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ABSTRACT: 
Owing to the dynamic imaging system, the trajectory model plays a very important role in the geometric processing of high 
resolution satellite imagery. However,  establishing a trajectory model is difficult when only discrete and noisy data are available. In 
this manuscript, we proposed a general robust trajectory model, the penalized spline model, which could fit trajectory data well and 
smooth noise. The penalized parameter  λ  controlling the smooth and fitting accuracy could be estimated by generalized cross-
validation. Five other trajectory models, including third-order polynomials, Chebyshev polynomials, linear interpolation, Lagrange 
interpolation and cubic spline, are compared with the penalized spline model. Both the sophisticated ephemeris and on-board 
ephemeris are used to compare the orbit models. The penalized spline model could smooth part of noise, and accuracy would  
decrease as the orbit length increases. The band-to-band misregistration of ZiYuan-3 Dengfeng and Faizabad multispectral images is 
used to evaluate the proposed method. With the Dengfeng dataset, the third-order polynomials and Chebyshev approximation could 
not model the oscillation, and introduce misregistration of 0.57 pixels misregistration in across-track direction and 0.33 pixels in 
along-track direction. With the Faizabad dataset, the linear interpolation, Lagrange interpolation and cubic spline model suffer from 
noise, introducing larger misregistration than the approximation models. Experimental results suggest the penalized spline model 
could model the oscillation and smooth noise. 
 

1. INTRODUCTION 

 
Different from frame cameras, dynamic imaging system utilizes 
the relative movement between cameras and targets to capture 
two dimensional (2D) images. The trajectory model of linear 
pushbroom cameras, like ZY3, describes satellite movements by 
attitude and orbit models. The movement is one of the critical 
issues in modelling the imaging process. The trajectory models 
of linear pushbroom camera were studied since SPOT-1. 
However, no consensus has been reached as to handling the 
attitude data and ephemeris data on board. Some use the attitude 
data and ephemeris data as the initial value of the simplified 
models, which usually assume the trajectory model is stable and 
could be modelled with no more than 3rd polynomials or two-
body motion model. This hypothesis is sensible when the 
accuracy of attitude and orbit data are limited. Some others 
assume that the attitude data and ephemeris data are with 
sufficient accuracy, so only compensation models are required 
to compensate the errors of trajectory models. Since the precise 
orbit determination and star trackers are used for high resolution 
satellite, the compensation methods can achieve remarkable 
accuracy with fewer ground control points (GCPs).  
 
To obtain m-level resolution, the sampling frequency of scan 
line should be over 1000 Hz. However, the frequency of attitude 
and orbit data is much lower than the imaging system. To get 
the position and attitude of each scan line, trajectory models are 
used. The trajectory models could be classified into two 
categories: the approximation model and the interpolation 
model. The ephemeris and attitude records are used to estimate 
the coefficients of approximation models, such as polynomial 
models. For interpolation models, records are used as true 
values, and different interpolation strategies mean different 
trajectory models. However, there are confliction between these 
trajectory models. Taking ALOS for example, second order 
polynomial model is different from linear interpolation model 

especially when there is oscillation(Schwind et al., 2009). In 
this paper, we propose the penalized spline model, a new 
generic robust trajectory model,  which could model the 
oscillation and reduce noise of trajectory data. 
 
Bundle adjustment is one of the most powerful methods to 
evaluate the trajectory models (Jeong and Bethel, 2010). 
However, its accuracy is limited by the accuracy of GCPs, 
especially the points picking accuracy which is about 0.3 pixels. 
Besides, this method requires a large number of check points 
(CKPs), which is costly. With high precise orbit determination 
(POD), the orbit accuracy after post processing could achieve 
cm-level(Luthcke et al., 2003), which could be used as true 
value for spaceborne photogrammetric applications. Given that 
its accuracy is limited by the accuracy of attitude, the band-to-
band registration (BBR) is used to compare the attitude models. 
 

2. TRAJECTORY MODELS 

2.1. Mathematical Problem 

Building the function model with the discrete trajectory data is 
the mathematical problem. And an interpolation model will be 
used when the value of trajectory model is exactly equal to the 
discrete attitude and orbit data. Otherwise, approximation 
model will be chosen.  
There are two kinds of trajectory data for ZY3: on-board and 
sophisticated. The sophisticated trajectory data is smooth and 
accurate after post processing. However, it is not always 
available, especially in emergency. The on-board attitude data is 
determined by extended Kalman filter (EKF) with star-tracker 
and gyro data, and the orbit data is determined by dual-
frequency GPS receiver. Generally, the on-board trajectory data 
is studied, which is noisy and discrete. The mathematical model 
of trajectory data is: 
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( )i ia a t ε= +                                 (1) 
 
with  
   ia        :  discrete trajectory data 

   ( )ia t   :  trajectory model 
ε        : noise 

The problem turns to be estimating ( )ia t  with discrete 

trajectory data ia . 
 

2.2. Penalized B-Spline 

Because of the stable numerical properties, B-spline is usually 
used as the base function for univariate regression. Any spline 
function of k-degree can be expressed as a linear combination 
of B-splines of k-degree. With the given set of strictly 
increasing knots (where distinct B-spline segments join together) 

, 0, , 2 1l g klτ = + + , the spline has a unique expression: 
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where jc  is the B-spline coefficients of ( )f t , and ( ), 1j kB t+  is 
the j-th B-spline basis function of degree k, whose recursion 
definition is (de Boor, 2001; Dierckx, 1995) 
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Usually, the coincident boundary knots are chosen to construct 
knots lτ  as follows: 
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And the knots should satisfy the Schoenberg-Whitney 
condition(Dierckx, 1995). Then the coefficients jc  with the 
fixed knots could be calculated by the weighted least square 
algorithm.  
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, 0, ,iw i N=   is the weight of attitude ia . In this article, third-

degree B-splines is used for attitude approximation, in which 
3k = . 

The statement above indicate the number and position of these 
knots greatly impact on the results, to be detailed, too few knots 
lead to the under fitting of the data while too many knots lead to 
overfitting. However, solving B-splines with variable knots 
becomes rather complex because it is a non-linearly least-
squares problem(de Boor, 2001; Dierckx, 1995). 
Penalized Spline is a good solution to this problem, which adds 
a penalty to the residual sum of squares. 
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where λ  is the penalty factor, the first term measuring the 
closeness of fitting, and ( )P t  is the penalty function, a measure 
of smoothness. Finite differences of coefficients of adjacent B-
splines is a flexible discrete penalty(Eilers and Marx, 1996). 
This penalty defines the second-degree derivative matrix D  as 
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D .                  (6) 

The corresponding penalty matrix is then 
 

T=P D D .                           (7) 

 
The roughness of penalized splines is controlled by the penalty 
parameter λ , and the number of knots is not a crucial parameter. 
λ  plays a trade-off roles between smoothing and fitting 
accuracy. If 0λ = , the approximation becomes a cubic spline 
interpolation, and the errors are rather small. If λ = ∞ , the 
approximation becomes the weighted least-squares polynomial 
of degree k. The solution of Formula (5) is similar to ridge 
regression. Generalized cross validation(GCV) is used to 
choose an appropriate λ (Golub et al., 1979). 
 

2.3. Linear Interpolation 

Linear interpolation is based on the hypothesis that the rates 
between two nodes are constant. The model below, 
recommended by SPOT(SPOTImage, 2002), is the simplest 
local interpolation method  
 

1
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where 1[ , ]i it t t +∈ .  

2.4. Lagrange Interpolation 

Lagrange interpolation is recommended by Ebner(Ebner et al., 
1993). The n+1 neighbouring attitudes would be used for n-
order Lagrange interpolation, which can be written as follows: 
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when n=1, it equals to the linear interpolation.  

2.5. Polynomials Approximation 

Polynomials are the most common models for attitude (Gugan, 
1987; Konecny et al., 1987). Being widely accepted (Li et al., 
2011; Radhadevi et al., 1998; Teshima and Iwasaki, 2008), 
third-order polynomials are used for modelling attitudes, as 
follows 
 

2 3
0 1 2 3( )f t c c t c t c t= + ⋅ + ⋅ + ⋅ ,               (10) 

 
where variable t  is normalized by start time st  and end time 

et , defined as: 
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−
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−

                           (11) 

 
and jc  is the coefficients of degree j . These coefficients could 
be solved by Least Square method. 

2.6. Chebyshev Approximation 

Chebyshev approximation was recommended by Schwind 
(Schwind et al., 2012), and used for orbit interpolation of 
TerraSAR-X(Breit et al., 2010). It is a polynomial of “the best 
approximation”, which minimizes the maximum norm of 
difference between polynomial of degree n and measurements. 
And it is orthogonal on ( )1,1t′∈ −  with respect to the weight 

function 2 1/2( ) (1 )w t t −′= − . The n degree Chebyshev 
polynomials are defined as follows: 
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the degree of Chebyshev approximation, and 
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Derived from Formula (13), we can get 
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With N  nodes , 0, ,ia i N=  , the coefficients 

, 0, ,jc j n=  ( )n N≤  could be solved by minimizing least 
square. 

2.7. Hermite and Cubic Splines Interpolation 

Cubic splines interpolation, also called piecewise cubic 
interpolation, is continuously differentiable on the interval and 
has continuous second derivate. Comparing with higher degree 
polynomial interepolation, cubic spline is preferred because of 
similar results and avoiding instability due to Runge's 
phenomenon as well. It was adopted by Weser’s generic sensor 
model for pushbroom satellite imagery(Weser et al., 2008).  
 

2 3
0, 1, 2, 3,( )n n n n nf t c c t c t c t= + ⋅ + ⋅ + ⋅           (15) 

 
where n  is the index of the spline segment, ,j nc  is the 

polynomial coefficients of degree j , and t  has the same 
definition as that in Formula(11). 
Cubic splines could be divided, in terms of different slopes and 
boundary conditions, into cubic Hermite spline, cubic Bessel 
spline, cubic Akima spline, complete cubic spline, natural cubic 
spline, etc.(de Boor, 2001). If the angular rates are available, the 
angular values and rates of segments  can be used to determine 
the coefficients, which is the Hermite interpolation, or the first-
order osculating interpolation(Tanygin, 2003).  
In this paper, natural cubic splines are used for attitude 
interpolation, where the second derivatives of boundary equals 
to 0. If the second derivatives of adjacent splines are continous 
at the knots, another constraint function could be introduced, 
and the final equation could be written as: 
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The problem of coefficients is turned into solving the first 
derivate, which is a simple tridiagonal system. Hence, natural 
cubic splines are also a special case of Hermite interpolation. 
With Formula (16) and boundary condition, the coefficients 
could be solved. 
 

3. EXPERIMENTS 

Trajectory models, including linear interpolation, third-order 
polynomials, Chebyshev approximation, Lagrange interpolation 
and cubic spline are compared with the proposed penalized 
spline model.  
 
3.1 Orbit Models 

Ephemeris data of ZY3 on Aug. 23, 2012 is used in the 
experiments. Since the approximation models depend on the 
orbit length, the total 12 scenes are used to evaluate the orbit 
models. Because the sophisticated ephemeris is discrete, the 
orbit models are compared to Lagrange interpolation 
recommended by Toutin (2004). The difference between 
Lagrange interpolation and other models including penalized 
spline, Chebyshev approximation and cubic spline model is 
within 2 mm. We could conclude that they have the same 
accuracy when sophisticated ephemeris is available/applied. 
Linear interpolation and third-order polynomials introduce an 
error of about 0.5 m in three axes respectively.  
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The mean and standard variance (STDEV) of the difference 
between the orbit models based on on-board data and 
sophisticated ephemeris are listed in Table 1. 
 
Table 1 Mean value and variance of the differences between the 

attitude data and sophisticated ephemeris 

Orbit 
Models 

X (m) Y (m) Z (m) 

Mean STDEV Mean STDEV Mean STDEV 

Penalized 
Spline 0.09 0.29 0.82 0.54 3.60 0.48 

Third-order 
Polynomials 0.14 0.49 0.79 0.65 3.55 0.59 

Chebyshev 
Polynomials 0.04 0.26 1.03 0.55 3.51 0.39 

Linear 
Interpolation 0.40 0.49 0.35 0.89 3.16 0.88 

Lagrange 
Interpolation 0.10 0.51 0.83 0.93 3.60 0.93 

Cubic Spline 0.10 0.54 0.83 0.99 3.60 1.00 

 

 
Figure 1. Differences between the attitude data and 

sophisticated ephemeris. 

 
Chebyshev approximation has the minimum STDEV, whereas 
the cubic spline has the largest variance. If we look insight into 
the differences, Chebyshev polynomials have a smoother result 
than the penalized spline (see Figure. 1) as the former have less 
parameters. However, it would introduce larger errors if the 
orbit becomes longer. And for this reason, the STDEV of third-
order polynomials is larger than Chebyshev polynomials. The 
interpolation models, including linear interpolation, Lagrange 
interpolation and cubic spline interpolation have larger variance, 
since they use the on-board data as the true value. Differences 
between the on-broad data and sophisticated ephemeris are 
illustrated as X, Y, Z in Figure 1. There are significant noise, 
and the result in Table 1 is expectable. The penalized spline 
model has smaller STDEV than the interpolation models, 
because the GCV are used to estimate the noise. Owing to 
inaccurate noise estimation, the penalized parameter λ  is 
underestimated.  
 
However, if the orbit length is extended to 30 scenes (about 222 
seconds), STDEV of Chebyshev polynomials in the three axes 
become 0.33m, 1.69 m and 1.66 m respectively, whereas 
STDEV of the penalized spline model are about 0.28m, 0.62m 
and 0.50m respectively. In the case of  standard scene, the best 
result is generated by third-order polynomials, whose STDEV 
in three axes become 0.03m, 0.11 m and 0.19 m respectively, 

which means the orbit within 8 seconds could be fitted by third-
polynomials with a very high accuracy.  
 
3.2 Attitude Models 

The Dengfeng dataset and Faizabad dataset are used in the 
experiment. The Dengfeng dataset was obtained on 02/03/2012 
and the Faizabad dataset was obtained on 9/01/2013. The two 
scenes have abundant textures, which could have high accurate 
BBR accuracy when phase correlation is used to determine the 
shift between two bands. 
 
The BBR of ZY3 multispectral images is influenced by interior 
orientation parameter (IOP) errors, attitude errors and height 
errors (Pan et al., 2016). Since each scanline has the same 
attitude errors and each column has the same IOP errors, the 
average misregistration is used to evaluate the IOP error and 
attitude errors. The pitch angle and roll angle play a much more 
important role than yaw angle for narrow field of view push 
broom cameras.  
 
The oscillation problem, also called “jitter” in some articles, is 
common for linear pushbroom cameras. Utilizing the BBR of 
ZY3 multispectral raw data, Tong et al. (2015) proved that there 
is oscillation problem for ZY3 multispectral data. However, 
after sensor correction procedure, the misregistration of ZY3 is 
not severe. It means the oscillation has been detected by the 
gyros and star-trackers. The frequency of ZY3 attitude is 4 Hz, 
higher than the Nyquist sampling frequency of the oscillation. 
Therefore, the misregistration is caused by the attitude model 
and noise. 
 
Third-order polynomials are used as attitude model. The 
misregistration of the Dengfeng dataset and Faizabad dataset are 
illustrated in Figure 2 and 3. As the figures show, there are 
significant oscillations, and the frequencies of the oscillations 
are different between the two datasets. Third-order polynomials 
could not model oscillations, even detected by attitude 
measurements.  
 

 
(a) Across-track 
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(b) Along-track 

Figure 2 The band-to-band misregistration of Faizabad dataset 
with third-order polynomials. 

 

 
(a) Across-track 

 
(b) Along-track 

Figure 3 Band-to-band misregistration of Dengfeng dataset with 
third-order polynomials. 

Misregistration in the across-track direction is between -0.84 
pixels to 0.81 pixels, while the along-track is between -0.50 
pixels to 0.50 pixels. However, the oscillation in the Faizabad 
dataset is much smaller than that of the Dengfeng dataset. And 
the IOP errors of Faizabad dataset could be identified in both 
the across-track and along-track direction. The IOP error of the 
two datasets are different, especially between CCDs. The IOP of 
ZY3 multispectral changes over time. 
 
Cubic spline, a classic interpolation model, is used as an 
attitude model in the experiment. Then the misregistration of 
the Dengfeng dataset and Faizabad dataset are shown in Figure 
4 and 5.  More strips could be identified in both these two 
datasets. Compared with that of third-order polynomials, the 
misregistration of the Faizabad dataset is larger in both the 
along and across track directions. The noise of attitude data 
causes misregistration. In the first 2000 rows along the track, 
the misregistration ranges from -0.15 to 0.12 pixels, much 
larger than third-order polynomials. On the contrary, the 
misregistration of cubic spline is much smaller than that of 
third-order polynomials, meaning the cubic spline model could 
model the oscillation. And the residual misregistration in both 
along and across track direction is from -0.12 to 0.12 pixels.  

 
(a) Across-track 

 
(b) Along-track 

Figure 4 Band-to-band misregistration of Faizabad dataset with 
cubic spline. 
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(a) Across-track 

 
(b) Along-track 

Figure 5 The band-to-band misregistration of Dengfeng dataset 
with cubic spline 

 
When the penalized spline is used to model attitude, the 
misregistration of Faizabad dataset is reduced to 0.05 pixels, 
smaller than that of both the third-order polynomials and cubic 
spline. But its result of the Dengfeng dataset is close to that of 
the cubic spline model. Since the oscillation in the Dengfeng 
dataset shows a very high signal to noise ratio, it is difficult to 
estimate the noise when signal dominate the attitude data.  
 

In the Faizabad dataset, interpolation models suffer from noises, 
as illustrated in Figure 7.  The root mean square errors (RMSE) 
of misrigstration caused by attitude models are calculated and 
shown in Table 2. The performance of linear interpolation is 
better than the Lagrange interpolation and cubic spline model. 
The third-order polynomials have the same result as the 
Chebyshev approximation. Due to larger oscillations in the roll 
angle, apprximation models have similar RMSEs as 
interpolation models, but with a better performance in the 
along-track direction. The best result is derived from the 

penalized spline model, which could model the attitude 
oscillation and reduce noises both along and across the track. 

 

 
(a) Across-track 

 
(b) Along-track 

Figure 6 Band-to-band misregistration of Faizabad dataset with 
penalized spline. 

 

 
(a) Across-track 
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(b) Along-track 

Figure 7 Band-to-band misregistration of Faizabad dataset 
caused by the attitude errors. 

 

 
(a) Across-track 

 
(b) Along-track 

Figure 8 Band-to-band misregistration of the Dengfeng dataset 
caused by the attitude errors. 

 
In the Dengfeng dataset, approximation models suffer from 
oscillation and its misregistration is much larger than that of 
interpolation models, which could model the oscillation. The 
penalized spline performs the same with cubic spline. And 
Lagrange interpolation got the best result, slightly better than 
the cubic spline and the penalized spline model. 
 

 

 

Table 2 RMSE of misregistration of band 1 to band 3 caused by 
attitude errors. 

Attitude Model 
Dengfeng Faizabad 

Across-
track 

Along-
track 

Across-
track 

Along-
track 

Penalized Spline 0.051 0.045 0.016 0.011 
Third-order 
Polynomials 0.568 0.329 0.046 0.018 

Chebyshev 
Polynomials 0.569 0.329 0.046 0.017 

Linear 
Interpolation 0.076 0.052 0.037 0.034 

Lagrange 
Interpolation 0.050 0.043 0.041 0.038 

Cubic Spline 0.051 0.045 0.046 0.042 
 

CONCLUSIONS 

Building the trajectory model with discrete noisy data is a very 
hard task during the photogrammetric processing, because the 
real status of cameras in space are not clear. In this manuscript, 
we proposed the penalized spline model, a robust trajectory 
model, for ZY3 satellite, which could model the oscillation and 
overcome noises. The balance between the fitting accuracy and 
noise smoothing is controlled by a penalty parameter λ , which 
is estimated via the generalized cross-validation. The penalized 
spline model is compared with five other trajectory models, 
including third-order polynomials, Chebyshev polynomials, 
linear interpolation, Lagrange interpolation and cubic spline 
model. 
Validation results show the penalized spline performs as well as 
Lagrange interpolation, cubic spline and Chebyshev 
approximation when sophisticated ephemeris is provided, and it 
outperforms other interpolation methods when on-board data 
are available. Meanwhile, its accuracy would not decrease with 
the increasing orbit length. In the case of standard scene, the 
third-order polynomials have the best result.  
The band-to-band misregistration of ZiYuan-3 multispectral 
images is used to evaluate attitude models. The Dengfeng 
dataset and Faizabad dataset are used in the experiment. Results 
show that third-order polynomials and Chebyshev 
approximation could not model the oscillation of attitude. Large 
attitude errors would be introduced by the oscillating attitude. 
Lagrange interpolation shows a better performance than the 
linear interpolation and the cubic spline model. However, all the 
three interpolations above suffer from attitude noises.  By 
contrast, the proposed penalized spline model could model the 
oscillation while be robust against noises. 
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