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ABSTRACT: 

 

Driven by the miniaturization, lightweight of positioning and remote sensing sensors as well as the urgent needs for fusing indoor and 

outdoor maps for next generation navigation, 3D indoor mapping from mobile scanning is a hot research and application topic. The 

point clouds with auxiliary data such as colour, infrared images derived from 3D indoor mobile mapping suite can be used in a variety 

of novel applications, including indoor scene visualization, automated floorplan generation, gaming, reverse engineering, navigation, 

simulation and etc. State-of-the-art 3D indoor mapping systems equipped with multiple laser scanners product accurate point clouds 

of building interiors containing billions of points. However, these laser scanner based systems are mostly expensive and not portable. 

Low cost consumer RGB-D Cameras provides an alternative way to solve the core challenge of indoor mapping that is capturing 

detailed underlying geometry of the building interiors. Nevertheless, RGB-D Cameras have a very limited field of view resulting in 

low efficiency in the data collecting stage and incomplete dataset that missing major building structures (e.g. ceilings, walls). Endeavour 

to collect a complete scene without data blanks using single RGB-D Camera is not technic sound because of the large amount of human 

labour and position parameters need to be solved. To find an efficient and low cost way to solve the 3D indoor mapping, in this paper, 

we present an indoor mapping suite prototype that is built upon a novel calibration method which calibrates internal parameters and 

external parameters of multiple RGB-D Cameras. Three Kinect sensors are mounted on a rig with different view direction to form a 

large field of view. The calibration procedure is three folds: 1, the internal parameters of the colour and infrared camera inside each 

Kinect are calibrated using a chess board pattern, respectively; 2, the external parameters between the colour and infrared camera inside 

each Kinect are calibrated using a chess board pattern; 3, the external parameters between every Kinect are firstly calculated using a 

pre-set calibration field and further refined by an iterative closet point algorithm. Experiments are carried out to validate the proposed 

method upon RGB-D datasets collected by the indoor mapping suite prototype. The effectiveness and accuracy of the proposed method 

is evaluated by comparing the point clouds derived from the prototype with ground truth data collected by commercial terrestrial laser 

scanner at ultra-high density. The overall analysis of the results shows that the proposed method achieves seamless integration of 

multiple point clouds form different RGB-D cameras collected at 30 frame per second.  

 

 

1. INTRODUCTION 

Driven by the miniaturization, lightweight of positioning and 

remote sensing sensors as well as the urgent needs for fusing 

indoor and outdoor maps for next generation navigation, 3D 

indoor mapping from mobile scanning is a hot research and 

application topic. The point clouds with auxiliary data such as 

colour, infrared images derived from 3D indoor mobile mapping 

suite can be used in a variety of novel applications, including 

indoor scene visualization (Camplani et al., 2013), automated 

floorplan generation, gaming, reverse engineering, navigation, 

simulation (Gemignani et al., 2016) and etc. State-of-the-art 3D 

indoor mapping systems equipped with multiple laser scanners 

(Trimble, 2016) product accurate point clouds of building 

interiors containing billions of points. However, these laser 

scanner based systems are mostly expensive and not portable. 

Low cost consumer RGB-D Cameras provides an alternative way 

to solve the core challenge of indoor mapping that is capturing 

detailed underlying geometry of the building interiors. 

 

However, low cost RGB-D Cameras are often not equipped with 

position and orientation measurement suit, and the visual 

odometry (Gutierrez-Gomez et al., 2016; Huang A, 2011; Nistér 

et al., 2006; Whelan et al., 2015) is often used as substitution of 

active measurement equipment such as IMU. Similar as the IMU, 
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position drift is inevitable when the visual odometry is used. 

Henry (Henry et al., 2014) developed the RGB-D vision SLAM 

system to solve the drift problem of visual odometry, which 

employed the ICP and RE-RANSAC method to process vision 

points, and optimized the pose graph built by sparse feature 

categorize in each frame. There are three main steps of classical 

indoor mapping method based on RGB-data: First, the spatial 

position transformation was resolved using 2D Image feature 

detection and tracking techniques to match feature between 

frames. Then the loop closure detection was applied as 

constraints for global optimization. Finally, the match errors were 

minimized using global consistency constraints.  

 

The vision SLAM system has been applied to solve the indoor 

data problem from RGB-D for a certain degree, however, RGB-

D Cameras have very limited field of view resulting in low 

efficiency in the data collecting stage. Furthermore, lead to 

incomplete dataset that missing major building structures (e.g. 

ceilings, walls) (Yang et al., 2015). Meanwhile, the visual 

odometry does not work properly in no texture region or regions 

with repetitive textures, which are quite common for indoor 

images. In general, the FOV of depth camera is smaller than 60 

degrees, and the available distance is between 3 to 5 m, which are 

extremely easy to cause the track failure or match error. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-169-2016

 
169

mailto:chenchi_liesmars@foxmail.com


Aim to solve the above problem of depth camera and provide an 

efficient and economical solution for indoor data collection, this 

paper proposed a novel method using sensor array by 

combination of multi Kinect sensors, and made a prototype of 

indoor scanner. 

 

2. METHOD 

2.1 Hardware 

There are three types of depth camera including stereo camera, 

structured light camera and TOF (time-of-flight) camera, 

distinguish by the measurement principal. The stereo camera and 

structured light camera using parallax theory to calculate depth, 

while the TOF camera is based on beam distance measurement 

principle (Sarbolandi et al., 2015), calculate distance from travel 

time of modulated beam between sensor and object. The 

precision, resolution and error distribution are better than other 

two types. Also, as using IR light source, they can mitigate the 

effect of ambient light. Among the Microsoft Kinect v2, 

CubeEye and PMD CamCube of the main types of TOF cameras, 

the Kinect v2 is selected as sensor array components for its wider 

FOV, higher resolution and longer ranging (Corti et al., 2016), as 

listed in Table 1. 

 

Items Details 

Depth Image Resolution 512 x 424 

Image Resolution 1920 x 1080 

Depth Range 0.5-4.5m (Extend to 8m) 

Validate FOV(V x H) ∼70°x ∼60° 

Frame Rate 60 Hz 

Table 1. Specification of Kinect v2 

 
Compared to outdoor environment, the indoor data collection 

with depth camera is often impeded by more fend, shorter 

distance and smaller space, therefore, both horizontal movement 

and vertical pitch are required to make data complete, which lead 

to higher risk of tracking lost and more data processing workload. 

Besides, most RGB-D reconstruct method use the visual 

odometry to build relatively transformation between frames, 

which does not work properly in no texture region or regions with 

repetitive textures which are quite common for indoor images 

(Yousif et al., 2014). The horizontal vision contains maximum 

information of three viewpoint but also most unstable and more 

prone to lost tracking, while downward and upward vision 

contains less information but with stable textures suitable for 

system positioning and posing.  

 

According to the characteristics of the indoor environment, we 

proposed such layout of sensors, as showed in Figure 1. The pitch 

angles of three Kinect v2 sensors are set at -50, 0 and 50 degrees, 

and the horizontal and rotational angles are kept consistent. FOVs 

of each sensor are 10 degree overlapping with adjacent one. The 

sensor array system could provide 160°x 70° FOV, and cover 100 

m2 for 3 m high building theoretically, which is enough for most 

indoor buildings. 

 

All sensors are locked in a tripod bar using ball head, and 

connected to mobile work station by USB3.0 interface. Every 

sensor is allocated 5Gbps bandwidth with USB3.0 expansion 

card plugged in separate PCI-E slots, the connection system is 

shown as Figure 2. 

 

Sensor #260°160°

Z-axis

 

 
Figure 1. Sensor profile 

 

Sensor #1

USB3.0 Expansion 
Card(PCI-E) #1

USB3.0 Expansion 
Card(PCI-E) #2

USB3.0 Expansion 
Card(PCI-E) #3

Mobile 
Workstation

Sensor #2

Sensor #3

~
AC  

Figure 2. System connection 

 

2.2 Calibration of Sensor Array 

Calibration is essential before the sensor array system can be used. 

The Kinect v2 consists of a RGB camera, an infrared camera and 

an IR Illuminator (Figure 3). Separate calibration is required to 

determine the camera intrinsic parameter for each camera, 

besides, calibration for the relative position and attitude is also 

needed. Compared to conventional camera model, depth 

calibration is important for the depth camera. Finally, the relative 

position and attitude is calibrated for each sensor of the array. 

Detailed steps are provided below. 

 

 
Figure 3. Sensor structure of Kinect v2 
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2.2.1 Intrinsic Calibration: Precision intrinsic parameters 

could not only correct distortion of image, and are important to 

enhance the accuracy of depth and color image fusion (Gui et al., 

2014). Intrinsic parameters of pin-hole model for RGB camera 

including focal length, principal point coordinate and distortion 

parameters, etc. And, radial distortion and tangential distortion 

models are employed for lens distortion, as formula 1 and 2. 

 

The image coordinate is transformed with formula 3, in which 

w=Z, x y denote pixel coordinate and XYZ represents image 

coordinate. Intrinsic parameters for each camera are obtained 

with Intrinsics𝑐𝑎𝑚 = {𝑓 𝑐𝑥 𝑐𝑦 𝑘1  𝑘2 𝑘3 𝑝1 𝑝2} .  

 

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦(1 + 𝑘1𝑟2 + 𝑘2𝑟4 + 𝑘3𝑟6)
}     (1) 

 

𝑥𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑥 + [2𝑝1𝑥𝑦 + 𝑝2(𝑟2 + 2𝑥2)]

𝑦𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑦 + [𝑝1(𝑟2 + 2𝑦2) + 2𝑝2𝑥𝑦]
}     (2) 

 

[
𝑥
𝑦
𝑤

] = [
𝑓 0 𝑐𝑥

0 𝑓 𝑐𝑦

0 0 1

] [
𝑋
𝑌
𝑍

]          (3) 

 

2.2.2 Relative Pose of IR and Color Camera: The relative 

pose of Infrared and Color cameras are calculated to obtain more 

precise overlay color and depth image for unbiased texture. 

According to spatial transformation formula 4, the relationship 

between two cameras could be calculated using 3x3 rotation 

matrix R and 3x1 translation vector t. 

 

An amount of checkerboard calibration plate images were 

collected with Infrared and Color cameras, and corner coordinate 

of plate were extracted respectively, then the Extrinsic𝑐𝑎𝑚 =
{𝑅 𝑡} was calculated following Zhang method. 

 

[

𝑋′
𝑌′
𝑍′
1

] = [

𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31

0
𝑟32

0
𝑟33

0
𝑡3

1

] [

𝑋
𝑌
𝑍
1

]         (4) 

 

2.2.3 Depth Correction: TOF camera consists of infrared 

laser emitter and a series of infrared sensors, and compute 

distance from travel time of modulated beam between the sensor 

and object. There are two main TOF technologies are the pulsed 

and the continuous wave. In the first case, devices compute the 

distance 𝑑 using time delay between transmitted pulse and the 

first echo pulse (Formula 5). This method requires very precise 

measurement accuracy, which is impossible to be achieved at 

room temperature.  

 

In the second case, devices takes advantages of continuous 

modulation ray, such as sine or square wave signal, and 

calculated the distance from phase displacement between 

transmitted and echo pulse. Due to periodic signals, this method 

provides ambiguity distance, and thus restrict the ranging 

distance of continuous wave TOF cameras. 

 

𝑑 = 𝑐
∆𝑡

2
     (5) 

 

𝑑𝑎𝑚𝑏 =
𝑐

2𝑓
      (6) 

 

The continuous wave measurement model is employed to 

calculated the depth for Kinect v2. As a consumer level RGB-D 

camera, the calibration of the TOF camera is essential to reduce 

the system errors. In this paper, the depth drift of Kinect v2 

measurement was calibrated by calculating the depth difference 

with the calibration plate (Fankhauser et al., 2015). 

 

2.2.4 Relative Pose of Sensors: The key factor that the sensor 

array distinct from multi sensors is that array can be identified as 

a single one. Toward this purpose, the position of each sensor 

needs to be calibrated during system integration. The principle of 

cross-sensor calibration is identical as formula 4, and the spatial 

transformation is from three dimension to three dimension. The 

SVD method (Jiyoung et al., 2015) is adopted to calculate the 

least square rigid transformation matrix in this paper. 

 

Numbers of reference target should be collected for calibration. 

A single station scanning data from terrestrial laser scanner was 

obtained as ground truth data, and reference point coordinates 

were collected to resolve sensor position and orientation. The 

reference target should be significant and explicit. Limited by the 

resolution and depth precision, sharp objects are not distinct, 

therefore, the RGB texture are used to identify reference target. 

Since the terrestrial laser scanner does not contain RGB 

information, the reproject errors are inevitable even single lens 

reflex is mounted to collect texture images.  

 

Taking both the color contrast and reflection intensity into 

account, the reference target is made of two types of material with 

intense color contrast and reflection. Images of the reference 

target in laser point data and TOF cloud data are showed in Figure 

4. 

 

   
(a)              (b)  

Figure 4. High-contrast Target in (a) Lidar data colorized by 

intensity (b) Kinect data colorized by texture 

 

The precision of depth measurement are not enough for 

registration with reference target only (Diaz et al., 2015; 

Sarbolandi et al., 2015). Moreover, affected by multi-path 

interference effects of indoor scenes (Jiménez et al., 2014), the 

center point of the target is bending deformation around the 

corner when the TOF camera is used. In this case, redundant 

measurements are required to reduce the errors. The ICP 

(Iterative Closest Point) is a common method to minimize the 

distance between two point-cloud data, by iterative correction of 

transformation parameters between target point cloud and 

reference point cloud. In this study, the Point-to-Plane ICP is 

used to match the depth data to TLS point cloud data, and then 

calculate the Extrinsic𝑠𝑒𝑛𝑠𝑜𝑟 = {𝑅 𝑡} for each sensor. 

 

3. EXPERIMENT 

3.1 Experiment of calibration 

The resolution of Kinect v2 is 1920x1080 and 512x424 for RGB 

camera and infrared camera, respectively. The reference plate is 

made of A4 size paper, with side length of 0.03 meter, using 5x7 

checker board (Figure 5).  

 

1041 pairs of images were collected for calibration using three 

Kinect v2 sensors, as listed in Table 2. The depth errors after 

calibration were presented in Figure 6, which shown that there 

existed varied system errors at the level of -0.02 ~ -0.04m. The 
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errors were less than ±0.03m for most points, and some random 

errors were found about ±0.08m. 

 

  

  
Figure 5. Color image (left) and IR image (right) for calibration 

with chessboard 5x7x0.03 pattern 

 

Distribution of errors in the XY plane is presented in Figure 7, 

and no uniform mode was detected after calibration, which 

proven these errors belongs to random error and could not be 

corrected by calibration. 

 

20 high contrast target were set in 2.5 x 2 x 3m regions as indoor 

calibration field.  More than 4 non-coplanar target could be 

measured for each Kinect sensor. Collection of ground truth data 

was accomplished using Riegl VZ-400 scanner with angle 

resolution of 0.02 degree. 

 

Sensors IR Image Color Image Sync Image 

Sensor #1 105 112 112 

Sensor #2 125 131 133 

Sensor #3 109 106 108 

Table 2. Images for calibration work 

 

 

 
Figure 6. Difference distribution of each sensor relative to X-

coordinate (left) and Y-coordinate (right) 

 

 

 
Figure 7. Difference distribution of each sensor in XY-plane 

 

 
(a) Overview of indoor control field 

 
(b) Details of target 

Figure 8.Calibrate sensor array with indoor control field 
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The center point coordinate of reference target were collected 

simultaneously from both the depth camera and the laser point 

cloud data, and the｛R t｝parameters were calculated following 

2.2.4, and fitting to get the initial transformation Tinit, as in Figure 

9. 

 
(a) Ground truth by Lidar  (b) Scan data by our array 

 
(c) Overlapped 

Figure 9. Initial transformation 

 

Although data from different sensors has been transformed in the 

same coordinate system, errors still need to be reduced between 

sensor array and ground truth. Affected by system errors and 

multipath effect of the Kinect, more sample points are required 

to correct these errors. To minimize the depth errors, the Point-

to-Plane ICP method was applied for base match between sensor 

array and ground truth, results of optimization were provided in 

Figure 10. 

 

3.2 Experiment of data acquisition 

The sensor array proposed in this paper does not equipped with 

IMU system, however, take advantages of large enough viewing 

angle, it is a typical SLAM system based on its estimations of the 

initial tracks using the visual odometry and closed - loop 

detection system with global optimization. 

 

The Real - Time SLAM System of RTAB-Map (Labbe and 

Michaud, 2011, 2013, 2014) is adopted in this study, which is 

based on RGB-D SLAM method. With incremental appearance-

based loop closure detector, this module used the BoW to 

distinguish whether to revisit map. When a closed loop was 

detected, a constraint is added in the system and overall 

adjustment is applied using graph optimizer. 

 

However, RTAB-Map is lack of support for multi-source data 

input, and errors of route calculation are quite large. Therefore, 

only the parallel components were calculated using the software, 

and the other route were obtained from exterior orientation 

parameters of the sensors. Finally, data from key frame were 

extracted and converted to point cloud. 

 

 
Figure 10. Improvement of ICP process 

( from top to bottom are 1. LiDAR data 2. Initial transformation 

3. ICP refined transformation ) 

 

 

 
Figure 11. Point cloud captured by out sensor array (left) and 

LiDAR (right) 

 

4. CONCLUSION 

A novel method using multi consumer-level depth cameras for 

indoor data collection was proposed in this study, and experiment 

proven the efficiency of the method for indoor RGB point cloud 

data collection. The system is capable to meet the requirements 

of indoor mapping, modeling, robot localization and navigation, 

etc., with low precision demand, though the detailed information 

is not as good as production-level LiDAR system. In the future, 

more work will focused on the improvement of the stability of 
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the SLAM system based on wider angle viewing data, and 

explore to more application fields. 
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