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ABSTRACT: 

 

Seamline generation is a crucial last step in the ortho-image mosaicking process. In particular, it is required to convolute residual 

geometric and radiometric imperfections that stem from various sources. In particular, temporal differences in the acquired data will 

cause the scene content and illumination conditions to vary. These variations can be modelled successfully. However, one is left with 

micro-differences that do need to be considered in seamline generation. Another cause of discrepancies originates from the 

rectification surface as it will not model the actual terrain and especially human-made objects perfectly. Quality of the image 

orientation will also contribute to the overall differences between adjacent ortho-rectified images. 

Our approach takes into consideration the aforementioned differences in designing a seamline engine. We have identified the 

following essential behaviours of the seamline in our engine: 1) Seamlines must pass through the path of least resistance, i.e., overlap 

areas with low radiometric differences. 2) Seamlines must not intersect with breaklines as that will lead to visible geometric artefacts. 

And finally, 3), shorter seamlines are generally favourable; they also result in faster operator review and, where necessary, interactive 

editing cycles. The engine design also permits alteration of the above rules for special cases. 

Although our preliminary experiments are geared towards line imaging systems (i.e., the Leica ADS family), our seamline engine 

remains sensor agnostic. Hence, our design is capable of mosaicking images from various sources with minimal effort. The main idea 

behind this engine is using graph cuts which, in spirit, is based of the max-flow min-cut theory. The main advantage of using graph 

cuts theory is that the generated solution is global in the energy minimization sense. In addition, graph cuts allows for a highly 

scalable design where a set of rules contribute towards a cost function which, in turn, influences the path of minimum resistance for 

the seamlines. In this paper, the authors present an approach for achieving quality seamlines relatively quickly and with emphasis on 

generating truly seamless ortho-mosaics. 

 

 

1. PREREQUISITS 

Before we dive into the details of the seamline engine, it is 

worth discussing the existing technologies utilized by our 

algorithm. In this section, a brief description of the watershed 

segmentation and graph cut theory is presented. 

 

1.1 Watershed Segmentation 

The watershed by flooding (Beucher S., and Lantuejoul C., 

1979) algorithm is – conceptually – based on how water flows 

into areas of local minima and form separated pools. We can 

treat any grey scale image as a topographical surface where 

bright areas are seen as high and dark areas as low allowing the 

watershed algorithm to segment image into pools. The boundary 

of each pool is the local maxima, and as presented in this paper, 

we can utilize the watershed segmentation to identify a network 

of possible seamlines from a cost image. Although other   

variations of the watershed segmentation algorithms exist (for 

example in Cousty J., et al., 2009), the basis of a watershed 

segmentation used in this work can be described in the 

following steps: 

 

1. Identify a set of markers within an image that represent 

local low points. These local minimas serve as the seeds 

for the watershed algorithm. Hence, it is crucial that these 

points are selected carefully. 

2. Starting with the lowest unmarked minima next to a 

segment, a pixel flooding operator marks pixels with the 

same value as their neighbouring seed. 

3. If the pixel falls between multiple watershed neighbours 

then this is a boundary pixel and hence it is marked as a 

barrier. 

4. The above operations are repeated until all pixels have 

been flooded or identified as a barrier. 

 

As can be seen from the above enumerations, the watershed 

algorithm is fairly simple and does not require a significant 

number of operations. The main challenge is in choosing the 

markers carefully. The authors offer an automatic approach to 

pick the markers that works well in the context of seamline 

generation as a presented in the text later on. 

 

1.2 Graph Cuts 

Graph cuts (Boykov Y., and Funka-Lea G., 2006) is a 

classification algorithm that can be used in a wide range of 

vision applications including the binary segmentation of 

images. To classify a scene using graph cuts, one has to build a 

graph first. Typically, the nodes of the graph correspond to 

image segments. Weighted connections between the nodes can 

be established to reflect the strength of connectivity between the 

nodes. The graph is then connected to a source and sink nodes 

and weights are also introduced between the source/sink and the 

rest of the graph nodes. 
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Figure 1 (left) shows a conceptual representation of a graph for 

binary classification. The blue dots are the nodes to be 

segmented, the blue lines are weighted connections between the 

nodes. The red dot is the source node with connections to the 

graph nodes, while the green dot represents the sink node that is 

also connected to the nodes. Since weighting is incorporated in 

the connections, a node can be connected to the source and sink 

at the same time. Also, a node can be connected to neither the 

sink nor the source. The classification of such node (into sink or 

source) depends on the connections of that particular node to its 

neighbours. Figure 1 (right) depicts the results of classification 

and the “cut” line represents the border between source and sink 

objects (i.e., the seamline in our case). 

 

 

Figure 1. A representation of a graph (left) and the resulting cut 

(right), Figure taken with adaptation from (Boykov Y., and 

Funka-Lea G., 2006) 

 

The weighting mechanism of the connections throughout a 

graph greatly influences the maximum flow (i.e., minimum cut) 

path. Hence, we use the local pixel differences at the segments 

boundary to influence the strength of the connections. The 

higher the weight the less likely that the graph cuts solution will 

pass between two segments. 

Generally speaking, the higher the overlap between overlapping 

images, the higher the number of nodes in the graph and hence, 

the better the odds of finding a good path for the seamlines. 

However, it is possible that the watershed segmentation leads to 

large segments that spans all the way across the image overlap. 

In this case, that segment must be broken into multiple pieces to 

ensure a proper graph cut solution. 

 

 

2. SEAMLINE ENGINE WORKFLOW 

To better demonstrate the seamline engine, one could start with 

a simplified example consisting of the image pair depicted in 

Figure 2. These images have been geometrically orthorectified 

and radiometrically balanced using a new radiometric 

normalization method (Gehrke S., and Beshah B., 2016). In 

addition, the exterior (eop) and interior orientation parameters 

(iop) are preserved for a later stage in the process. A digital 

surface model (dsm) is also computed from the original image 

geometry (Gehrke S., et al., 2011)  or using an external source 

such as lidar. The dsm is optional and – when available – can be 

used to identify breaklines in the scene. These breaklines can be 

used as constraints to influence the path of the seamlines to pass 

around them which improves the quality of the generated 

seamlines. 

We start by utilizing an absolute difference operator where the 

two orthophotos are subtracted to generate one image. The size 

of this image is the minimum bounding rectangle of the overlap 

area. The difference image is computed for each band and is 

intended to highlight discrepancies due to image mismatch (i.e., 

features lean in different directions, reflective surfaces, 

reflections, cloud patches, etc.) 

Next, the differences are inverted and normalized such that 

large radiometric differences correspond to the darkest areas in 

the difference image. I.e., the areas where there is virtually no 

difference will appear in the difference image as white. This 

image is referred to in the rest of the text as the constraint mask. 

Following steps will compound on top of this image which 

defines areas where seamline pass-through is discouraged. It is 

worth reminding the reader here, that the constraint mask is not 

a binary image but rather greyscale which allows for better 

influence on the seamline path. The greyscale values can also be 

manipulated to weigh constraints proportional to their severity 

as shown in the equation below. Where, ai is a scale factor that 

dictates the contribution of a given constraint ci towards the 

constraint mask.  

 

 
 

 
 

 

Figure 2. An example depicting two overlapping orthophotos 

(top image is left in the overlap and the bottom image is right) 

 

 

Figure 3. A constraint mask derived from the image differences 
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At this stage, the contributions from a height source – shown in 

Figure 4 – towards the constraint mask are added. A gradient 

operator is executed over the dsm to produce a slope graph. The 

values of the detected edges (e.g., buildings boundary, bridges, 

and isolated trees) are inverted, normalized, and added to the 

constraint mask. These constraints play a crucial role in 

preventing seamlines from crossing through building rooftops 

hence reducing the possibility of seamline artefacts. 

 

 

Figure 4. A colour coded digital surface model (red represents 

high elevations and light blue represents low elevations) 

 

A median filter is then used to remove speckles from the 

constraint image. The speckles are mainly caused by small 

objects in the scene. Furthermore, dilation and erosion filters 

are performed to connect nearby constraint features. This will 

help reduces the number of watershed segments later on. 

 

 

Figure 5. A constraint mask after adding breakline contributions 

 

Generally speaking, it is desired that a seamline passes through 

the centre of the overlap area. This is preferred to reduce the 

discrepancy in objects lean on both sides of the seamline. To 

encourage such behaviour, we introduce an artificial surface 

(Figure 6) that gradually penalize the overlap pixels as they 

move away (i.e., left and right) from the overlap centre. Scale 

factor (Error! Reference source not found.) associated with 

this constraint is set much lower than the other constraints to 

prevent this pattern from dictating the seamline path. This 

gradual mask also serves another crucial purpose, it prevents the 

seamline from terminating prematurely at either side of the 

overlap and ensures that the seamline extends throughout the 

entire overlap area. 

Using the dsm and the sensor model, one can compute areas in 

the overlap space that result from sharp intersection angle 

between the image rays and the surface normal direction. These 

areas appear usually as smears in the orhtophoto product since 

fewer pixels in the original image are stretched over many 

pixels in the digital elevation model. These patches can be 

detected by analysing the angle between the image-ray and the 

surface-normal vectors. 

Since one has no control over the imagery content, our 

algorithm also allows operator to introduce an optional mask 

that may highlight other artefacts detected during the image 

quality control checks.  

Figure 6. A conceptual representation of the gradient mask 

 

 

Figure 7. A conceptual representation of final constraint mask 

 

One could think of the constraint mask as an energy field. 

Bright areas correspond to low resistance (hence high flow) 

pixels and darker areas correspond to high resistance pixels. At 

this stage, one could search all the pixels to find the path of 

minimum resistance. However, due to the sheer volume of 

pixels (i.e., in the order of tens of millions of pixels for a typical 

overlap), it is better to cluster the pixels into groups. 

Hence, a watershed kernel is performed over the constraint 

mask. The watershed operator will segment the constraint mask 

into patches surrounding the highest constrained pixels. Figure 

8 depicts the watershed segmentation boundary superimposed 

over one of the sample image. 

 

 

Figure 8. A colour coded image depicting a segmented 

constraint mask 
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As can be seen in this figure, there are some watershed 

segments residing inside bigger watershed segments. These 

segments shown in red referred to as “islands” and ignored by 

diluting them into their enclosing segments. The remaining 

segments (shown in yellow) constitute a network of possible 

seamlines and the only remaining task becomes to identify the 

most efficient route for seamlines. 

To define the best possible seamline route, we have first to 

discuss the factors that make a seamline seamless. 1) The pixels 

on each side of the seamline should be homogeneous (i.e., very 

similar in colour and texture). Hence when a seamline passes 

through it won’t be noticed. Furthermore, pixel blending around 

the seamline is less likely to cause artefacts if the surroundings 

are colour-homogeneous. And 2) Shorter seamlines are 

preferred. Without this constraint, seamlines could “wonder” in 

overlap patches that depict little resistance (e.g., a grass field, 

calm lake, etc.). This condition also helps in saving QC 

operations time by reducing the seamline length. 

To find the best path, we build a graph where the nodes are the 

watershed patches and the connections between the nodes 

represent costs derived from the number of shared pixels 

between any two neighbouring patches. In addition, the actual 

pixel values (from the constraint mask) along the two patches 

are aggregated and added to the connection cost. Figure 9 

shows an example of the nodes and connections derived from 

the watershed segments. 

 

 

Figure 9. A representation of the nodes (red dots) and 

connections (red lines) derived from watershed segments 

 

Once all the connections between the adjacent patches are 

realized, the graph is almost complete. The only remaining 

connections are those linking the graph to the source and sink. 

The choice of these connections determines in which direction 

(e.g., top-down vs. right-left) the cut (i.e, the seamline) will 

flow. To resolve this, strong connections are set between the 

overlap boundary segments and the source/sink nodes. This way 

one is confident that the graph will be split in the desired 

general direction. Finally, a max-flow algorithm (Boykov Y., 

and Kolmogorov V., 2004) is used to define min-cut in the 

graph. Hence, the graph nodes are now classified to either 

belong to the “source” or the “sink” nodes. The border line 

between these two groups resembles the desired seamline. 

Figure 10 shows a sample result of the seamlines generated via 

graph cuts. The line between the left (green) and right side (red) 

is the seamline. Notice how the seamline successfully avoids 

breaklines in building structures.  

 

 

Figure 10. An example of the graph-cut results superimposed on 

the left image 

 

Figure 11(a-c) depict few examples of seamline results around 

human-made objects as well as natural barriers (i.e., canopy 

lines). It can be seen from these examples that the constraint 

mask works well in influencing the seamline behaviour. In these 

images, the pixels on the left of the seamline belong to the left 

image and the ones to the right of the seamline belong to the 

right image. Note also that the results are shown without 

feathering or pixel blending for the pixels closest to the 

seamlines. More seamline examples are also shown in Figure 14 

and Figure 15 

  

 

Figure 11.(a) An example seamline dodging a road sign  
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Figure 11.(b) A seamline passing the shadow line between a 

canopy and a fie 

 

 

Figure 11.(c) A seamline example passing next to a bridge 

 

Since it is clear now how a seamline can be generated for a pair 

of images, the concept can be generalized to mosaic many more 

images. This can be achieved by introducing the concept of a 

“virtual image”. A virtual image is made of two or more images 

that has been seamlined together and are treated as a single 

image. A virtual image can also be combined with another 

virtual image using the aforementioned pairwise seamline 

engine to generate a bigger virtual images as shown in Figure 

12. Using this concept, one can construct a tree that combines 

many images into the desired final mosaic similar to Figure 16. 

 

 

Figure 12. An example depicting the generation of a large 

image mosaic using many images 

 

In the above figure, one can see that there are dependency 

between consecutive pairwise operations. Although true, this 

algorithm runs efficiently in a cluster environment with minimal 

impact on the algorithm’s level of parallelism. Clever ordering 

of the pairwise jobs combined with implementation tricks can 

limit the processing dependency. For example, assuming that 

Images 1-4 in Figure 12 have 60% forward lap with its 

neighbours, one does not have to wait for “virtual image 1” and 

“virtual image 2” to finish before processing “Virtual image 3”. 

Instead, all three processes can be executed simultaneously and 

as the pairwise regions needed for processing are fairly separate 

(i.e., the 10% overlap between images 1 and 3 for example is 

ignored). Figure 13 summarizes the seamline generation 

algorithm through a workflow diagram.  

 

 

Figure 13. A workflow diagram of the seamline engine 

 

 

Virtual Image 3 

Virtual Image 1 Virtual Image 2 

 

Image 1 Image 2 Image 3 Image 4 
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Figure 14. An example of a seamline following running across a 

road 

 

 
 

 

Figure 15. An example of a seamline following a curved road 

 

 

3. CONCLUDING REMARKS 

In this short paper, the authors presented their approach for 

solving the geometric mosaicking problem of ortho-rectified 

imagery. Using watershed segments that are derived from a 

constraint image, a network of possible paths is constructed. 

Any segment of this network serve as the best seamline route 

within its locale. A network based of watershed segments can be 

converted into a weighted graph where the nodes represent the 

watershed segments and the connections between the segments 

are weighted based on the length and values of the pixels falling 

at the boundary between the segments. A global minimization 

can be achieved by connecting source and sink nodes then 

performing graph cut. The result of the graph cuts classifies 

every node into either source or sink, the border between the 

source and sink nodes is the desired seamline. 

The authors have shown that the above procedure can be 

generalized to mosaic many images by introducing the virtual 

image concept. The seamline results in this paper are presented 

without seamline simplification, feathering, or pixel blending 

which remains a subject of future research and development. 

 

 

Figure 16. Four flight lines grouped into a seamless mosaic, the 

yellow lines are the footprints of the images (ADS100 sensor) 
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