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ABSTRACT:

Digital elevation models are one of the basic products that can be generated from remotely sensed imagery. The Semi Global Matching
(SGM) algorithm is a robust and practical algorithm for dense image matching. The connection between SGM and Belief Propagation
was recently developed, and based on that improvements such as correction of over-counting the data term, and a new confidence
measure have been proposed. Later the MGM algorithm has been proposed, it aims at improving the regularization step of SGM,
but has only been evaluated on the Middlebury stereo benchmark so far. This paper evaluates these proposed improvements on the
ISPRS satellite stereo benchmark, using a Pleiades Triplet and a Cartosat-1 Stereo pair. The over-counting correction slightly improves
matching density, at the expense of adding a few outliers. The MGM cost aggregation shows leads to a slight increase of accuracy.

1. INTRODUCTION

Creation of digital elevation models by automatic image match-
ing of airborne or spaceborne optical data is one of the basic
procedures in photogrammetry. While mature and well perform-
ing stereo algorithms exist, there is still room for improvements.
In the last years, the Semi-Global Matching (SGM) algorithm
(Hirschmüller, 2008) has been successfully applied to a variety
of stereo problems.

It has proven to be very robust and provides a good compromise
between computational speed and matching quality. However,
there is still a need for improvements, for example, a pixel-wise
reliability score would be very helpful for further processing such
as DSM fusion and editing.

Additionally, the regularization performed by the SGM algorithm
is not as strong as in other, computationally more demanding
global optimization algorithms, such as total variation based al-
gorithms.

2. RECENT SGM IMPROVEMENTS

The cost aggregation algorithm is the core of the SGM method,
has been used as a basic component by many stereo algorithms,
but itself hasn’t been investigated much. However, recently (Drory
et al., 2014) analyzed SGM from a theoretical standpoint and
derives it as a special case of Belief Propagation. (Facciolo et
al., 2015) proposes improvements to the aggregation algorithm.
However, their contributions were evaluated on Middlebury close
range data (Scharstein et al., 2014), with often has different prop-
erties than close range data.

2.1 Basic SGM algorithm

The main components of SGM are matching cost computation
and cost aggregation.

The matching cost C(p,q) computes a similarity value for po-
tentially matching pixels in two images. Using the epipolar ge-
ometry, matching costs are computed for all potentially matching

pixels in the image pair. For all examples in this paper the Census
transform (Zabih and Woodfill, 1994) is used. The window size
as set to 7 by 9 pixels. In a thorough evaluation of many match-
ing cost functions (Hirschmüller and Scharstein, 2009), Census
turned out to be a very robust and reliable cost function with good
performance.

As the matching costs based on single pixel values or small win-
dows are ambiguous, regularization is used to ensure a well be-
haved reconstruction. For semi-global matching, the matching
step is cast into an energy minimization problem. The following,
discontinuity preserving energy should be minimized:

E(D) =
∑
p

(C(p, Dp) +
∑

p,q∈Np

V (Dp, Dq) (1)

with

V (d, d′) =


0 if d = d′

P1 if |d− d′| = 1

P2 otherwise
(2)

The function C defines the matching cost between the image pix-
els for each pixel location p in the first image and the corre-
sponding pixel in the other image, as defined by the disparity map
D. The pairwise term V (p,q) penalize disparity changes in the
neighborhood Np of each position p. The penalty P1 is added for
all disparity changes equal to one pixel. At larger discontinuities
(disparity change > 1 pixel), a fixed cost P2 is added. This cost
function favors similar or slightly changing disparities between
neighborhood pixels, and thus stabilizes not only the matching in
image areas with weak contrast, but also allows large disparity
jumps in areas with high contrast.

Minimizing Eq. 1 for two dimensional neighborhoods Np is an
NP-complete problem, for which no efficient algorithms exist.
In SGM, the minimization is performed by aggregating the cost
along a path with direction r:
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Lr(p, d) =C(p, d)

+mind′(Lr(p− r, d′) + V (d, d′))

−min(Lr(p− r))

(3)

Summing L for all Ndir directions provides the aggregated cost
S:

S(p, d) =
∑
r

Lr(p, d). (4)

Usually, 8 directions, vertical, horizontal and diagonals are used,
but 16 directions gives better results and reduce streaking arti-
facts.

The disparity map D is computed by finding the minimum aggre-
gated cost S for each pixel p in the first image. Subpixel accu-
racy is archived by fitting a local parabola to the aggregated costs
around the minimum. Further sub-pixel accuracy can be obtained
by sampling the disparity space with 0.5 pixel steps.

Matching is performed from first to the second and second to the
first image, and only consistent disparities passing the left-right
check are kept. Small, independent disparity segments are iden-
tified and removed as outliers. The disparity image is reprojected
into a DSM with the desired projection and grid spacing. Support
data such as confidence layers are also reprojected. Finally any
remaining no-data areas are filled using inverse distance weighted
interpolation.

2.2 Over-counting correction

The connection between SGM and Belief Propagation (BP) has
been established by (Drory et al., 2014). They show that SGM
can be interpreted as the first pass of min-sum BP. Compared to
belief propagation, SGM counts the data term C Ndir times, thus
it should be subtracted when computing S:

S(p, d) =
∑
r

Lr(p, d)− (Ndir − 1) ∗ C(p, d). (5)

2.3 More global matching

The regularization performed by the SGM algorithm is not as
strong as in other, computationally more demanding global op-
timization algorithms. In contrast to global methods, where all
pixels influence each other, SGM performs scanline optimization
(cost aggregation) in different aggregation directions, thus each
pixel in influenced only by pixels located on 8 horizontal, vertical
or diagonal lines. The more global matching (MGM) proposed by
(Facciolo et al., 2015) provides a simple extension to improve the
regularization by additionally considering the already aggregated
previous scanline:

Lr(p, d) =C(p, d)

+
∑

x∈{r,r⊥}

1

2
min
d′

(Lr(p− x, d′) + V (d, d′))

−min(Lr(p− r))
(6)

Thus the update is then influenced by the upper left quadrant of
p, not just the pixels on path r.

2.4 Matching confidence

Per pixel confidence or even accuracy values would be beneficial
for further processing such as data fusion and object extraction.
For example the most important information for most DSM fu-
sion algorithms are per pixel weight maps.

When multiple independent stereo pairs are available, for exam-
ple when computing wide area DSMs (Uttenthaler et al., 2013,
Fujisada et al., 2012), values such as number of matches per pixel
and their height standard deviation can be computed and used
as accuracy values. In the photogrammetric community, the de-
pendency of surface slope on the height error has been used for
medium resolution DEMs, but it is unclear if this can be applied
to VHR satellite data and detailed DSMs that include discontinu-
ities such as building edges and other small scale features.

Many quality metrics based on data computed during the im-
age matching have been proposed in the past (Hu and Mordo-
hai, 2012). These include correlation coefficient, curvature of the
sub-pixel parabola, and others.

For SGM, (Drory et al., 2014) proposed a new uncertainty value
which is based on an estimation of the lower bound of the energy
values. The lower bound Sm for the aggregated cost at each each
pixel p can be computed as sum of directional minima.

Sm(p) =

Ndir∑
i

mini
dp(L

i(dip)−
Ndir − 1

Ndir
C(p, dip)) (7)

Alb(p) = S(p)− Sm(p) (8)

Alb] is the difference between estimated lower bound and aggre-
gated cost, and used as confidence measure. Two other confi-
dence measurements evaluated in this work are the local surface
slope, Aslp and the distance between the first and second minima
of the aggregated cost Ammn.

3. EVALUATION

3.1 Dataset description

The data of the ISPRS Commission I WG 4 satellite stereo bench-
mark dataset (Reinartz et al., 2010) is used to evaluates the relia-
bility measure and the modified cost aggregation.

The test region in Catalonia, near Barcelona has been selected
due to the availability of several stereo satellite datasets and a
good reference data set provided by the Institut Cartogràfic de
Catalunya (ICC).

The evaluation is performed on three test sites, show in Table 1
and Fig. 1.

Test area Lower left
corner

Area type

1. Terrassa (Tr) 417400E
4597300N

City, industrial, residential,
hills

2. Vacarisses (Va) 409100E
4601700N

Wooded hills, quarry, waste
dump

3. La Mola (Mo) 416400E
4608600N

Steep mountainous terrain,
forests

Table 1: Position and properties of the selected test areas. The
size of each area is 4 km x 4 km. Coordinates are in UTM Zone
31 North.
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Figure 1: Cartosat-1 image showing the three test areas.

3.1.1 Reference Data The primary reference dataset used in
this paper is a 3D point cloud acquired by airborne laser scan-
ning with a density of approximately 0.5 points per square meter,
cf. Fig. 2. Only the first pulse returns is used in this study, as
the DSM produced by image matching corresponds to the visible
surface. The LIDAR data for the Terrassa and Vacarisses test ar-
eas was acquired on 26th and 27th November 2007. The LaMola
LIDAR data was acquired on 26th November 2007 and 4th May
2008.

3.1.2 Cartosat-1 The test areas are covered by a Cartosat-1
Stereo pair with a ground resolution of 2.5 m and a stereo angle
of 31◦. Larger shadow areas are visible, as the data has been
acquired on the 5th of March 2008. Fig. 1 shows the Cartosat
AFT image of the three evaluated test areas.

3.1.3 Pleiades data A Pleiades 1A triplet acquired on 8. Jan-
uary 2013 and provided by Airbus Defense & Space was used as
an example for a VHR triplet dataset. The along track viewing an-
gles of the triplet are: −15.5◦, −7.5◦ and 16◦. Thus three stereo
pairs with convergence angles of 8◦, 23.5◦ and 31.5◦ are pos-
sible. This allows reconstruction of fine details in densely build
up areas. Due to the winter acquisition, especially the mountain-
ous La Mola area contains deep shadows without usable image
content.

3.2 Evaluation procedure

The datasets were bundle adjusted using tie points and ground
control provided by the ICC. The generated DSM are thus well
registered to the reference data, with a systematic differences in
the decimeter range.

All datasets involved in this evaluation where performed using
the same basic SGM parameter settings. The used cost function
was Census with a 9x7 window, SGM penalties were set to P1 =
400 and P2 = 800. Images were matched in both directions,
and a left and right check is performed. Then the disparity maps
are reprojected into a DSM in UTM Zone 31 North, with a grid

Figure 2: Shaded reference LIDAR DSM of the Terrassa area.

spacing of 1 meter for the Pleiades data, and 5 m for the Cartosat-
1 data. For the Pleiades triplet, the 3 possible stereo pairs were
matched independently. The pairwise DSMs were averaged to
obtain the final DSM. As almost all further processing steps such
as orthorectification require a DSM without holes, any remaining
no-data values are filled using multi-level B-spline interpolation.

The distance between the LIDAR points and the generated DSM
are computed and evaluated statistically. RMSE and normalized
median absolute deviation (NMAD) for all results (Höhle and
Höhle, 2009). As there is a large time difference between the ac-
quisitions, especially between the Pleiades and the LIDAR data,
changed areas, such as new constructed or demolished building,
quarries and waste dumps have been manually masked out and
were not evaluated. However, there are still some small system-
atic changes between the LIDAR data due to differences in vege-
tation.

To evaluate the influence of the over-counting correction and MGM
cost aggregation independently, two evaluations were performed.

The over-counting correction was evaluated using the classical
SGM algorithm with 16 aggregation directions. Tables 2 and 3
shows that the over-count correction results in a higher complete-
ness of about 1 to 2%. However, slightly worse RMSE, NMAD
and bad pixel values are obtained. Other tests with close range
imagery showed that the over counting correction lead to a de-
crease of outliers. It is unclear why the performance on the satel-
lite datasets is different.

The effect of the MGM extension was evaluated on the same
dataset, but with 8 aggregation directions only, as our current
MGM implementation cannot aggregate along 16 directions. Ta-
bles 4 and 5 show the evaluation results.

In general, very similar accuracy values are archived, with slightly
better values for MGM8. The results on the Vacarisses area are
interesting, here for Cartosat-1, MGM8 has a higher RMSE but
lower NMAD than SGM8, whereas for Pleiades, MGM8 per-
forms better on both. A closer evaluation shows that the north
face of the hill covered by a dark shadow, and only very noisy im-
age data is available for this region. Here MGM8 does provides
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Test area fix OC Complete-
ness

RMSE NMAD BAD

Tr yes 98.67 % 3.44 m 2.06 m 1.87 %
Tr no 97.99 % 3.35 m 1.99 m 1.72 %
Va yes 95.53 % 3.75 m 2.90 m 1.87 %
Va no 94.17 % 3.67 m 2.77 m 1.80 %

Mo yes 89.34 % 7.35 m 3.74 m 6.18 %
Mo no 87.45 % 7.41 m 3.58 m 6.11 %

Table 2: Results for SGM with 16 directions with and without
over-counting (OC) correction evaluation on the Cartosat-1 stereo
pair. The BAD column gives the percentage of pixels with errors
> 10 m.

Test area fix OC Complete-
ness

RMSE NMAD BAD

Tr yes 96.33 % 2.35 m 0.68 m 4.10 %
Tr no 95.40 % 2.31 m 0.68 m 3.96 %
Va yes 92.33 % 3.38 m 1.35 m 8.49 %
Va no 89.91 % 3.93 m 1.33 m 9.24 %

Table 3: Over-counting evaluation on Pleiades Triplet. The La
Mola region was not included, as the very dark shadows without
image details in the mountainous regions lead to large no-data
regions. The BAD column gives the percentage of pixels with
errors > 5 m.

a few small height segments in the shadow area, leading to much
better interpolation of the larger no-data area. In this case, it also
outperforms SGM16, cf. Tab. 3, which in most other cases per-
forms similar to MGM8. Visual inspection of the DSMs shows
that MGM provides slightly denser results, at the cost of also
increasing the size of outlier segments. For this evaluation, dis-
parity segments smaller than 10 pixels were removed as outliers.
When stronger outlier rejection is used, the number of outlier will
be slightly reduced, at the expense of loosing small details, such
as the high residential buildings in the Terrassa data. Figure 3
shows the results on a part of the Terrassa area.

3.3 Confidence measures

Confidence or accuracy measures are evaluated by comparison
of measure with the LIDAR data. The accuracy of a DSM point
depends on various factors, such as image noise, texture, shadow
and local surface slope. A direct modeling of the error is thus not
possible. Instead, most approaches try to use variables such as
local slope or metrics computed by the image matching algorithm
as indicators for the confidence.

The height differences between the LIDAR DSM and the MGM8
DSM are evaluated. Often, statistical accuracy measures, such
as RMSE, are calculated for several slope classes, and used as
indicator for the DSM accuracy. For example, Figures 4, 5, 6

Test area Method Complete-
ness

RMSE NMAD BAD

Tr MGM8 98.28 % 3.39 m 2.02 m 1.81 %
Tr SGM8 98.62 % 3.43 m 2.07 m 1.85 %
Va MGM8 95.51 % 4.11 m 2.83 m 1.82 %
Va SGM8 95.05 % 3.79 m 2.91 m 1.98 %

Mo MGM8 92.79 % 6.65 m 3.60 m 5.39 %
Mo SGM8 92.57 % 6.78 m 3.68 m 5.77 %

Table 4: SGM8 vs MGM8 evaluation on Cartosat-1 stereo pair.
The BAD column gives the percentage of pixels with errors > 10
m.

Test area Method Complete-
ness

RMSE NMAD BAD

Tr MGM8 95.99 2.31 0.68 3.92%
Tr SGM8 96.27 2.35 0.68 4.09%
Va MGM8 92.40 3.01 1.31 7.70%
Va SGM8 92.16 3.56 1.36 8.67%

Table 5: SGM8 vs MGM8 evaluation on Pleiades Triplet. The
BAD column gives the percentage of pixels with errors > 5 m.

Figure 3: Detail of MGM8 results on the Terrassa area. Top row:
Pleiades ortho image, LIDAR reference. Bottom Row: Pleiades
DSM, Cartosat-1 DSM.

and 7 show the NMAD vs slope, aspect, Ammn and Alb. The
behavior of the Cartosat-1 and Pleiades DSM show similar trends.
Due to the large shadow areas, the Vacarisses and La Mola areas
show higher errors for northern aspects.

The height error values are often not normally distributed, and
cannot be completely described by a single number. Instead, joint
histograms of the height error and confidence value show the full
distribution of the errors. For example, Figures 4, 6 and 7 show
similar trends, but the underlying distributions in Fig. 8 look very
different.

Figure 8 visualizes that the height error vs confidence variable
distribution of the Pleiades Terrassa triplet. It can be seen that the
distribution is centered and quite symmetric. A narrow distribu-
tion at low slopes is expected, which should progressively widens
as the slope gets higher. However, there is a tendency that higher
slopes show less variation in height error than low slopes. When
using the aggregated cost distance Ammn, it is visible that the
small distances cause a larger variation, thus it is a better error in-
dicator than the slope. The confidence Alb is proposed in (Drory
et al., 2014). For Alb = 0 all aggregation paths agree on a single
disparity, indicating a confident solution. However, for large Alb

values above 1000, the height error decreases again. Alb is thus
does not provide a strong indication for height errors, here Ammn

performs better.

4. CONCLUSION

This paper investigates the performance of several recently pro-
posed improvements for Semi-Global Matching in the context of
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Figure 4: Dependence of height error on slope for Cartosat-1 (P5)
and Pleiades (Pl) DSMs.
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Figure 5: Dependence of height error on aspect.

DSM generation from satellite data. First the over-counting cor-
rection and the confidence measure proposed by (Drory et al.,
2014), and the More Global Matching modification by (Facciolo
et al., 2015). Using the LIDAR ground truth data, it was found
that the over-counting correction results in minimally denser re-
sults but also minimal loss in accuracy. The MGM aggregation
using 8 directions leads to slightly improved results over 8 direc-
tional SGM aggregation. Further investigation, for example with
other land-cover types should be performed to check if MGM
could increase the performance more significantly in areas with
little texture. The uncertainty measure proposed by (Drory et al.,
2014) did not perform better than existing methods, such as the
energy difference between first and second minima.

Future work could include an extension of the MGM algorithm
for aggregation from multiple directions at the same time, as well
as a more principled evaluation of confidence functions (Hu and
Mordohai, 2012).
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Figure 6: Dependence of height error on difference of first and
second aggregated cost minima Ammn.
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Figure 7: Dependence of height error based on estimated lower
bound of energy Alb.

(a) Slope (b) Ammn (c) Alb

Figure 8: Height error vs. confidence variable joint histograms
for the Pleiades Terrassa triplet. Color is proportional to the log-
arithm of density of each joint histogram bin.
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