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ABSTRACT: 

 

A generic probabilistic model, under fundamental Bayes’ rule and Markov assumption, is introduced to integrate the process of 

mobile platform localization with optical sensors. And based on it, three relative independent solutions, bundle adjustment, Kalman 

filtering and particle filtering are deduced under different and additional restrictions. We want to prove that first, Kalman filtering, 

may be a better initial-value supplier for bundle adjustment than traditional relative orientation in irregular strips and networks or 

failed tie-point extraction. Second, in high noisy conditions, particle filtering can act as a bridge for gap binding when a large 

number of gross errors fail a Kalman filtering or a bundle adjustment. Third, both filtering methods, which help reduce the error 

propagation and eliminate gross errors, guarantee a global and static bundle adjustment, who requires the strictest initial values and 

control conditions. The main innovation is about the integrated processing of stochastic errors and gross errors in sensor 

observations, and the integration of the three most used solutions, bundle adjustment, Kalman filtering and particle filtering into a 

generic probabilistic localization model. The tests in noisy and restricted situations are designed and examined to prove them. 
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1. INTRODUCTION 

In classic photogrammetry, bundle adjustment based on least 

square methods is the main technic for the image or called 

sensor or platform localization. The advantages and 

disadvantages are both explicit: global optimum, rigorous, 

capable both to real time/off time processing, but short in 

requiring accurate initial values, adequate GCPs and outlier free. 

In some cases, especially when close range photogrammetry is 

involved, those prerequisites are difficult to meet. For example, 

it is hard to make enough GCPs for short-baseline imagery 

acquire from ground mobile mapping system (MMS) especially 

in urban street. Another case is, if imagery from an unmanned 

aerial vehicle (UAV) meets water surface or forest with 

undistinguishable textures, the gross errors in image matching 

or a complete failed matching will destroy the automatic 

triangulation processing. 

If turning back to the early days, we could find a plenty of 

articles dealing with platform localization especially self-

localization in control, navigation and robotics society. The 

main tool is called extended Kalman filtering (EKF) (Bishop 

and Welch 2001), which infer only the current best status. It 

means it’s not a global solution (a rarely used statistic EKF is 

equivalent to bundle adjustment in nature). However, EKF need 

less perquisites than bundle adjustment. It requires the accurate 

initial status of only the first image. If there are only a few 

GCPs or not even one, it can still give a not too bad solution. 

However, EKF and bundle adjustment, both requiring 

observations obeying the Gaussian independent distributions, 

cannot deal with the (plenty of) outliers themselves. A 

RANSAC (Fischler and Bolles 1981) based technic can detect 

easily the outliers in stereo image matching, but almost 

impossible in bundle adjustment in which hundreds and 

thousands of parameters may be involved. Data snooping or 

gross error detection methods based on posteriori variance 

estimation still cannot handle the situation with a large number 

of outliers (e.g., more than 50%). The same rule is suitable for 

EKF and other so called robust methods as ||L||1 (bundle 

adjustment can be looked as ||L||2). 

In the 1990s particle filtering was gradually applied to sensor 

localization in the field of robotics, especially in its branch 

study, simultaneous localization and mapping (SLAM) (Thrun 

et al. 2001). The particle filtering is originally an alternative to 

EKF, but with more efficient and less memory space (Thrun et 

al. 2004). However, it has a strong enough property, that it 

doesn’t require Gaussian independent assumption anymore. It 

can deal with non-Gaussian observations, considering that even 

outliers can also be one type of special observations. In theory, 

particle filtering itself is a robust method against outliers and 

does not require extra gross error detection methods to be 

imbedded. Another property of particle filtering is, it can handle 

the situation with no initial status, for example, a robot 

kidnaping problem. 

The three mainstream technics, bundle adjustment, EKF and 

particle filtering, can compensate each other theoretically when 

we meet a special difficult localization problem considering 

their different properties.  

However, they are relatively independent. In this paper the first 

thing is integrating them under a uniform framework, which 

called a probabilistic localization model, based on Bayes rule 

and Markov chain assumption (Ji et al. 2015). In turn, the three 

methods, as different solutions to the generic model, will be 

rediscovered. 
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The next thing is to prove that a hierarchical strategy, based on 

the generic model with the three solutions, is more robust to a 

challenging localization problem than only a solution, say, 

bundle adjustment. We design two tests, and the one is imagery 

localization from a UAV, with unmatchable images; the other is 

MMS localization with panoramic imagery, where no GCP 

available and only a geo-referenced orthogonal aerial images. 

The former test will be handled with first EKF and then a global 

bundle adjustment, and the last with first particle filtering and 

then bundle adjustment.  

 

2. A GENERIC PROBABILISTIC LOCALIZAITON 

MODEL AND ITS SOLUTIONS 

2.1 A generic probabilistic localization model 

The probabilistic model for a sequential localization problem 

can consist of two types of constraints, observations and 

motions. The observation values except for motion are called 

obeying observation models, including co-linearity equations, 

GPS observation equations et al. While motion models, 

representing the motion between adjacent images, can often be 

acquired from a gyro, and a real or visual odometry. We use St 

and Gt respectively for all the observations and motion 

constraints of the vehicle up to time t, St and Gt respectively for 

only time t. Let Lt represent the current pose, and Lt represent 

the entire path up to t. Conditioned on the two constraints, the 

posterior p(Lt|St,Gt) or so called belief Bel(Lt) should be 

maximized to achieve an optimal solution. According to Bayes’ 

rule, we have 

 

       1 1| , = | , , | ,t t t t t t t t t t

tBel L p L S G p S L G S p L S G        (1) 

 

In (1), η is a normalized constant equal to p(St|St-1,Gt)-1. 

Typically, the observations (e.g., tie points) St-1 are independent 

of each other, and can be omitted in p(St|Lt,Gt,St-1). Assuming 

the trajectory be represented as a probabilistic Markov chain 

(Montemerlo 2003), where the previous poses are independent 

of the current system status if the current pose is known, Lt-1 

can also be omitted in p(St|Lt,Gt,St-1). Then, Eq. (1) is simplified 

as 
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Factorizing the rightmost term of Eq. (2) with Bayes’ rule 

yields 
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For a Markov chain, the current pose Lt depends only on Lt-1 

and the previous position Lt-1 is not affected by the current Gt, 

Eq. (3) can be further written as 
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Eq. (4) is the probabilistic model for a sequential localization 

problem where observations and motions are independent and 

the motion trajectory satisfies a Markov chain.  

Please note that this model is suitable to handle significant 

noises for a localization problem, since it has no assumption on 

the distribution of the observations as required commonly. 

Further, the recursive nature of the model allows highly noisy 

observations be gradually filtered out by taking advantage of 

the successive and relatively accurate motion constraints, when 

a direct global solution is almost impossible. 

 

2.2 The three solutions to the model 

The special pose estimation methods, bundle adjustment, 

Kalman filtering and particle filtering, can be rediscovered 

when additional assumptions are introduced to the generic 

model Eq. (4), because they share the same probabilistic basis: 

estimate the posterior distributions over poses under certain 

independence assumptions.  

2.2.1 Bundle adjustment solutions  

Let St, Lt, and Gt be the image coordinates, exterior orientation 

elements, and correspondent world coordinates, respectively, 

observation model p(St|Lt,Gt) then becomes the posterior of co-

linearity functions and p(Lt|Lt-1,Gt) the relative orientation. 

Suppose the observations following Gaussian distributions, we 

can deduce the quadratic form from (4) 
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where  , i

t tg L G  and Rt, u(Lt-1,Gt) and Dt represent the 

expectation and covariance of the co-linearity, and relative 

orientation or called motion model in robotics, respectively. 

Realizing the two Mahananobis distances, Eq.  (5) can be 

solved by an relative bundle adjustment method that integrates 

relative orientation constraints into bundle adjustment solutions 

(D. Sibley and Mei 2009; G. Sibley et al. 2010), or a traditional 

one just disregarding the motion model. 

2.2.2 Extended Kalman filtering solutions  

The posterior p(Lt| Lt-1,Gt) is predictions expressed by motion 

model u(Lt-1,Gt) as Eq. (6) where Qt, ˆ
tP  and Ft are the 

measurement noise of Gt, predicted covariance matrix and 

Jacobians of motion model respectively. The posterior of 

observation model p(St|Lt,Gt) is innovations expressed by (7) 

where st, Ht, vt and Dt represent observations, Jacobians of the 

observation model, the measurement residual and covariance, 

respectively. The gain Kt and the final estimations of the current 

position Lt and covariance Pt are expressed in (8). Note that the 

iterative and alternate strategy with (6) ~ (8) makes EKF only 

optimal to the current status at time t. 

 

  T

1 1, ;ˆ ˆ
t t t t t t t tL u L G P F P F Q                 (4) 

Tˆ ; ˆ
t t t t t t t t tv s H L H PH D                 (5) 

 T 1ˆ ˆ; ; ˆ
t t t t t t t t t t t tK PH L L K v P I K H P          (6) 

 

2.2.3 Particle filtering solutions 

Similar to Kalman filtering, PF also utilize an alternate 

prediction and innovation strategy. However, they use a set of 

particles to discretize the continuous posterior Bel(Lt), similar to 

Markov chain Monte Carlo (MCMC). As in Eq. (9), the 

posterior is represented by a random collection of weighted 

particles that approximates the target distribution, where 
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 ,[ ]

1 2, , ,t i i i i

tl l l l  is the hypothesized trajectory of the i-th 

particle up to time t, and the corresponding weights or named 

importance factors  ,[ ]

1 2, , ,t i i i i

tw w w w  determine its 

importance. Thus, the poses lt,[j] are selected when j-th particle 

win the maximum weights. 

 

      , ,
, , 1,2, ,

t i t itBel L l w i m                    (7) 

 

After the posteriors are discretized, classic PF solutions can be 

implemented. The recursive update consists of three steps: 

(1) Draw 
1

i

tl 
 from the previous weighted particle set 

which represents Bel(Lt-1). 

(2) Sample new particle i

tl  according to the motion model: 

i

tl  ~ p(Lt| li
t-1, St-1,Gt). Now the new particle follows a 

joint probability: p(Lt|li
t-1,St-1,Gt) × Bel(Lt-1), which is also 

called proposal distribution. 

(3) According to Eq. (4), the importance factor 
i

tw  is 

assigned to the quotient of the target distribution Bel(Lt) 

and the proposal distribution, i.e., ηp(St|
i

tl ,Gt), where η is 

a constant. Finally, the largest j

tw  indicates the solution 

lt,[j]. 

 

2.3 A simple simulated comparison of the three solutions 

The situation with plenty of outliers which hard to be 

eliminated is perhaps the most difficult case for an automatic 

localization application. Here we give a simulated example. 

Figure 3 graphs the performances of the three solutions using a 

simulated trajectory corresponding to the cases in Figure 1, 

where dashed line with five black dots (as images) is the 

referenced trajectory and also the predicted trajectory of motion 

model of a vehicle. However, there are some obvious errors in 

GCPs at time t1 and t3. There are even two GCP candidates 

(considering the GCPs are obtained from matching images to a 

geo-referenced maps) in t3 but the candidate above with more 

confidence. In Figure 1(a), the estimated trajectory a obtained 

from bundle adjustment is far from the reference path due to 

GCP errors. Figure 1(b) depicts visible offsets from the 

reference for two paths a and b derived by EKF, where path a 

has higher weights for GCPs and path b has higher weight for 

the motion model. Figure 1(c) is the result of particle filtering, 

where the diversity of particles and multi-hypothesis tracking 

guarantees that path c wins with the greatest confidence. 

Although what presented in Figure 1 is a simulation, we intend 

to demonstrate that, PF based methods are superior to bundle 

adjustment and EKF in noisy situation. 

  
 (a) 

    
 (b) 

     
 (c)                                             

Figure 1. Performance of three solutions under a simulated 

noisy environment. 

 

3. A HIERARCHICAL SOLVING STRATEGY FOR 

OPTICAL MOBILE CAMERAS 

Although localization problem with other types of sensors, such 

as laser, can also be solved with the generic probabilistic model 

and one of its solutions, we focus on optical cameras in this 

paper. Further, we only focus on the ordinary situation that the 

optical images are obtained by a mobile platform, a UAV, aerial 

photography aircraft or MMS. The localization problem with 

independent photos from crowd sources, such as the famous 

“building Rome in a day”, is not considered, for those cases 

lack of the meaning of motion model, and may be only suitable 

to bundle adjustment. 

 

3.1 Motion models 

For optical images the most popular method to obtain motion 

model is using visual odometry, which is similar to traditional 

relative orientation. In this section, we first deduce the motion 

model in probabilistic manner and then extend it to adapt the 

situation that image matching failed. 

The posterior p(Lt|Lt-1,Gt) in Eq. (4) called motion model, which 

describes the distribution of the current pose conditioned on the 

last pose and the current motion parameters.  

First of all, any correspondence finding methods, such as SIFT 

(Lowe 2004) or cross correlation can be applied to obtain 

enough correspondences between the adjacent images, typically 

followed by a gross error detection process with RANSAC  

(Fischler and Bolles 1981) or posteriori variance estimation. 

Then, sequential relative orientation is carried out with the 

remained tie-points. The sensor model and the relative 

orientation model depend on the special cameras be used. In 

this paper, we use two cameras, a traditional Cannon camera on 

UAV with a common pinhole model and a panoramic camera, 

Ladybug 3, on MMS, whose model can be found in (Shi et al. 

2013). Third, align the relative orientation parameters to the 

world coordinate system by fixing the first image’s pose to zero 

vector or setting it to the approximate geo-referenced values. 

Let Rt and Tt represent the pose to the world coordinate, and Rt-

1,t and Tt-1,t represent the incremental pose. The current position 

l is obtained by: 

 

l = Lt-1 + Rt-1,tTt-1,t                                           (10) 

 

where Lt-1 = (xt-1 yt-1 zt-1) represents the camera position in time 

t-1. Thus, a motion model with six parameters <xt-1,t, yt-1,t, zt-1, 

φt-1,t, ωt-1,t, κt-1,t> can be employed, and each parameter is 

considered following a Gaussian distribution, with known co-

variance matrix from relative orientation. L0 is the coordinates 

of the first image. 

Let the corresponding accuracy of pose parameters represented 

by δ, thus the motion model follows a Gaussian distribution: 

 

p(Lt| Lt-1,Gt)~N(l, δ)                             (11) 

 

However, it perhaps appears in mind that not all the relative 

orientation has a good solution due to an imperfect matching 
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with few correspondences remained or a totally failed one, 

caused by specular reflection, lacking of features or repeated 

pattern textures. In that case, a traditional automatic 

triangulation would be interrupted and usually manual 

intervention be required.  

In this paper, we utilize a smooth-driving assumption, that Lt 

can be obtain by the relative orientation parameters at time t-2 

or earlier with correct relative orientation. Thus, 

 

l = Lt-1 + Rt-2,t-1T t-2,t-1                                           (12) 

 

And set δ to a large value with prior knowledge the same time. 

when strips form block or GCPs are introduced, the large 

uncertainty could be supressed largely then. 

Thus a motion model is not only a relative orientation, but a 

more general probabilistic model with more flexibility. 

 

3.2 Observation models 

Sensor model, typically the collinear equations, is the main 

observation model of a traditional bundle adjustment. In the 

generic probabilistic localization framework, we call posterior 

p(St|Lt,Gt) in Eq. (4) observation models, which remains the 

same meaning in a large part but with some small extensions. 

Any observations from GCPs, GPS or other relative geometrical 

constraints etc., with their own models, all contribute to the 

overall observation models. In this paper, collinearity, GPS 

observations and GCPs from an ortho-image are involved. We 

first discuss GCPs. 

 

3.2.1 observation models of noisy GCPs 

We miss the simple case that those traditional, high accuracy 

GCPs are obtained from manual fieldwork that obey 

collinearity. Here, GCPs for locating MMS images are obtained 

from matching the MMS images to the geo-referenced 

orthogonal images or maps. The image center is then geo-

located after a successful match. For convenience, we just set 

the z-coordinates to a constant since the images were obtained 

from a flat road. Under the best conditions, the GCPs are all 

correct. However, it is almost impossible. First, we should 

geometrically rectify the MMS images to orthographic 

projection. Any object that is high than the road surface would 

cause a rectification error. Second, shadows, moving cars, 

occlusions all contribute to unpredictable changes between 

MMS images and ortho-image. The truth is the matched GCPs 

will be full of gross errors, which cannot guarantee a successful 

bundle adjustment or EKF as observations. 

A better strategy looks those GCPs as with hypothesis property, 

that is, matching can be right or wrong. Naturally MCMC based 

particle filtering methods is more suitable in this situation.  

Here, Gt can be ignored if Lt is known since we only match the 

image center. Then the specific form of p(St|Lt) is expressed by 

multi-source matching between ground image sequence and 

ortho-image. First, all the panoramic images (Figure 2(a)) after 

relative orientation are orthogonally rectified assuming a flat 

road surface. Further, ten rectified images are stitched into a 

larger image patch close to a square of about 10 m x 10 m, as 

shown in Figure 2(b-d). In order to improve the stitching 

accuracy a bundle adjustment every 10 images can be 

performed before. 

 

 
Figure 2. Matching difficulties and the multi-hypothesis nature. 

 

Second, multi-hypothesis multi-source image matching is 

carried out. According to the motion model Eq. (11), we can 

sample the current pose Lt from this distribution, and look each 

pose a particle. each particle in the ortho-image (Figure 2(e)), 

along with its neighbourhood, as search image, is matched to 

the rectified panoramic image (reference image). Classic 

correlation technology rather than advanced feature matching is 

more suitable, if the image patches are too small to extract 

adequate features. A rotation invariant strategy can be used to 

resist big rotation. 

Third, for each particle i, correlation generates a set of 

correlation coefficients containing a maximum one cmax, and 

corresponding pixel position lmax. Regard it the only valid 

particle. That means the number of particles always equals to 

samples, a constant number as in most PF-based methods. A 

candidate with cmax above a given threshold, e.g., 0.3, are 

regarded as invalid. Then the observation model for the 

matched GCPs is then defined as follows: 

 

max( | )i i

tw p S l c                                  (12) 

 

under the normalization constraint ∑iwi = 1.  

 

3.2.2 observation models of collinearity 

Both Tie-points and manual GCPs satisfy collinearity. These 

tie-points are usually correct for they have survived from image 

matching, gross error elimination, and even local multiple-ray 

intersection. We model the tie-points and manual GCP 

observations as Gaussian distributions  

 

p(St|Lt,Gt) ~ N(s, δ)                                 (13) 

 

Here s = g(Lt, Gt) is the calculated image point coordinates from 

the collinear equation g(·), and δ is its accuracy respected to the 

image point (x, y). 

 

3.2.3 observation models of GPS 

GPS or GNSS observations should be considered separately 

according to different situations. The GPS antenna on a UAV or 

photography aircraft is seldom blocked and can receive signals 

with better accuracy. While mounted on a MMS, GPS signals 

are often unlocked by canyon effects or Multipath effects 

especially in urban streets. 

For the case of UAV platform, the GPS observations can be 

modelled as obeying Gaussian distributions, 

 

p(St|Lt,G) ~ N(s, δ)                                 (13) 

 

Here G, usually a function constant to time t, reflects the 

geometrical relations between GPS observations St and the 

camera pose Lt. Typically, 

 

s = Rtd + Tt                                     (14) 
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where d is the constant offset between the camera center and 

phase center of GPS antenna. Rt and Tt are rotation matrix and 

translations of exterior orientation elements, retrieved from Lt. 

And the accuracy δ could be set with experience.  

For the case of a MMS in noisy street environments, GPS 

signals may be with many blunders, making a global bundle 

adjustment impossible. The better way may use EKF, still 

regarding each observation obeying Gaussian distribution, but 

setting its weight with the consistency to consecutive motion 

models. 

 

3.3 The hierarchical solving strategy 

After modelling both observation and motion models, the two 

essential parts for a mobile platform localization, we can 

deduce the hierarchical structure of solving methods 

considering both the random errors and gross errors. As shown 

in Figure 3, if gross errors exist in motion models, a smooth 

motion assumption is utilized to construct a Gaussian 

distributed motion model but with less accuracy; otherwise just 

calculate the model from relative orientation. If gross errors 

exist in observations, e.g., GCPs or GPS, there are two 

strategies. if you can guess the weight of each observation 

approximately, model it as a Gaussian distribution, otherwise 

model it as particles with their own weights. At last, solving the 

generic probabilistic model with EKF or particle filtering if a 

direct bundle adjustment impossible, depending on the special 

situation. And bundle adjustment usually be applied the final to 

achieve perhaps a better global result. 

 

 
Figure 3. The hierarchical strategy for solving the generic 

localization model 

 

4. EXPERIMENTS 

4.1 Text design 

Two tests are designed with special challenging situations. The 

first dataset is image series obtained from a UAV. However, 

there are some tie-point extraction troubles that some images 

were missing, as shown on Figure 4. It may be an impossible 

task for a traditional triangulation procedure. The other dataset 

is panoramic image series obtained from a ground MMS. The 

trajectory was selected in a complex street environment with 

moving vehicles, occlusions, and shadows. 

The data pre-processing of the first dataset is simple: just 

manually measuring the image coordinates of the 10 GCPs. Set 

δ to the accuracy of a successful relative orientation in pixels; 

otherwise, set it to ten percent of the image width. 

The pre-processing applied to the second dataset is more 

complicated. The predicted trajectory, consisted of 2,410 

panoramic images with an interval of about 1 m, was initially 

aligned to the first GPS observations after sequential relative 

orientation and local bundle adjustment, shown as yellow line 

in Figure 5. All the panoramic images were then ortho-rectified 

and every 10 images are stitched to generate image patches 

about 10×10 m2 as in Figure 2. The geo-referenced information 

is an aerial orthogonal image with a ground resolution of 0.2 m 

and localization accuracy of 0.5 m. The check points are 

obtained from the processed GPS/IMU joint observations with 

an accuracy of better than 0.1 m and is shown as the blue 

trajectory in Figure 5. The required parameters in particle 

filtering method are set as: particle number is 100; the accuracy 

of motion model δ is 2.00 m (10 pixels), which is also applied 

to EKF. 

 

4.2 results 

4.2.1 The first test  

The first UAV test data consist of 4 strips 64 images, whiles 

some images (in white) were missing. This situation may also 

be regarded generally as a tie-point extraction problem caused 

by ill image matching. 

Table 1 shows the solving strategies of a direct aerial 

triangulation of first relative orientation (RO) and then bundle 

adjustment (direct BA), and our hierarchical solution with first 

EKF and later a bundle adjustment. With a flexible motion 

model, the large uncertainty (once reaching more than 1000 

pixels) cause by image missing can be reduce to normal level 

(6.65 pixels) after that missing parts are revisited.   

In Table 1 the DXYZ means the 3D accuracy of GCPs, and RMS 

means the residual mean square error. It can also be noticed that, 

the EKF only gives a proximately solution and the following 

bundle adjustment with the initial values supplied by EKF can 

guarantee much better accuracy.  

 

 
Figure 4. the UAV test with missing images 

 

Table.1 results of different solutions (pixels) 

Method RMS Max DXYZ Min DXYZ 

RO / / 0.00 

Direct BA / / / 

EKF 6.65 4.21 2.23 

BA after EKF 0.51 1.54 0.01 

 

4.2.2 The second test 

In Figure 5 the yellow line is the predicted trajectory after 

sequential relative orientation and local bundle adjustment. The 

red is the reference trajectory obtained from GPS/IMU with 0.1 

m accuracy. The blue line is the result of particle filtering. From 

the “truncated” indicates that the last section in full shadows 

were removed.  

 

Table.2 check of the localization accuracy 

Method DX DY DXY Max 

DXY 

Min 

DXY 

RO 43.20 72.00 80.97 167.93 0.01 

BA / / / / / 
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EKF(best) 28.65 17.35 33.49 101.19 0.00 

PF(whole) 0.36 0.45 0.57 14.31 0.01 

PF(truncated) 0.23 0.39 0.41 4.20 0.01 

BA after PF 0.21 0.37 0.39 3.89 0.01 

 

Figure 6 are results of EKF with different weight ratios k0 

(green: k0 = 0.1, red: k0 = 1; pink: k0 = 10; white: k0 = 100) 

between motion models and observations. Obviously, the GCPs 

obtained from matching are high noisy and cannot guarantee a 

good EKF result. The same rule applies to bundle adjustment, 

which were totally failed. Only particle filtering with multi-

hypothesis itself can realize an accurate localization. 

We then applied the remained good GCPs after particle filtering 

to a global bundle adjustment with additional flat road surface 

assumption. This time the bundle adjustment converged to a 

result that just as good as or only a slightly better than the 

particle filtering method. The detailed numerical values and 

comparison are shown in Table 2. 

 

 
Figure 5. results of particle filtering method 

 

 
Figure 6. results of EKF method 

 

4.3 Conclusions 

In this paper, we introduce a generic probabilistic model for 

platform localization with optical images. Based on the model, 

three mostly used solutions, bundle adjustment, EKF and 

particle filtering, are rediscovered. Further, a hierarchical 

framework, combining the three methods under the generic 

model, are proposed. With two datasets under noisy situation, 

we proved that, the hierarchical framework can handle these 

situations easily which were extremely challenging to a 

traditional bundle adjustment. 

Except the examples in this paper, the generic model and the 

hierarchical framework can be further explored to other 

platforms as satellites, sensors as laser or LiDAR, and difficult 

situations as noisy GPS supported localization. 
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