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ABSTRACT: 

 

The extraction of land cover information from remote sensing data is a complex process. Spectral information has been widely 

utilized in classifying remote sensing images. However, shadows limit the use of multispectral images because they result in loss of 

spectral radiometric information. In addition, true reflectance may be underestimated in shaded areas. In land cover classification, 

shaded areas are often left unclassified or simply assigned as a shadow class. Vegetation indices from remote sensing measurement 

are radiation-based measurements computed through spectral combination. They indicate vegetation properties and play an important 

role in remote sensing of forests. Airborne light detection and ranging (LiDAR) technology is an active remote sensing technique 

that produces a true orthophoto at a single wavelength. This study investigated three types of geometric lidar features where NDVI 

values fail to represent meaningful forest information. The three features include echo width, normalized eigenvalue, and standard 

deviation of the unit weight observation of the plane adjustment, and they can be derived from waveform data and discrete point 

clouds. Various feature combinations were carried out to evaluate the compensation of the three lidar features to vegetation detection 

in shaded areas. Echo width was found to outperform the other two features. Furthermore, surface characteristics estimated by echo 

width were similar to that by normalized eigenvalues. Compared to the combination of only NDVI and mean height difference, those 

including one of the three features had a positive effect on the detection of vegetation class. 
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1. INTRODUCTION 

Spectral information has been widely used in remote sensing 

image classification. However, one limitation of the use 

of multispectral images is related to the existence of shadows 

and the loss of spectral radiometric information. Many 

atmospheric conditions or topographic effects, including 

elevated urban objects, may result in errors in multispectral 

vegetation indices, and the true reflectance in shaded areas may 

be underestimated. In land cover classification, shaded areas are 

often left unclassified or simply assigned as a shadow class. It is 

challenging to classify true land cover types under shadows 

where the illumination is from a different angle than the view. 

In forest applications, the level of information extraction relies 

on high quality image data. A vegetation index from a remote 

sensing measurement is a radiation-based measurement 

computed from spectral combinations. It can indicate vegetation 

properties and plays an important role in forest remote sensing. 

For example, a normalized difference vegetation index (NDVI) 

makes good use of the large difference in vegetation reflectance 

between the visible and near-infrared (NIR) parts of the 

spectrum. 

 

In theory, vegetation indices can be a powerful means of 

deriving canopy properties both spatially and temporally. 

Unfortunately, they can be affected by many factors, such as the 

sensor calibrations and the atmospheric conditions, which are 

unrelated to the biophysical properties. The values of indices 

such as NDVI for a given vegetation target may differ due to the 

radiometric processing applied to the image data. Areas of high 

or moderate relief often comprise various ecosystem properties, 

such as various compositions for grass-shrub-tree populations 

and forest management practices. 

 

Airborne light detection and ranging (LiDAR) technology is an 

active remote sensing technique that produces a true orthophoto 

at a single wavelength. There is less dependence on the weather 

compared with an optical sensor. The non-spectral information, 

such as the spatial relationship, can be a better way of 

characterizing the land cover classes of interest. Since 

commercial airborne LiDAR systems have been available, the 

incorporation of multispectral images and LiDAR data has 

become popular in various applications (Holmgren et al., 2008; 

Lee and Shan, 2003). The variations in the land surface 

elevation, known as the Digital Surface Model (DSM), are the 

most powerful features derived from the LiDAR data. Several 

studies have demonstrated that the inclusion of the LiDAR 

elevation data benefits the determination of tree parameters (Lin 

et al., 2011; Lo and Lin, 2013; Wu et al., 2014) and the 

separation of classes that have similar spectral characteristics 

(Lee and Shan, 2003; Rottensteiner et al., 2005). Therefore, 

classification accuracy can be enhanced. However, apart from 

the fundamental elevation features, there are other potential 
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LiDAR-derived features that may also enrich the classification 

or bring extensive benefits. 

 

Many studies on point cloud classification use point-based 

information. In reality, the information is not represented by 

single points but by meaningful image objects. It is beneficial to 

analyse the object-based LiDAR features and assess the 

representation of the characteristics of illuminated surfaces. The 

aim of this paper is to evaluate using object-based LiDAR-

derived features where NDVI values fail to represent the 

meaningful forest information due to the existence of shadows.   

 

2. METHODOLOGY 

2.1 Background 

Feature selection plays a crucial role in any image analysis 

process. The assumption is often made that the incorporation of 

additional features will enhance classification accuracy, but it is 

the selection of the most suitable factors that should be 

considered. Guo et al. (2011) assessed the importance of the 

features derived from aerial LiDAR (multi-echo and full-

waveform) and aerial multispectral image data for dense urban 

scenes. It was found that the most significant feature is the 

relative height of a LiDAR point. The height difference (Δz), 

the Blue channel, the Red channel, the echo amplitude (A), and 

the echo cross-section (σ) are the five most important features 

among the 12 features investigated. The current status of remote 

sensing image classification incorporates multisource data, such 

as the spectrum of visible, infrared, and microwave regions. In 

addition, secondary information, such as texture, context, and 

terrain features, are often incorporated. However, a further 

consideration should be acquiring complementary spectral and 

spatial characteristics to improve the classification accuracy 

further. 

 

Differing from LiDAR point clouds, the remotely sensed images 

are stored in raster form. Each element is known as a pixel that 

is a quantized count. The counts are often converted to physical 

values to represent the characteristics of the illuminated surfaces. 

The raster images represent the measurements in the individual 

bands of a remotely sensed image of interest. With the selected 

features, the pattern recognition process links the raw data to a 

user-defined label set. It is noted that an object or a pixel is 

related to a label of land cover. Traditional methods for land 

cover mapping use a pixel-based analysis in order to explore the 

spectral differences of various features. An object-oriented 

classification has been a popular method for digital image 

analysis.  

 

2.2 Define Object boundaries 

In object-based classification, the meaningful features are based 

on similar spectral or spatial properties of the remotely sensed 

imagery or the LiDAR data. Applying an object-oriented 

approach refers to analysing features in object space rather than 

in pixel space. The technique of image segmentation is 

employed to convert an image into multiple objects. The 

process ends when the smallest increase in similarity exceeds a 

user-defined threshold. The segmentation divides the original 

image into regions comprised of similar spectral response. After 

breaking down a scene into various objects, objects can be 

associated with various properties, such as different spectral 

indices, multi-echo LiDAR attributes, or waveform attributes.  

 

The objects from an image are usually created by implementing 

image segmentation. These are the boundaries of homogeneous 

areas of land cover with similar spectral properties. Therefore, 

all the pixels within an object are forced into one class in an 

object-based classification. 

 

Trimble
®
 eCognition

®
 is commercial software developed by 

Definiens of Munich, Germany. In this study, the algorithm 

using multi-resolution segmentation available in eCognition 

was executed to create meaningful objects. Therefore, feature 

analysis is based on the object space rather than the point space. 

The algorithm depends on four criteria—scale, colour, 

smoothness, and compactness. The size of the image objects is 

closely related to the scale parameter which determines the 

maximum allowed heterogeneity within an object. With an 

increase in the scale parameter, fewer objects are created. In 

other words, homogeneous areas have large objects and 

heterogeneous areas have smaller objects. 

 

The eCognition software allows users to specify the 

contribution of an individual image layer for image 

segmentation. The weight of each image layer can be set within 

segmentation settings. A higher weight for an image layer 

indicates that more weight will be assigned to that layer’s pixel 

information. In this study, only the multispectral NIR band was 

considered for the colour criteria and was assigned a value of 1 

for the weight. For other image layers, a value of 0 was set. The 

criteria of smoothness and compactness are related to the shape 

factors. They were both set as default values which were the 

values of 0.1 and 0.5, respectively. 

 

2.3 Object-Oriented LiDAR Features 

Once objects are created by image segmentation, they can be 

associated with various attributes or features. In other words, a 

set of features, also called a pattern, is exploited to describe an 

object. The well-known NDVI is considered as a multispectral 

attribute. The NDVI index is a ratio based on the different 

spectral response in the visible red and NIR bands. The range of 

NDVI values are between -1 and +1. It is one of the most 

commonly used vegetation indices.  Compared to the original 

spectral bands, spectral indices are more useful variables for 

determining the fundamental biophysical parameters of 

vegetation. 

 

The object features derived from point clouds are descriptive 

statistics calculated based on the points within the object 

boundaries. The statistics used can vary, including mean, 

standard deviation, minimum, maximum, median, or mode. In 

this study, the mean and the standard deviation of selected point 

properties for each object are calculated. The selected point 

properties are those based on the height difference (dz), the 

echo width (W), NormaSigma0, and the normalized eigenvalues. 

Since roughness information could indicate possible vegetation 

surfaces, the degree of surface roughness based on discrete 

point clouds was estimated. Two types of attributes, the 

normalized eigenvalue (N_Eigen) and NormaSigma0, were 

investigated. The NormalSigma0 attribute represents the 

standard deviation of the unit weight observation of the plane 

adjustment (Pfeifer et al., 2014). The attribute 

NormalSigma0=sqrt(sum(r*r)/n-u), with sum(r*r) being the sum 

of all squared residuals for the n data points. The value u is the 

number of unknown parameters, which equals four (i.e. a, b, c, 

and d). A nonplanar region leads to a higher NormalSigma0. 

The N_Eigen is a derivative based also on a three-dimensional 
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fitting plane, which is λ0 / (λ2 + λ1+ λ0), where λ2 ＞λ1 ＞λ0 are 

the three sorted eigenvalues. If the neighbouring points lie on a 

plane, such as a building roof, the minimum eigenvalue (i.e. λ0) 

should be very close to 0. Conversely, if λ0 is not negligible, the 

group of points does not lie on a plane. The LiDAR features 

studied are: 

 

Wmean: the mean of the echo widths of points within an 

individual object, 

WSTD: the standard deviation of the echo widths of points within 

an individual object, 

dzmean: the mean of the height differences of points within an 

individual object, 

dzSTD: the standard deviation of the height differences of points 

within an individual object, 

NormalSigma0mean: the mean of NormalSigam0 of points within 

an individual object, 

NormalSigma0STD: the standard deviation of NormalSigam0 of 

points within an individual object, 

N_Eigenmean: the mean of N_Eigen of points within an 

individual object, and  

N_EigenSTD: the standard deviation of N_Eigen of points within 

an individual object. 

 

2.4 Feature Combinations 

To investigate the effects on classification accuracy with and 

without the LiDAR-derived features where shadows exist in the 

multispectral imagery, several object feature combinations are 

investigated as shown in Table 1. A standard classifier, the 

Decision Tree classifier, is exploited to classify the types of 

vegetation, non-vegetation, buildings, and ground features.  

 

Combination No. of 

features 

Object Features 

A 2 NDVI, dzmean 

B 3 NDVI, dzmean, dzSTD 

C 3 NDVI, dzmean, Wmean 

D 3 NDVI, dzmean, WSTD  

E 3 NDVI , dzmean ,  

NormalSigma0mean 

F 3 NDVI,  dzmean,  

NormalSigma0STD 

G 3 NDVI, dzmean, N_Eigenmean 

H 3 NDVI, dzmean, N_EigenSTD 

Table 1. Feature combinations investigated 

 

In addition, the evaluation of a learning scheme is not simple. 

The performance on the training data set is not an absolute 

indicator of the performance of on the independent test data. 

Another issue is that classifier performance is often predicted 

based on limited data. For example, since training data for land 

cover classification frequently relies on special human expertise, 

obtaining a large data set seems impossible. One of the practical 

techniques dealing with this issue is to carry out “repeated 

cross-validation”. Weka is an open source software for data 

mining tasks. It provides K-fold cross-validation to train and 

evaluate how well the learned model generalizes. Cross-

validation is a way of improving the repeated holdout method. 

Therefore, the 10-fold cross-validation is applied in this study. 

A 10-fold cross-validation divides the dataset into 10 parts, 

holds out each part in turn, and averages the results. Each data 

is used once for testing and nine times for training. 

 

3. DATASETS 

This study utilizes data from a Riegl LMS-Q680i full-waveform 

laser scanner, the specifications for which can be found in Riegl 

(2012). A wavelength of 1550 nm is used, and the laser beam 

divergence angle (β) is 0.5 mrad. It is noted that the echo width 

from the Riegl software package corresponds to the full width at 

half maximum (FWHM) of the pulse, with a value of 0.1 ns. 

The full-waveform data were collected over Taichung, Taiwan, 

in July 2011. The data were captured at altitudes of 

approximately 1200 m, with a mean point density of greater 

than three measurements per square meter. In addition, 

multispectral imagery was captured from a Microsoft UltraCam-

xp, which provided color (RGB) and NIR channels. With those 

bands provided, the NDVI of each image pixel could be 

calculated. The data were captured at an altitude of 

approximately 1700 m in 2011.  

 

Figure 1 and Figure 2 illustrate the sites for the training data 

and the test data, respectively.  It is noted that the training data 

and test data were collected from different flight strips. Table 2 

shows the percentage of shaded areas and building areas, where 

the transferability of the LiDAR features between different 

strips was investigated.  

 

 

Figure 1. Site for training data 

 

 

Figure 2. Sites for test data 
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Training site Test_site A Test_site B Test_site C

shaded area 29.84 33.50 36.13 39.05

building 16.94 0.00 17.28 12.86  

Table 2. Sample percentage of shaded and building areas over 

the training site and the test site  

 

4. RESULTS 

Table 3 shows the overall accuracy of the various feature 

combinations. Among the eight feature combinations 

investigated, the three best combination are {NDVI, dzmean, 

Wmean}, {NDVI, dzmean, N_Eigenmean}, and {NDVI, dzmean, 

NormalSigma0mean}. Compared to the traditional feature 

combination, which includes dz and NDVI, those with 

additional LiDAR features are more resistant to shaded areas. 

With the additional dzSTD added, the characteristics of the 

vegetation can be enhanced. In general, the dzSTD, the echo 

width, N_Eigen, and NormalSigma0 indicate different degrees 

of surface roughness. Therefore, the details for the vegetation 

characteristics are revealed. This study has demonstrated that 

among the four roughness attributes, Wmean provides the most 

significant benefit to the classification results. The N_Eigenmean 

feature is slightly better than the NormalSigma0mean. This 

indicates that when the echo width is not available, the best 

alternative feature is the N_Eigenmean feature. Such features can 

be easily derived from discrete point clouds. In contrast, in 

terms of the performance of the statistics of interest, the mean-

based features are usually more helpful than the STD-based 

features. 

 

Combinations Train_site Test_site A Test_site B Test_site C
Average

accuracy
Rank

A 88.31 76.51 78.53 73.15 79.12 8

B 96.37 95.57 89.53 87.44 92.23 6

C 99.60 98.03 99.48 96.28 98.35 1

D 95.97 96.55 97.47 91.63 95.40 5

E 98.39 96.55 93.72 98.14 96.70 3

F 93.15 96.06 80.10 87.44 89.19 7

G 97.98 97.04 96.34 97.21 97.14 2

H 98.39 98.03 94.24 93.95 96.15 4  

Table 3. Overall accuracy of various feature combinations  

 

5. CONCLUSIONS 

This study investigated the object-oriented LiDAR features to 

compensate for shaded areas where traditional vegetation 

indices often fail to represent meaningful vegetation 

characteristics. Instead of selecting the neighbouring buffer 

distance, the LiDAR features are derived statistics of point 

properties within an individual object boundary. In addition to 

the popular height difference (dz) feature, the mean of the echo 

widths of points Wmean is a beneficial feature for characterizing 

the vegetation. The overall accuracy was improved from 

79.12% to 98.35%. Comparing the performance of the 

combination with the additional dzSTD feature, the overall 

accuracy was improved from 92.23% to 98.35%. For those 

LiDAR systems without recording waveforms, N_Eigenmean is a 

beneficial feature which can be derived from traditional 

discrete-return point clouds. 
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