system settings and data specification.

Table 1: LiDAR system settings and data specification
Dataset

Sensor Gemini
Date of Acquisition August 24th, 2013

Number of Data Strips 2
Wavelength 1064 nm

Flying Height ∼1,000 m
Scan Frequency 40 Hz

Scan Angle ± 20◦

Pulse Repetition Frequency 70 kHz
Mean Point Density ∼3.7 points/m2

Mean Point Spacing ∼1 m
Percentage of Overlap ∼41%

3.2 Implementation

Since the LiDAR data provided were stored in las format, the las
files were first converted into ASCII data format using LAStools.
The following fields were read from the las files: x, y, z, I , a,
r, n, and time, where they represent x-coordinate, y-coordinate,
z-coordinate, intensity, angle, return, number of returns, and GPS
time, respectively. The converted ASCII text files were then im-
ported into ArcGIS geodatabase as 3D point features. On the
other hand, two individual GPS trajectory files (in 8-byte data
format) were read for the two LiDAR datasets in order to re-
trieve the xyz coordinates and GPS time of the aircraft during the
flight missions. By interpolating the GPS time of the aircraft and
the LiDAR data points, instantaneous aircraft coordinates were
computed for each of the data points in the two LiDAR datasets.
The range and incidence angle of each LiDAR data point were
computed by following the method presented in Yan and Shaker
(2014). Then, radiometric correction was applied to all the Li-
DAR data strips for both datasets.

In the process of radiometric normalization, a set of pairwise
closest points should be first identified in the overlapping region
of the two data strips. We used the “Near 3D” tool in ArcGIS to
look for the closest point yBa from XB to pair with a xAa from
XA (refer to section 2.3 for detail). As a result of computation,
the 3D distance for each pairwise match was computed in XA

together with the unique identity of the closest point in XB. Fi-
nally, we only selected those pairwise points from XA and XB

with a threshold distance (i.e. dmin in section 2.3) less than 5
cm. A larger threshold value than that would result in a scattered
shape in the joint histogram plot, and thus increases the values
in the residual matrix V in Eq. ??. The polynomial fitting was
implemented in the joint histogram plot, and the coefficients of
the polynomial function were computed using MATLAB. Fig. 2
shows the joint histogram plots fitted with a polynomial curve for
each of the Teledyne Optech’s datasets. Subsequently, radiomet-
ric normalization was applied to the data strip XB in ArcGIS, and
then both XA and normalized XB were merged and converted
into an intensity image using a 3 × 3 moving window average
method (Reuter et al., 2007).
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Figure 2: Joint histogram plot fitted with polynomial function

3.3 Design of Experiments

Two rounds of experiments were conducted on the Gemini datasets
in order to test the capability of the proposed method. Firstly, we
combined the original intensity data of the two overlapping data
strips to form an original intensity image, denoted as OI. We then
implemented the radiometric correction and normalization on the
two data strips and generated an intensity image, named as RCNI.
Apart from visual inspection on the intensity images, a statistical
measure, coefficient of variation (cv), was used to assess the in-
tensity homogeneity of selected land cover feature (ωi).

cv(ωi) =
σ(ωi)

µ(ωi)
(6)

In this context, a smaller cv corresponds to a less within-class
variation of intensity in the land cover sample points. If radio-
metric correction and normalization can significantly reduce the
striping noise within the intensity data, a reduction of cv value
should be recorded.

4. RESULTS AND ANALYSIS

Fig. 3 shows the study area located at the south of the intersec-
tion of Highway 48 and Vivian Road. As shown in Figs. 3(a)
and 3(e), both OI images had serious striping noise in the cross
track direction within the overlapping region. The intensity val-
ues located in the bottom half of the image were lower than that
of the upper half of the image, resulting in an unbalanced image
contrast within the OI. The proposed radiometric correction and
normalization successfully removed the striping noise and spikes,
and restored the intensity image close to a balanced contrast (see
Figs. 3(b) and 3(f)). Despite that, it can be noticed that a low
level of striping noise still retained on some of the rooftops in the
RCNI.

To further analyze the results, we utilized the cv as a quantitative
measure of image quality improvement (Vovk et al., 2007). We
computed the cv of five selected land cover features for all the
datasets, where a reduction of cv indicates an improvement of
intensity homogeneity, resulting in a less noisy intensity image.
Table 2 shows the cv computed for the OI and RCNI for five se-
lected land cover features. The most significant reduction of cv
was achieved in ground features, i.e. bare ground, grass and road.
The cv of OI in bare ground was 0.473; a reduction of 59% was
found in the RCNI data. Similar reduction of cv was recorded in
grass and road features, where a respective decrease of 65% and
48% was found in the RCNI data. Although the percentage of
cv reduction in those elevated features was not comparable to the
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(a) OI (b) RCNI (c) Squared area in OI (d) Squared area in RCNI

(e) OI (f) RCNI (g) Squared area in OI (h) Squared area in RCNI

Figure 3: LiDAR intensity image of Gemini (1064 nm)

previous two classes, the RCNI still recorded a 19% reduction
of cv in the tree canopies, and a 25% of decrease on the house
rooftops. With both visual examination and statistical analysis,
the proposed radiometric correction and normalization can sig-
nificantly reduce the striping noise appeared in the overlapping
region.

Table 2: A comparison of cv of selected land cover features.
OI RCNI

Bare ground 0.473 0.193 (↓59%)
Grass 0.475 0.168 (↓65%)
House 0.591 0.443 (↓25%)
Road 0.584 0.304 (↓48%)
Tree 0.839 0.676 (↓19%)

5. LAND COVER CLASSIFICATION

In order to demonstrate the impact of the striping noise reduction,
we used the OI shown in Fig. 3(g) and RCNI shown in Fig. 3(h)
to perform land cover classification, and compared their results.
As depicted in Figs. 3(g) and 3(h), land cover features including
trees, grass cover, paved driveway/road, houses and a warehouse
can be found in the study site. Therefore, we identified these five
land cover classes for training site selection, and implemented
the classification with different combinations of features: 1) in-
tensity data only, 2) intensity and digital surface model (DSM),
3) intensity and texture (TEX) features generated from the inten-
sity, and 4) intensity, TEX and DSM. Previous studies reported
that the use of entropy texture and homogeneity texture can sig-
nificantly contribute to the enhancement of classification accu-
racy (Samadzadegan et al., 2010; Huang et al., 2011); therefore,
these two texture features were generated for both OI and RCNI
with a window size of 9 × 9 to support the experimental test-
ing. A total of eight classification scenarios were implemented
by using the traditional maximum likelihood classifier, and 1,000
random checkpoints were generated to assess the classification

results. Table 3 summarizes the overall accuracy generated for
all the eight classification scenarios.

Table 3: Overall accuracy of LiDAR data classification results.
OI RCNI

Intensity Only 24.3% 42.4% (↑18.1%)
Intensity+DSM 56.0% 65.0% (↑9.0%)
Intensity+TEX 52.8% 69.9% (↑17.1%)

Intensity+TEX+DSM 69.3% 83.5% (↑14.2%)

Although only using OI or RCNI led to an accuracy lower than
50%, the overall accuracy produced by RCNI outperformed than
that of OI with an improvement of 18.1%. In the second classi-
fication scenario, the difference of overall accuracy between OI
and RCNI was reduced. The OI+DSM produced an accuracy of
56%, while the RCNI+DSM improved the overall accuracy up to
65% resulting in an 9% improvement. This can be explained by
the use of elevation data which can aid in differentiating the grass
cover from the tree canopies as well as the paved driveway from
the house rooftop. In case of using the entropy and homogene-
ity textures, the overall accuracy achieved by the OI+TEX was
52.8%, where the classification result of RCNI+TEX noted an
17.1% improvement (almost reached to 70%). Due to the strip-
ing noise found in the OI, the texture features generated would
retain high variance in most of the land cover features. This thus
leads to a low separability among the land cover classes, which
can be proven in the cv values of OI as shown in table 2. The
last scenario demonstrated the classification result produced by
the intensity, textures and DSM, which yielded the best perfor-
mance among all the classification scenarios. The combination of
RCNI+TEX+DSM produced an overall accuracy of 83.5%, com-
paring to that of OI+TEX+DSM which was 69.3% only. Based
on our experimental testing, the LiDAR intensity data processed
with radiometric correction and normalization achieves a notable
improvement in land cover classification, regardless of the feature
space being used. Such an accuracy improvement can be ascribed
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by the reduction of striping noise, and therefore the proposed
method should be applied to the overlapping LiDAR data strips
before performing any surface classification and object recogni-
tion.

6. CONCLUSIONS

This paper presents a radiometric normalization technique to re-
duce the striping noise appeared in the overlapping region of air-
borne LiDAR intensity data strips. The normalization model is
built upon the use of a 2nd order polynomial function fitted on a
joint histogram plot, which is generated based on a set of pair-
wise intensity data points identified within the overlapping Li-
DAR data strips. After applying the proposed method on two
datasets (Teledyne Optech’s Gemini) with wavelength 1064 nm,
the striping noise was significantly reduced in the intensity im-
ages. To quantitatively assess the results, we adopted the coef-
ficient of variation as a statistical measure to assess the inten-
sity homogeneity. The experimental results showed that the cv
was reduced by 19% to 65% in the radiometrically corrected and
normalized intensity data. We also tested the capability of using
LiDAR intensity data to perform land cover classification with
different combinations of feature spaces. The results showed that
an accuracy improvement ranging from 9% to 18% was achieved
in classifying five land cover classes, when the LiDAR intensity
data were pre-preprocessed with radiometric correction and nor-
malization. The experiments prove that radiometric correction
and normalization not only reduce the striping noise visually and
quantitatively, but also lead to a notable improvement of overall
accuracy when using the intensity data for land cover classifi-
cation. The proposed method does not require any selection of
parameters or reference targets, and thus overcomes those draw-
backs found in the existing normalization techniques based on
the dynamic range factor. For large scale seamless mapping,
radiometric normalization can be applied to the multiple paral-
lel LiDAR data strips with reference to the cross data strip(s).
With slight modification, the proposed method can also be imple-
mented on mobile LiDAR data and multispectral LiDAR data.
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J., 2010b. Tree species classification using airborne LiDAR
– Effects of stand and tree parameters, downsizing of training
set, intensity normalization, and sensor type. Silva Fennica
44(2), pp. 319–339.

Lu, X., Zhang, S., Su, H. and Chen, Y., 2008. Mutual
information-based multimodal image registration using a novel
joint histogram estimation. Computerized Medical Imaging
and Graphics 32(3), pp. 202–209.

Luzum, B., Starek, M. and Slatton, K. C., 2004. Normaliz-
ing ALSM intensities. Geosensing Engineering and Mapping
(GEM) Center Report No. Rep 2004-07-01. Civil and Coastal
Engineering Department, University of Florida, 8pp.

Mann, S., 2000. Comparametric equations with practical appli-
cations in quantigraphic image processing. IEEE Transactions
on Image Processing 9(8), pp. 1389–1406.

Pass, G. and Zabih, R., 1999. Comparing images using joint his-
tograms. Multimedia Systems 7(3), pp. 234–240.

Reuter, H. I., Nelson, A. and Jarvis, A., 2007. An evaluation
of void-filling interpolation methods for SRTM data. Inter-
national Journal of Geographical Information Science 21(9),
pp. 983–1008.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-151-2016

 
155



Samadzadegan, F., Bigdeli, B. and Ramzi, P., 2010. A multiple
classifier system for classification of LIDAR remote sensing
data using multi-class SVM. In: Multiple classifier systems,
Springer, pp. 254–263.

Vain, A., Kaasalainen, S., Pyysalo, U., Krooks, A. and Litkey, P.,
2009. Use of naturally available reference targets to calibrate
airborne laser scanning intensity data. Sensors 9(4), pp. 2780–
2796.
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