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ABSTRACT: 

 

Digital Elevation Model (DEM) generation is one of the leading application areas in geomatics. Since a DEM represents the bare 

earth surface, the very first step of generating a DEM is to separate the ground and non-ground points, which is called ground 

filtering. Once the point cloud is filtered, the ground points are interpolated to generate the DEM. LiDAR (Light Detection and 

Ranging) point clouds have been used in many applications thanks to their success in representing the objects they belong to. Hence, 

in the literature, various ground filtering algorithms have been reported to filter the LiDAR data. Since the LiDAR data acquisition is 

still a costly process, using point clouds generated from the UAV images to produce DEMs is a reasonable alternative. In this study, 

point clouds with three different densities were generated from the aerial photos taken from a UAV (Unmanned Aerial Vehicle) to 

examine the effect of point density on filtering performance. The point clouds were then filtered by means of five different ground 

filtering algorithms as Progressive Morphological 1D (PM1D), Progressive Morphological 2D (PM2D), Maximum Local Slope 

(MLS), Elevation Threshold with Expand Window (ETEW) and Adaptive TIN (ATIN). The filtering performance of each algorithm 

was investigated qualitatively and quantitatively. The results indicated that the ATIN and PM2D algorithms showed the best overall 

ground filtering performances. The MLS and ETEW algorithms were found as the least successful ones. It was concluded that the 

point clouds generated from the UAVs can be a good alternative for LiDAR data. 

 

 

1. INTRODUCTION 

3D point clouds have been used to generate DEMs, which are 

required for various remote sensing applications. As known, 

DEM represents the bare earth surface. Hence, the very first 

step of generating a DEM is to remove the non-ground points 

from the point cloud, which is called ground filtering. After 

ground filtering, the ground points are then interpolated to 

generate the DEM. Many ground filtering algorithms have been 

introduced in the literature. If there are abrupt changes in 

topography, then the filtering process would be more 

challenging (Meng et al., 2009). 

 

LiDAR sensors generate multiple returns (first return, last return 

etc.). This is a huge advantage when separating the ground and 

non-ground points. Hence, ground filtering algorithms were 

mainly developed to filter LiDAR point clouds. However, the 

use of a LiDAR point cloud is not always possible due to its 

high cost (Wallace et al., 2012; Díaz-Varela et al., 2015). As an 

alternative for LiDAR point clouds, it is possible to generate 

very dense point clouds by using overlapped aerial photos taken 

from UAVs. The aim of this study is to investigate the 

performances of ground filtering algorithms, mainly developed 

for LiDAR point clouds, for UAV-based point clouds. The 

density of a point cloud effects the filtering result. Hence, in this 

study, denser point clouds were also generated to investigate the 

effect of point density on filtering performance. 

 

2. GROUND FILTERING 

In the study, the Progressive Morphological 1D (PM1D), 

Progressive Morphological 2D (PM2D), Maximum Local Slope 

(MLS), Elevation Threshold with Expand Window (ETEW), 

and Adaptive TIN (ATIN) algorithms were used to filter the 

point clouds extracted from the aerial images taken from a 

UAV. All these algorithms were implemented in the ALDPAT 

v.1.0 software.  

 

2.1 PM1D and PM2D Algorithms 

The PM algorithm was developed by Zhang et al., (2003) to 

remove the non-ground points from the point cloud. This 

algorithm removes the different-sized non-ground objects and 

keeps the ground points by using gradually increasing window 

and elevation difference threshold. PM algorithms depend on 

the dilation and erosion operations, which are widely-used in 

mathematical morphology. These operations are used to 

increase or decrease the size of the objects (Haralick et al., 

1987). Combinations of the erosion and dilation operations 

leads to opening and closing operations (Zhang et al., 2003). 

Dilation follows erosion in opening operation; whereas erosion 

follows dilation in closing operation. A regularly spaced 

minimum surface grid was generated by using the minimum 

elevation values in each grid cell. The elevation value of the 

nearest point is assigned to the grid if a grid does not contain 

any elevation values. Opening operation, which is the most 

important component of the PM filtering algorithm, is 

performed to the grid surface. In the first iteration, minimum 

elevation surface and initial window size are used as input data. 

Following iteration uses the increased window size and filtered 

surface, which are generated in the previous iteration. The 

window size is increased and elevation difference threshold is 

calculated. Iterations continue until the size of the filtering 

window is greater than the previously defined maximum 

threshold. Let 𝑑ℎ𝑇,𝑘 is the elevation difference threshold, and 

𝑑ℎ𝑃,𝑘 is the elevation difference between the filtered and the 

original surface at a point 𝑃 in kth iteration. In each kth opening 

operation, if 𝑑ℎ𝑃,𝑘 ≤ 𝑑ℎ𝑇,𝑘, the point is considered a ground 

point. Otherwise, the point is labelled as a non-ground point. 

The iterations continue until the size of the window is greater 
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than a predefined maximum value, which is generally slightly 

larger than the size of the largest non-ground object (Zhang et 

al., 2003). The only difference between the PM1D and PM2D 

algorithms is that the PM2D algorithm uses a two-dimensional 

square window to perform erosion and dilation. PM1D and 

PM2D algorithms use the same parameters.  

 

2.2 MLS Algorithm 

Vosselman (2000) developed the MLS algorithm, in which the 

ground points are detected by comparing the local slope 

differences between the adjacent LiDAR points. Irregularly 

distributed LiDAR points are overlaid with a regularly spaced 

grid network. 

 

Each grid represents the elevations of LiDAR points. Each 

LiDAR point 𝑝𝑗(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) is assigned to the grids with respect 

to 𝑥 and 𝑦 coordinates. In case where more than one point falls 

into a grid, the point with the minimum elevation is chosen. 

MLS algorithm calculates the slope (𝑠0,𝑗) between a 

𝑝0(𝑥0, 𝑦0, 𝑧0) point and the points in a defined radius. 𝑠0,𝑚𝑎𝑥 is 

the maximum slope value between the point 𝑝0 and its 

neighbours in the radius. If this value is smaller than a 

predefined threshold (𝑠), then the point 𝑝0 is labelled as ground. 

Otherwise, it is labelled as non-ground and removed. 

 

2.3 ETEW Algorithm 

This algorithm uses a gradually increasing search window to 

separate the ground and non-ground points (Zhang and 

Whitman, 2005). First, the data is divided into grid cells. In 

each grid, the points, whose elevations are higher than the 

elevation of the point with the minimum elevation, are removed. 

In the next iteration, the size of the grids is increased and the 

minimum elevation value in each grid is recalculated. Then, the 

points whose elevations are higher than the point with the 

minimum elevation with respect to a predefined threshold are 

removed. Iterations continue by increasing the grid sizes and 

threshold values until there is no point to remove in the previous 

iteration. Let 𝑍𝑖,𝑗  is the elevation of the point 𝑝𝑖,𝑗  in 𝑖th iteration 

and 𝑗th grid, 𝑍𝑖,𝑚𝑖𝑛 is the minimum elevation in this grid, and 

ℎ𝑖,𝑇 is the elevation difference threshold. If 𝑍𝑖,𝑗 − 𝑍𝑖,𝑚𝑖𝑛 >  ℎ𝑖,𝑇, 

then the point 𝑝𝑖,𝑗 is removed (Zhang and Cui, 2007). 

 

2.4 ATIN Algorithm 

ATIN algorithm, developed by Axelsson (2000), identifies the 

ground points with respect to the distance between each point 

and generated TIN (Triangular Irregular Network) surface. 

First, the data is divided into square grids. Then, the points 

which have the minimum elevations in the initial ground data 

are chosen as seeds. Reference TIN surface is then generated by 

using these seeds (Zhang and Cui, 2007). Each unclassified 

ground point (candidate point) is added to each of the triangles 

in TIN. Candidate point is classified with respect to its distance 

to the triangular surface and to the angle with the vertices of the 

triangle. Candidate point is said to be a ground point if the 

calculated distance and angle are smaller than predefined 

thresholds. This process is repeated until all points are labelled 

as ground and non-ground (Axelsson, 2000; Zhang and Cui, 

2007; Zhang and Lin, 2013). 

 

3. APPLICATION 

3.1 Study Area 

A small part of the Karadeniz Technical University (KTU) 

campus was chosen as the study area. The campus is in the city 

of Trabzon, which is located on the northeast of Turkey. The 

study area, which has a dimension of 178 m x 410 m and 

elevation ranges from 18 m to 83 m, contains flat, sloping and 

rough regions. There are also non-ground objects such as trees 

and buildings. Study area can be seen in Figure 1. 

 

 

Figure 1. Study area 

  

3.2 Data Preparation 

The aerial photos of the study area were taken by using the 

RICOH GR DIGITAL IV digital camera, which was mounted 

on the Gatewing X100 UAV. With a 40-minute flight, 256 

aerial photos were captured along 9 flight lines. Before the 

flight, 12 ground control points (GCP) were established in the 

campus to obtain the georeferenced 3D point cloud. The ground 

control points were evenly distributed over the entire campus. 

The aerial photos were processed and the raw point cloud was 

generated by using the Agisoft PhotoScan Professional 

software. The generated raw point cloud was then densified to 

form the medium-density and high-density data. The densities 

of the raw, medium-density and high-density data were 0.1 

point/m2, 4.2 point/m2 and 16.5 point/m2, respectively. As a 

final step, a 25 cm orthophoto was produced for the study area. 

 

3.3 Ground Filtering 

PM1D and PM2D algorithms were used to filter the point 

clouds in PM filtering stage. Main parameters of the PM 

algorithm are as follows; 

 

Cell size (𝐶) is the size of each grid dividing the point cloud 

into square arrays. This parameter can be chosen smaller than 

the average distance among the points in data (Montealegre et 

al., 2015). 𝑆𝑙𝑜𝑝𝑒 (𝑠) parameter specifies the elevation 

difference threshold. This parameter can be chosen as the 

average slope of the study area (Zhang and Cui, 2007). Initial 

Threshold (𝐼𝑇) is the initial elevation difference threshold used 

to approximate the error of the points (Zhang and Cui, 2007). 

Maximum Threshold (𝑀𝑇) is the maximum elevation difference 

threshold. Window base (𝑏) is the base of the exponential 

function in the window size equation. Table 1 shows the 

parameters used in the PM1D and PM2D algorithms. 
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Filt. 

Alg. 
Data 𝐶 𝑠 𝐼𝑇 𝑀𝑇 𝑏 𝑝 𝑤𝑠 

P
M

1
D

 Raw 0.4 0.25 0.10 10 2 1 [1,2,4,8,16,32,64,128] 

M.D 0.3 0.25 0.15 10 2 1 [1,2,4,8,16,32,64,128] 

H.D 0.2 0.25 0.15 10 2 1 [1,2,4,8,16,32,64,128] 

P
M

2
D

 Raw 0.4 0.21 0.10 10 2 1 [1,2,4,8,16,32,64,128] 

M.D 0.3 0.20 0.15 10 2 1 [1,2,4,8,16,32,64,128] 

H.D 0.2 0.20 0.15 10 2 1 [1,2,4,8,16,32,64,128] 

Table 1. The parameters used in the PM1D and PM2D 

algorithms (M.D stands for medium-density and H.D means 

high-density) 

 

The optimum parameters used in the MLS algorithm are given 

in Table 2. Experiments revealed that the search radius and 

maximum slope parameters are the most effective ones. The 

parameters used in the MLS algorithm are; 

 

Cell size (𝐶) is the size of the grids and generates the minimum 

elevation grid. Minimum distance (𝑑) refers to the minimum 

separation between the points allowed in slope computation 

(Zhang and Cui, 2007). Maximum slope (𝑠) is the maximum 

threshold value for slope. A point is labelled as ground if the 

maximum slope with its neighbours is smaller than 𝑠. 

Otherwise, it is labelled as a non-ground point (Zhang and Cui, 

2007). Search radius (𝑟) specifies the neighbours of a point. 

 
Filtering 

Algorithm 
Data 𝐶 𝑠 𝑑 𝑟 

MLS 

Raw 0.4 0.7 0.30 40 

M.D 0.4 0.7 0.20 40 

H.D 0.5 0.7 0.10 40 

Table 2. The parameters used in the MLS algorithm (M.D 

stands for medium-density and H.D means high-density) 

 

The optimum parameters used in the ETEW algorithm are 

shown in Table 3. The slope and iteration number parameters 

were found to be the most effective ones with regard to the 

performance of the ETEW algorithm. The parameters used in 

the ETEW algorithm are as follows; 

 

Cell size (𝐶) is the initial size of each grid and can be chosen as 

the average distance among the points in data (Montealegre et 

al., 2015). Slope (𝑠) is the threshold parameter for slope. 

Iteration number (𝑖) indicates how many times the algorithm 

will iterate (Zhang and Cui, 2007). 

 
Filtering 

Algorithm 
Data 𝐶 𝑠 𝑖 

MLS 

Raw 0.4 0.4 6 

M.D 0.4 0.4 6 

H.D 0.3 0.5 8 

Table 3. The parameters used in the ETEW algorithm (M.D 

stands for medium-density and H.D means high-density) 

 

Table 4 shows the optimum parameters used in the ATIN 

algorithm. Experiments indicated that the cell size, Z difference 

and initial grid size parameters effect the performance of this 

algorithm most. The parameters used in the ATIN algorithm are 

as follows; 

 

Cell size (𝐶) is the size of each grid and is used to divide the 

point cloud into grids. Z difference (𝑍𝑑) is the threshold for the 

elevation difference between each point and triangular surface 

(Zhang and Cui, 2007). Initial grid size (𝐼𝐺) parameter 

generates the initial grid network. This parameter chooses the 

seed points corresponding to each grid. Axelsson (2000) 

indicated that this parameter can be set to the size of the largest 

non-ground object. Angle threshold (𝐴𝑇) is the threshold 

parameter for the angle between the candidate point and the 

vertices of the corresponding triangle (Axelsson, 2000). Since 

the Delaunay triangulation is a time consuming process for 

large-scaled areas, the ATIN algorithm uses the 𝑇𝑖𝑙𝑒 𝑋 −
𝑌 𝑊𝑖𝑑𝑡ℎ (𝑇𝑥𝑦) parameter to divide the data into tiles with 

dimensions 𝑥 and 𝑦. 

 
Filtering 

Algorithm 
Data 𝐶 𝑍𝑑 𝐼𝐺 𝐴𝑇 𝑇𝑥𝑦 

MLS 

Raw 0.5 0.18 20 5 20 

M.D 0.3 0.18 20 5 20 

H.D 0.1 0.10 20 5 20 

Table 4. The parameters used in the ETEW algorithm (M.D 

stands for medium-density and H.D means high-density) 

 

3.4 Accuracy Assessment 

Performance of each filtering algorithm was evaluated 

qualitatively and quantitatively. In qualitative evaluation, 

filtered point clouds were overlaid with the orthophoto to 

investigate whether or not the filtering algorithms achieved to 

separate the ground and non-ground points. In quantitative 

evaluation, some of the points in point clouds were chosen as 

test points. These test points were overlaid with the filtered 

point clouds and very high-resolution orthophoto image to 

investigate whether or not each point was filtered properly.  

 

Ground filtering process causes two types of errors, namely the 

commission and omission error. Commission error is related to 

the classification of the non-ground points as ground; whereas 

omission error refers to the removal of the ground points. It may 

not always be practical to investigate the performances of 

ground filtering algorithms by using all points in data. Hence, 

Zhang et al., (2003), and Zhang and Whitman (2005) proposed 

to evaluate the filtering result by using randomly selected test 

points. In this approach, some random points are selected. These 

points and all points whose distances to the selected points are 

smaller than a predefined threshold are also selected as test 

points. All test points are then used in quantitative evaluation. 

The approach proposed by Zhang et al., (2003) and Zhang and 

Whitman (2005) was used to evaluate the ground filtering 

results. Hence, 100 random points were selected from each 

point cloud (i.e. the raw, medium-density and high-density 

data). Radius threshold was chosen as 3 m, 1 m and 0.5 m for 

the raw, medium-density and high-density data, respectively. In 

total, 688, 662 and 637 test points were chosen for the raw, 

medium-density and high-density data, respectively. The 

metrics proposed by Sithole and Vosselman (2004) were used 

for accuracy assessment of these test points. These metrics are 

the type I error, type II error and total error, and are given as; 

 

𝑡𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟 =  
𝑎

𝐺𝑃
 

𝑡𝑦𝑝𝑒 𝐼𝐼 𝑒𝑟𝑟𝑜𝑟 =
𝑏

𝑁𝐺𝑃
 

𝑡𝑜𝑡𝑎𝑙 𝑒𝑟𝑟𝑜𝑟 =  
𝑎 + 𝑏

𝐺𝑃 + 𝑁𝐺𝑃
 

(1) 

 

where, 𝑎 is the number of ground points classified as non-

ground (omission error) and 𝑏 is the number of non-ground 

points classified as ground (commission error). 𝐺𝑃 and 𝑁𝐺𝑃 

stand for the total number of ground and non-ground points, 

respectively (Montealegre et al., 2015).  
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Each filtering result was also evaluated by using the McNemar 

test in which the statistical significance of the differences 

between two proportions are measured (Foody, 2004; Kavzoglu 

and Colkesen, 2011). More specifically, this test calculates the 

chi-squared value between two data sets. Difference between 

two data sets is considered significant if the calculated chi-

squared value is greater than the critical value, which is 3.84 at 

95% confidence interval (Kavzoglu and Colkesen, 2012; 

Yilmaz and Gungor, 2016). Cohen’s Kappa index (Cohen, 

1960) has been used in various studies to assess the filtering 

result (Silván-Cárdenas and Wang, 2006; Meng et al., 2010; 

Chen et al., 2013; Pingel et al., 2013; Montealegre et al., 2015). 

Kappa index generally ranges from 0 to 1. Obtaining negative 

Kappa values is also possible. Landis and Koch (1977) 

indicated that a Kappa index below 0.40 indicates a poor 

agreement, a Kappa index between 0.40 and 0.75 indicates a 

good agreement. A Kappa index greater than 0.75 presents an 

excellent agreement (Montealegre et al., 2015).  In this study, 

the same test points used in the computation of the type I, type 

II and total error were used for calculation of Kappa and chi-

squared values. 

4. RESULTS and DISCUSSION 

4.1 Qualitative Evaluation Results 

Study area includes non-ground objects like trees and buildings 

on various flat and rugged surfaces. Figure 2 shows the 

orthophoto draped over the filtered raw data (Figure 2a), 

medium-density data (Figure 2b) and high-density data (Figure 

2c). All points are shown with black colour in the figure. It 

should be noted that the circles in this figure indicate some of 

the commission errors whereas the rectangles show some of the 

omission errors.  

 

Examination of Figure 2a reveals that filtering of the raw data 

caused a small amount of errors. The omission error committed 

by the PM2D algorithm was found to be smaller than the one 

committed by the PM1D algorithm. Since the ATIN algorithm 

was very successful in filtering the non-ground points, it can be 

Figure 2. Filtering results of the raw (a), medium-density (b) and high-density (c) point clouds 

PM1D 

PM2D 

MLS 

ETEW 

ATIN 

PM1D 

PM2D 

MLS 

ETEW 
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concluded that the commission error committed by this 

algorithm was very small. MLS and ETEW algorithms, which 

were found to be the least successful ones, yielded similar 

results. Visual inspection of the filtering results indicates that 

the ATIN algorithm yielded the least average errors. 

 

As seen in Figure 2b, the commission error committed by the 

filtering of the medium-density data with the ATIN algorithm 

was greater than those in the results of the PM1D and PM2D 

algorithms. The omission error of the ATIN result was found to 

be smaller than those of the PM1D and PM2D results. It can be 

concluded from Figure 2b that the MLS and ETEW algorithms 

committed similar errors and found to be the least successful 

ones in terms of omission and commission errors. The ATIN 

algorithm caused least omission error. 

 

Figure 2c indicates that the ATIN algorithm committed least 

error when filtering high-density data. However, the 

commission error of the ATIN result was greater than those of 

the PM1D and PM2D results. The MLS and ETEW algorithms 

caused similar commission errors. However, the MLS algorithm 

committed more omission errors than the ETEW algorithm. 

Hence, the MLS algorithm can be considered the least 

successful one. 

 

4.2 Quantitative Evaluation Results 

Optimum parameters were chosen for ground filtering in light 

of the approach suggested by Hu et al., (2014). According to 

this approach, parameters minimizing the total error are chosen 

to filter the point cloud. Quantitative evaluation results are 

given in Table 5. 

 

Data 
Filt. 

Alg. 

Type I 
Error 

 (%) 

Type II 
Error  

(%) 

Total 
Error  

(%) 

Kappa 
Index 

(%) 

Chi-
squared 

Values 

Raw 

PM1D 9.70 11.30 10.00 67.20 325.26 

PM2D 1.90 28.00 5.90 75.33 395.01 

MLS 11.30 10.40 11.20 64.50 306.11 

ETEW 11.80 13.20 12.10 61.80 280.50 
ATIN 5.10 12.30 6.20 77.50 415.90 

M.D 

PM1D 19.42 18.20 19.03 58.61 233.40 

PM2D 18.32 12.00 16.50 64.50 284.81 

MLS 33.30 6.70 23.40 50.90 205.84 
ETEW 38.00 9.10 29.10 43.70 159.01 

ATIN 18.50 15.80 17.60 61.60 258.19 

H.D 

PM1D 30.40 7.90 23.20 53.60 210.30 

PM2D 28.10 9.30 22.10 55.10 216.30 
MLS 69.35 8.90 50.08 15.88 36.20 

ETEW 64.10 2.50 44.50 24.60 81.96 

ATIN 30.00 4.40 21.90 56.60 237.86 

Table 5. The parameters used in the ETEW algorithm (M.D 

means medium-density and H.D means high-density) 

 

Quantitative evaluation results indicate that the type I, type II 

and total error ranges from 1.9% to 69.35%, from 2.5% to 28% 

and from 5.9% to 50.08%, respectively. The smallest type I 

error (1.9%) was committed by the PM2D algorithm when 

filtering raw data; whereas the smallest type 2 error (2.5%) was 

achieved by the ETEW algorithm when filtering the high-

density data. Filtering the raw data with the PM2D algorithm 

resulted in the smallest total error (5.9%). It was also concluded 

that the greatest type I (69.35%), type 2 (28%) and total error 

(50.08%) were obtained by the MLS, PM2D and MLS 

algorithms when filtering the high-density data, raw data and 

high-density data, respectively. 

 

The highest Kappa (77.5%) was achieved by filtering the raw 

data with the ATIN algorithm; whereas the smallest Kappa 

(24.6%) was obtained by filtering the high-density data with the 

ETEW algorithm. The ATIN algorithm resulted in the highest 

chi-squared value (415.90) when filtering the raw data and the 

MLS algorithm yielded the smallest chi-squared value (36.20) 

when filtering the high-density data. 

 

As seen in the filtering results of the raw point cloud, the best 

Kappa and chi-squared results were achieved by the ATIN 

algorithm. The PM2D algorithm kept the ground points better 

than the ATIN algorithm in terms of the type I error. However, 

the performance of the ATIN algorithm in classification of the 

non-ground points decreased the total error and increased the 

Kappa. Although the qualitative evaluation results revealed that 

the ATIN algorithm yielded the smallest commission error 

among all filtering results, the quantitative evaluation results 

show that the MLS algorithm resulted in the smallest 

commission error. The worst Kappa (61.8%) and chi-squared 

(280.50) results were obtained by the ETEW algorithm when 

filtering the raw point cloud. 

 

Examination of the filtering results of the medium-density data 

depicts that the best Kappa (64.5%) and chi-squared (284.81) 

results were achieved by the PM2D algorithm. The ATIN 

algorithm follows the PM2D algorithm. As happened when 

filtering the raw data, the Kappa and chi-squared values, 

obtained by filtering the medium-density point cloud with the 

MLS algorithm, are better than those obtained by the ETEW 

algorithm. The ETEW algorithm yielded the worst Kappa 

(43.7%) and chi-squared (159.01) results. The commission error 

of the ATIN result was found to be greater than that of the 

PM2D algorithm, which also justifies the qualitative evaluation 

results. 

 

As seen in the filtering results of the high-density point cloud, 

the best Kappa and chi-squared results were achieved by the 

ATIN algorithm. The PM2D algorithm classified the ground 

points better than the ATIN algorithm, with respect to the type I 

error. However, the ATIN algorithm caused less commission 

error when filtering the high-density data. Hence, the ATIN 

algorithm performed better than the PM2D algorithm in terms 

of total error. In contrast with the filtering results of the raw and 

medium-density point clouds, the metric results show that the 

ETEW algorithm performed better than the MLS algorithm 

when filtering the high-density point cloud. The MLS algorithm 

was found to be the worst one with a Kappa of 15.9% and a chi-

squared value of 36.20. 

 

Filtering results revealed that the performances of the filtering 

algorithms decreased as the densities of the point clouds 

increased. The MLS algorithm was found to be the one that was 

effected from the increase in the densities of the point clouds 

most. The MLS algorithm performed better than the ETEW 

algorithm when filtering the raw and medium-density data. 

However, this algorithm was the least successful one in filtering 

the high-density data. These results depict that it is better to use 

the MLS algorithm to filter the sparse point clouds. In general, 

the PM2D algorithm performed better than the PM1D 

algorithm. However, the performances of these algorithms get 

closer to each other as the point density increases. The results of 

the PM2D algorithm were generally found to be closer to those 

of the ATIN algorithm. In general, the ATIN algorithm was 

found to be the most successful one and can be used to filter the 

dense point clouds. 
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There are a few reasons that the performances of the filtering 

algorithms decrease as the point density increases. Since the 

densification of a point cloud generates erroneous points in the 

vicinity of non-ground objects, errors increase in the areas close 

to non-ground objects such as trees and buildings. On the other 

hand, filtering algorithms use some parameters specified by 

users. These parameters play an important role in the 

performances of filtering algorithms. Increase in the point 

density makes it hard to use optimum parameters. The use of 

inaccurate parameters leads to greater errors when filtering 

dense point clouds. 

 

5. CONCLUSIONS 

In the literature, there are various studies in which LiDAR point 

clouds have been filtered. However, the acquisition and 

processing of LiDAR data is not always affordable. In this 

study, the performances of ground filtering algorithms, which 

were mainly developed to filter LiDAR point clouds, were 

investigated by using the point cloud extracted from the aerial 

images taken from a UAV. The generated raw point cloud was 

then densified to generate the medium-density and high-density 

point clouds to investigate the effects of point density on 

filtering performance. This study achieved to reveal the effects 

of point cloud density on filtering performance thanks to the 

considerable differences in the densities of the used point 

clouds. The main conclusion drawn from the results was that the 

filtering performance decreases as the point density increases. 

The results show that the ATIN algorithm was found to be the 

most successful one. The PM2D algorithm follows the ATIN 

algorithm with a small margin. The MLS algorithm was found 

to be the least successful one. It can be concluded from the 

results that the use of UAV-based point clouds can be 

considered an alternative for LiDAR point clouds to separate 

the ground and non-ground points. Future studies will focus on 

generating DTM from these filtered point clouds. 
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