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ABSTRACT:

A fisheye lens is widely used to create a wide panoramic or hemispherical image. It is an ultra wide-angle lens that produces strong
visual distortion. The distortion modeling and estimation of the fisheye lens are the crucial step for fisheye lens calibration and image
rectification in computer vision and close-range photography. There are two kinds of distortion: radial and tangential distortion.
Radial distortion is large for fisheye imaging and critical for the subsequent image processing. Although many researchers have
developed calibration algorithms of radial distortion of fisheye lens, quantitative evaluation of the correction performance has remained
a challenge. This is the first paper that intuitively and objectively evaluates the performance of five different calibration algorithms. Up-
to-date research on fisheye lens calibration is comprehensively reviewed to identify the research need. To differentiate their performance
in terms of precision and ease-using, five methods are then tested using a diverse set of actual images of the checkerboard that are taken
at Wuhan University, China under varying lighting conditions, shadows, and shooting angles. The method of rational function model,
which was generally used for wide-angle lens correction, outperforms the other methods. However, the one parameter division model
is easy for practical use without compromising too much the precision. The reason is that it depends on the linear structure in the
image and requires no preceding calibration. It is a tradeoff between correction precision and ease-using. By critically assessing the
strengths and limitations of the existing algorithms, the paper provides valuable insight and guideline for future practice and algorithm
development that are important for fisheye lens calibration. It is promising for the optimal design of lens correction models that are
suitable for the millions of portable imaging devices.

1. INTRODUCTION

With the development of computer technology, non-metric cam-
era has been more widely used in the field of photogrammetry and
computer vision. Fisheye lens has a wide field of view up to 180
degree. Because of its remarkable range of view, it is widely ap-
plied in the field of military, surveillance, street maps, panorama
stitching and so on. However, due to the special imaging process
of fisheye lens, the distortion is a main obstacle for practical use.
The traditional pinhole model is no longer able to meet the need
of fisheye lens correction. We need to consider more parameters
and introduce different distortion models for different lens.

Distortion has been researched for many years, and it was first
introduced by Conrady in 1919. Following his work, Brown (D-
uane, 1971) proposed the radial distortion, tangential distortion
and thin prism distortion model which has been widely used for
image distortion. On the basis of previous work, some different
distortion models are proposed. Zhang (Zhang, 2000) proposed a
flexible technique for estimation of radial distortion, which only
required the camera to observe a checkerboard from a few dif-
ferent orientations, and the method is widely applied because of
its easy implement. Fitzgibbon(Fitzgibbon, 2001) showed how to
use the division model to solve the problem of nonlinear lens dis-
tortion, and Miguel Alemán-Flores (Alemán-Flores et al., 2014)
then extended the division model. In this model, they combined
hough space with the division model, and a single fisheye lens im-
age can be corrected without any attached condition. Devernay
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and Faugeras (Devernay and Faugeras, 2001) proposed the field-
of view(FOV) model and perform edge extraction and polygo-
nal approximation. Claus (Claus and Fitzgibbon, 2005) proposed
the rational function model and built a general distortion model
for large field-of-view lens. Carlos (Ricolfe-Viala and Sánchez-
Salmerón, 2010b) introduced a robust metric calibration. In their
paper, they proposed using cross-ratio constraint which is inde-
pendent of perspective projection as a template for calibration,
so that we can get two sets of point: the distorted points and
the corrected points. Zhu (Zhu et al., 2011)proposed a lifting
strategy based on an elliptical model for the correction of fish-
eye image. Lee (Lee et al., 2011) introduced another method for
wide-angle distortion correction with hough transform and gra-
dient estimation. There are also other methods,such as virtual
grid (Arfaoui and Thibault, 2013), parabolic perspective projec-
tion (Zhang, 2012), vanishing point (Hughes et al., 2010) and so
on.

Although different camera distortion models were proposed, there
is no simple and intuitive measure to evaluate the correction qual-
ity of each model. After the projective transformation of the
imaging process, a line in the world should be correctly recorded
as a line in the image. But the line in the image is distorted to be
curve because of the lens distortion. The purpose of lens correc-
tion is to rectify the curve in the image into a straight line, and to
reflect the real geometry in the world. Therefore, for the correc-
tion results of different distortion models, the degree of correcting
the distorted curved lines into the undistorted straight lines is the
intuitive measure of the correction performance. A line in the
Euclidean space corresponds to a clustering point in the Hough s-
pace. By analyzing the statistical consistence of co-linear feature
points at different directions in the Hough space, we can conclude
how many points lie in a straight line and how close they are to
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the straight line. The count of each bin in the Hough space then
represents the degree of correction. The larger the count is, the
more feature points are corrected for the line associated with that
bin.

The paper is divided as follows. First, brief descriptions of five
different distortion models are given. Second, lens calibration
via cross-ratio constraint is briefly described. Third, we propose
a Hough-based measure for evaluating distortion model. Finally,
experimental results and conclusions are presented.

2. FIVE DISTORTION MODELS

The distortion model is a mapping from the distorted image to the
corrected image, which is mathematically formulated according
to the internal geometry of camera lens. The traditional pinhole
model is a ideal model without taking lens distortion into account.
The 3-D space points can be transformed to image coordinates
with only the intrinsic and external parameters. However, the
distortion is inevitable especially for wide-angle lens. Therefore
there are various models proposed to solve the distortion and to
refine the transformation. Some model are metric methods and
other not. In the paper, we compare five metric distortion models
according to their popularity and relevance in the state of the art.

2.1 Rational and Tangential Model(RT Model)

Radial and tangential distortion model is a conventional model
which is widely accepted. According to the model, the formula
of the model takes into account the radial, tangential and prism
distortion. Given one point (ud, vd) in the image, its correspond-
ing corrected point (u, v) can be given such that

u = ud − δu(u, v)

v = vd − δv(u, v)
(1)

where u and v represent the undistorted image coordinates, name-
ly the ideal position in the image; ud and vd are the corresponding
observed points with distortion; δu(u, v) and δv(u, v) are the dis-
tortion in u and v direction respectively, which is the sum of three
types of distortion: the radial, tangential, and prism distortion. It
can be written by the following equation:

δu(u, v) =∆ud · (k1 · r2d + k2 · r4d + . . .) + p1(3∆u2
d

+ ∆v2d) + 2p2 ·∆ud ·∆vd + s1 · r2d
δv(u, v) =∆vd · (k1 · r2d + k2 · r4d + . . .) + 2p1 ·∆ud

·∆vd + p2(∆u2
d + 3∆v2d) + s2 · r2d

(2)

where rd = ∆u2
d + ∆v2d represents the distance from the image

point to the distortion center, which can be defined as (u0, v0), so
∆ud = ud − u0, ∆vd = vd − v0.

The radial distortion is modeled by the first part of the formula.
It can be given by

δur(u, v) = ∆ud · (k1 · r2d + k2 · r4d + . . .)

δvr(u, v) = ∆vd · (k1 · r2d + k2 · r4d + . . .)
(3)

where δur(u, v) and δvr(u, v) represent the displacement of point
position in the direction of u and v respectively. The coefficients
k1,k2,k3,... represent the degree of the polynomial function, and
usually the first and the second radial symmetric distortion pa-
rameter k1,k2 are dominant and others negligible.

The tangential distortion is also known as decentering distortion,
which arises from the decentering of lens. This is modeled can

be recorded as

δut(u, v) = p1(3∆u2
d + ∆v2d) + 2p2 ·∆ud ·∆vd

δvt(u, v) = 2p1 ·∆ud ·∆vd + p2(∆u2
d + 3∆v2d)

(4)

where p1, p2 represent the coefficients of tangential distortion.

Another kind of distortion is called the prism distortion which
comes from the tilt of lens when the lens are not perpendicular to
the optical axis, and it is modeled by s1, s2. Usually, the radial
distortion is in a dominant position, and the prism distortion is
relatively insignificant and can be negligible(Weng et al., 1992).

2.2 Logarithmic Fish-Eye Model(FET Model)

Basu and Licardie (Basu and Licardie, 1995) proposed a alterna-
tive model fitting for fisheye lens, which based on the logarith-
mic fisheye transformation. Given a point (u, v) representing the
distortion-free cartesian coordinates in the image, we can denote
(r, θ) as the corresponding polar coordinates, so r =

√
u2 + v2,

θ = arctan(v/u). Then the corresponding distorted polar coor-
dinates (rd, θ

∗) can be given by

rd = s log(1 + λr), θ∗ = θ (5)

where rd is the distorted radius, s represents the scale factor and λ
controls the amount of distortion over the whole image. Then the
corresponding distorted cartesian coordinates (ud, vd)are given
by

ud = rd cos θ∗, vd = rd sin θ∗ (6)

The inverse mapping is given by

rd =
√
u2
d + v2d θ∗ = arctan(vd/ud)

r = (erd/s − 1)/λ θ =θ∗

u = r cos θ v =r sin θ

(7)

2.3 Polynomial Distortion Model(PFET Model)

The model is one of the most frequently used distortion model,
and it is similar to the FET model except that rd = G(r), where
r is the radial distance for a undistorted image, rd is the distorted
one. It can be given by the following equation:

G(r) = a0 + a1r + a2r
2 + · · ·+ anr

n =

n∑
i=0

air
i (8)

where k represents the degree of polynomial function. What is
the difference between the polynomial distortion model and the
FET model is that G(r) is a polynomial in r.

2.4 Division Model

Fitzgibbon (Fitzgibbon, 2001) introduced the division model for
the simultaneous estimation of multiple view geometry and lens
distortion.The division model is written as follows:

p =
1

(1 + λ||x||2)
(9)

or can be recorded as

L(r) =
1

(1 + k1r2 + k2r4 + · · · ) (10)

In this model, the formula is represented at the form of division
function, so its Taylor expansion can be infinite. Therefore, the
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d(ud, vd) =


a11 · u2

d + a12 · ud · vd + a13 · v2d + a14 · ud + a15 · vd + a16

a21 · u2
d + a22 · ud · vd + a23 · v2d + a24 · ud + a25 · vd + a26

a31 · u2
d + a32 · ud · vd + a33 · v2d + a34 · ud + a35 · vd + a36

 (11)

remarkable advantage of this model is that we can correct severe
distortion using fewer terms than the polynomial model. Thus, it
is more suitable for wide-angle lens. Additionally, the inversion
of one parameter division model is simple and can find the roots
of a second degree polynomial, so for most camera lens, a single
parameter division model is adequate.

2.5 Rational Function Model(RF Model)

To adapt to the imaging process of perspective and non-perspective
imaging system, Grossberg(Grossberg and Nayar, 2001) present-
ed a general image model which used a set of virtual sensing
elements to express the mapping from the incoming scene rays
to the physical imaging sensors. It considers the camera as a
”black box” and ignores the concrete process that the light goes
through the camera internal optical sensors. Following this idea,
Claus and Fitzgibbon(Claus and Fitzgibbon, 2005) extended im-
age plane to 3-D scene, and built a general model for highly dis-
torted lens, which called the rational function model. Given a
distorted image point (ud, vd) and corresponding distortion-free
point (u, v), the mapping can be formulated by the quadratic giv-
en by Equation 11. This model can be written as a linear com-
bination of the distortion parameters, in 3 × 6 matrix A, and a
six-vector x, of monomials in ud and vd. Define x as the follows:

x(ud, vd) = [u2
d ud · vd v2d ud vd 1]T (12)

So the rational function can be written by

d(ud, vd) = A · x(ud, vd) (13)

where d is a vector in camera coordinates representing the ray
direction along which pixel (ud, vd) samples. So we can have
the perspective projection to obtain the undistorted image coordi-
nates. i.e.,

(u, v) = (
aT1 · x(ud, vd)

aT3 · x(ud, vd)
,
aT2 · x(ud, vd)

aT3 · x(ud, vd)
) (14)

where aT1...3 represent the rows of the matrix A.

3. LENS CALIBRATION VIA CROSS RATIO
CONSTRAINT

Figure 1: Principle of cross-ratio invariablity

According to the perspective projection in Euclidean space, s-
traight lines have to be straight after perspective projection. More

details can be found in (Devernay and Faugeras, 2001). In geom-
etry, cross ratio remains invariable when they are under perspec-
tive projection, as is demonstrated in Figure 1.

Given four points A, B, C, D which lies in a straight line, the
cross radio of four co-linear points can be written as

CR(A,B,C,D) =
AC

CB

/
AD

DB
(15)

where the points A and B are two datum points, and the points
C and D are the reference points. When the four point are under
perspective projection, there are four corresponding points A′,
B′, C′, D′ in the space. The cross ratio of the new four points
are formulated as follows

CR(A′, B′, C′, D′) =
A′C′

C′B′

/
A′D′

D′B′
(16)

According to projective geometry, if four points are co-linear, the
corresponding points also lie on a straight line. Furthermore, the
cross ratio is a projective invariant, so that we can conclude that
cross ratio of two sets of points is equal, the equation is defined
as

AC

CB

/
AD

DB
=
A′C′

C′B′

/
A′D′

D′B′
(17)

In our experiment, we use a checkerboard as a calibration plane,
and it is projected on the screen. The corner points are detected on
the image, and because of the collinearity of points, the cross ratio
should be invariable in the image. Based on the work of Carlos
and Antonio-Jose (Ricolfe-Viala and Sánchez-Salmerón, 2010b)
(Ricolfe-Viala and Sanchez-Salmeron, 2010a) who proposed the
metric point correction via the cross-ratio constraint, we detected
m × n corner points from the image of the chessboard, where n
is the number of the straight lines in the chessboard pattern and
m is the number of points in each line. So, qk,l is a point k of the
straight line l, l = 1 . . . n, k = 1 . . .m. To find the coordinate
of the distortion-free point corresponding to each distorted point
qk,l in the image, the difference of cross-ratio between the four
sets of points detected in the image and the distortion-free ones
must be minimized. On the other hand, a point in the straight lines
have to fit the linear equation. Therefore, the equation including
the two constraints can be given such that

JCP =

n∑
l=1

( m∑
i=1

||al · ui + bl · vi + cl||

+

m−3∑
k=1

||CR(qk, qk+1,l, qk+2,l, qk+3,l)

− CR(p1, p2, p3, p4)||
)

(18)

where al, bl, cl are the set of parameters that define the straight
line, which represent the linear constraint in the image; the sec-
ond part of the equation represents the cross-ratio constraint, and
CR(p1, p2, p3, p4) is computed previously which is equal to all
four sets of points in the designed planar template.

The equation begins with the coordinates of the detected corner
points in the image, and ends with the corresponding corrected
ones when the minimization is done. So, with the detected points
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in the image and the corresponding distortion-free points via the
cross-ratio and linear constraint, we can utilize the set of point
pairs to get the coefficients of the five distortion models previ-
ously proposed in the paper.

4. HOUGH-BASED MEASURE FOR EVALUATING
DISTORTION MODEL

As is mentioned before, there are many fisheye lens calibration
methods. Which one is better needs to be determined. Tradition-
al evaluation measure uses error function to represent calibration
precision, but different models have different error functions. It
is difficult to measure them under the unified framework. Be-
sides, the error functions is not intuitive. So, a simple but effec-
tive evaluation measure is needed. Due to the fact that a line on
the distorted image must be corrected into a straight line on the
undistorted image, so whether lines of the undistorted image are
still straight or not is a good measure of the correction perfor-
mance. We analyse these lines in the Hough space, in which one
line of the undistorted image is represented by one point (ρ , θ).

Figure 2: Hough transform

ρ = x · cos θ + y · sin θ (19)

where ρ is the distance from the origin point O to the line l. The
origin point O is the top left corner of the undistorted image,
and θ is the intersection angle between the line normal and x-
coordinate. The x-coordinate and y-coordinate coincide with the
column and row on the undistorted image. Equation 19 denotes
the coordinate transformation from image space to hough space.

Based on the corner points of the straight lines of the chessboard
image, the Hough statistics is made for different (ρ , θ) combina-
tions. A large value of the statistical result represents that more
points coincide with the same line of (ρ , θ). The line (ρ , θ) of
maximal statistical count in the Hough space is found to locate
the corner points that are nearly aligned with the most significant
line of (ρ , θ) in the image space. By analyzing the statistical
consistence of co-linear feature points at different directions in
the Hough space, as shown in Figure 3, we can conclude how
many points lie in a straight line and how close they are to the
straight line. The count of each bin in the Hough space then rep-
resents the degree of correction. The larger the count is, the more
feature points are corrected for the line associated with that bin.

Evaluation measure consists of two aspects, precision and ease-
using. For precision, we analyse the overall and local perfor-
mance of lens correction. In the overall analysis, all corner points
are checked whether they align with each other; in the local anal-
ysis, only lines of a certain direction is checked to evaluate the
correction performance at that direction. Calculating the ratio of

Figure 3: Four directions for evaluating lens correction (⊕ repre-
sents distortion center)

the aligned points after correction and the total points at a di-
rection can evaluate the degree of correction of different mod-
els. High ratio is considered to have a better correction effect.
For ease-using, little human interaction without compromising
the correction performance is welcomed.

5. EXPERIMENTAL RESULTS

In this section, five fisheye lens calibration models have been test-
ed with a diverse set of data which is captured by the Canon 5DI-
II camera and the fisheye lens of a fixed focal length of 8mm.
A chessboard pattern is projected to a large screen by a projec-
tor, and taken at Wuhan University, China under varying lighting
conditions, shadows, and shooting angles, as the Figure 4 shows.
The pattern is made of 10×12 grids, and 99 corner points. The
distortion coefficients are obtained by the cross-ratio constraint,
which are used to correct the distorted image.

Figure 4: Distorted image captured by fisheye lens with fixed
focal length

Figure 5 shows the correction results of 5 fisheye lens distortion
method. The correction is based on all the corner points which
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Table 3: Performance at the direction of 3 and 4

Model
Points in direction 3

far to distortion center
Points in direction 3

near to distortion center
Points in direction 4

far to distortion center
Points in direction 4

near to distortion center
RT 8/11 10/11 5/9 7/9
FET 10/11 11/11 6/9 9/9
PFET 10/11 11/11 6/9 9/9
RF 11/11 11/11 9/9 9/9
Div 10/11 11/11 7/9 9/9

are obtained by findChessboardCorners() and cornerSubPix() of
OpenCV3.0. Due to the quantization and rounding error, some of
the corrected points may fall outside of the range or be approx-
imated. It results in the black points in the corrected image, for
which no distorted points are corresponded exactly. But it has
no effect on this paper because we aim at addressing the param-
eters of different models. With the model parameters, instead of
finding the undistorted point for each distorted point, we can in-
versely find the distorted point for each undistorted point by the
numerical iteration or interpolation.

The corner points on the red line of Figure 5 are mapped into the
Hough space, where the ρ step is set to 14 pixel and the θ step is
set to 1 degree. For each θ, one corresponding ρ is calculated to
get a (ρ , θ) bin in the Hough space.

Based on the statistical count of Hough space, the red line of
Figure 5 are located at the bin of (ρ , θ) as follows: (178,41) in
RT model with the count number of 5, (179,38) in FET model
of number 6, (179,38) in PFET model of number 6, (180,41) in
division model of number 7, (180,40) in RF model of number 9.
It can be seen that the corrected line varies a little with different
correction models. The Hough-based statistics exactly reflects
the difference.

The distance threshold that defines whether a corner point is aligned
with the line is set to 6 pixels. The lines of different directions in
Figure 3 are chosen to evaluate the correction performance of d-
ifferent models along different directions. The result of corrected
corner points at different directions is demonstrated in Figure 6,
Figure 7 and Figure 8.

For traditional RT model, totally 72 corner points are got on al-
l lines in direction 3 (horizontal direction) and totally 80 corner
points on all lines in direction 4 (vertical direction), as shown in
Figure 3. The total points is the least whether seen from hori-
zontal line or vertical line. Next is the FET model, we get 81
points on horizontal lines and 78 points on vertical lines, its num-
ber is larger than the RT model and less than the PFET model,
whose number of points is 85 on horizontal lines and 77 on ver-
tical lines. The RF model has better result than the first three
models, the number of points reach 92 on horizontal lines and 76
on vertical lines. The last one is the division model, whose num-
ber is 83 on horizontal lines and 76 on vertical lines. Of course,
horizontal lines and vertical lines can’t guarantee the chessboard
is flat, so the biggest two diagonal lines are also tested to estimate
how many points on these lines. The number of points in direc-
tion 1 and direction 2 is 2 and 7 for RT model, 9 and 4 for FET
model, 8 and 5 for PFET model, 8 and 9 for RF model, 7 and 6
for division model.

Table 1 is the overall performance along different directions of
each correction model. It can be seen that the FET, PFET and
division model have the similar number of points, RT model has
the least points and RF model has the maximum points.

In order to further analyse which model is better locally, two lines
which are far and near to the distortion center, as shown in Figure

Table 1: Total performance of different distortion models
Model direction 1 direction 2 direction 3 direction 4
RT 2/9 7/9 72/99 80/99
FET 9/9 4/9 81/99 78/99
PFET 8/9 5/9 85/99 77/99
RF 8/9 9/9 92/99 76/99
Div 7/9 6/9 83/99 78/99

3, are chosen to evaluate the local correction performance of dif-
ferent models. The distance threshold is set to 8 pixel to ensure
as many points as possible are detected in the Hough space.

Table 2: Performance at the direction of 1 and 2
Model Points in direction 1 Points in direction 2
RT 5/9 6/9
FET 5/9 7/9
PFET 4/9 8/9
RF 8/9 9/9
Div 7/9 8/9

Table 2 and 3 show the local correction performance along dif-
ferent directions and distances to the distortion center. We can
see the ratio of RF model is the largest, while the FET, PFET,
division model are almost the same and the RT model is the least.
This result is consistent with the overall performance of the cor-
responding model.

6. CONCLUSION AND RECOMMENDATIONS

Fisheye lens is widely used in such fields as robot navigation,
target detection and so on. Fisheye lens calibration is the first
step of image processing. This paper focuses on the evaluation of
the calibration performance. Based on the observation that lines
become straight after the correction of the distorted image, the
Hough-based measure is proposed in this paper to evaluate the
calibration performance of different distortion models.

After lots of experimental tests, the proposed evaluation measure
works well. For the five calibration models, it is concluded that
1) RT model works the worst; 2) the FET model, PFET model
and division model have the similar performance and work better
than RT model; 3) RF model works the best in fisheye lens cor-
rection in terms of precision. It is consistent with Carlos Ricolfe-
Viala’s (Ricolfe-Viala and Sánchez-Salmerón, 2010b) result and
proves that the proposed evaluation measure is simple and effec-
tive. As far as ease-using are concerned, the division model with
one parameter can get distortion parameter automatically and on-
ly needs one image with lines. It is very convenient and fast. So,
in the case of non-restricted calibration, the division model is of
practical use.
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(d) (e)

Figure 5: Results of lens correction using the RT model (a) , FET model (b), PFET model (c), RF model (d), division model (e)
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(d) (e)

Figure 6: The corrected corner points at the horizontal direction using the RT model (a),FET model (b),PFET model (c),RF model
(d),division model (e)
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Figure 7: The corrected corner points at the vertical direction using the RT model (a),FET model (b),PFET model (c),RF model
(d),division model (e)
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Figure 8: The corrected corner points at the diagonal direction using the RT model (a),FET model (b),PFET model (c),RF model
(d),division model (e)
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