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ABSTRACT: 
 
Satellite-based hyperspectral sensors provide spectroscopic information in relatively narrow contiguous spectral bands over a large 
area which can be useful in forestry applications. This study evaluates the potential of satellite hyperspectral Resurs-P data for forest 

species mapping. Firstly, a comparative study between top of canopy reflectance obtained from the Resurs-P, from the airborne 
hyperspectral scanner CASI and from field measurement (FieldSpec ASD 4) on selected vegetation cover types is conducted. Secondly, 
Resurs-P data is tested in classification and verification of different forest species compartments. The results demonstrate that satellite 
hyperspectral Resurs-P sensor can produce useful informational and show good performance for forest species classification 
comparable both with forestry map and classification from airborne CASI data, but also indicate that developments in pre-processing 
steps are still required to improve the mapping level. 

 
 

1. INTRODUCTION 

One of the main applications of remote sensing in the last decade 
is monitoring of forest cover (Xie et al., 2008). Classification and 
discrimination of forest types from local to global scales at a 

given time point or over a continuous period need high spectral 
and spatial resolution images generated by remote sensors. 
Satellite-based hyperspectral sensors provide spectroscopic 
information in relatively narrow contiguous spectral bands over 
a large area and offer new opportunities for better classification, 
increased reliability and enhanced visual quality. 
The use of satellite hyperspectral images (e.g., Hyperion EO-1 
and CHRIS PROBA) has been discussed extensively in the 

literature for identification of forest cover features, managing and 
conserving a biodiversity of forest areas (Thenkabail et al., 2004; 
Walsh et al., 2008; Kattenborn et al., 2015). Several studies 
revealed that forest application results from satellite 
hyperspectral data had a good match with results from airborne 
hyperspectral data (Townsend & Foster, 2002; Smith 2003). 
However, some authors stressed that hyperspectral satellite data 
demonstrated poor performance related to airborne data in such 
tasks as forest species mapping and canopy water content (Ustin 

et al., 2002; Ceballos et al., 2015).  

The satellite hyperspectral sensor Resurs-P is a new mission that 
was launched in December 2014. The main purpose of the 
mission is region and local monitoring of natural resources: 
determining the type and state of the vegetation and soils, and 
identifying environmental pollution and water monitoring. The 
quality of Resurs-P data and its potential for various applications 
has not yet been fully explored. Considering these, a study was 
initiated to evaluate the data quality and compare the potential of 

hyperspectral Resurs-P images for forest application. More 
specifically, the objectives of the study were: 1/ to compare 
spectral response between Resurs-P, CASI and ASD data, and 2/ 
to test whether the classification of hyperspectral Resurs-P 
satellite data can reveal approximately the same forest species 
achieved from airborne hyperspectral CASI data. 

2. METHODS 

2.1 Study area 

The study site is located in the Moravian-Silesian Beskydy 
Mountain ranges of the Czech Republic (Figure 1). The site (180 
47’ E, 490 37’ N, at an altitude of 500–900 m ASL) is covered 
by managed forest stands of ages approximately 25 to 65 years, 
with Norway spruce (Picea abies) and European beech (Fagus 

sylvatica) as the dominant tree species and scattered admixture 
of Scots pine (Pinus sylvestris), silver fir (Abies alba) and 
European larch (Larix decidua). Study area (54 km2) is limited 
by availability of both remote sensing and field data. 
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Figure 1. Location of study area. Spatial extent of remote 

sensing and field data 

2.2 Data 

2.2.1 Remote sensing data: A satellite hyperspectral Resurs-
P image has been acquired by Research Center for Earth 
Operative Monitoring of Russian Federation Space Agency in 
spectral range of 461 – 1000 nm with spatial resolution of 30 m 

on June 6th 2015. The radiometric and geometric correction of 
the Resurs-P image was performed by the vendor. The 
atmospheric correction is described in 2.3. An airborne 
hyperspectral CASI image was acquired in spectral range of 368 
– 1041 nm with spatial resolution of 1 m on June 5th 2015 (Table 
1). The radiometric correction of the airborne image was 
performed using CaliGeo 4.6.4 (Spacim) software and ENVI 4.4. 
The atmospheric correction was done in ATCOR4 6.0 (ReSe 

Applications Schlaepfer) and the georectification was done in 
PARGE 3.2. 
 

HS 
sensor 

Spect. 
range 
nm 

Spect. 
bands 

n 

FWHM 
nm 

Spat. 
resol. 

m 

Swath 
width 
km 

Resurs-

P 

405 - 

1000 

130 2,4 ..7,4 30 35 

CASI 368 - 
1041 

72 9 1 1,1 

Table 1. Hyperspectral sensor characteristics. FWHM – full 

width at half maximum  

2.2.2 Field data: Field spectral reflectance have been 

collected by the FieldSpec®4 spectroradiometer (ASD) in 
spectral range of 350 – 2500 nm on June 5th 2015. Elements of 
the landscape having a homogenous surface and unchanged 
physical characteristics during the day were selected for 
collecting spectra. Field spectral reflectance were used for 
atmospheric correction of remote sensing data and for evaluation 
of the reliability of transmission of test surface spectral properties 
from Resurs-P data. The total ozone column, water vapor column 

and aerosol optical thickness were measured during the airborne 
and satellite data acquisition by multi-band sun photometer 
MICROTOPS II on June 5th and June 6th 2015.  
Field data of forest species distribution were collected by the 
Institute of Forest Ecosystem Research (IFER, www.ifer.cz) in 
2013 included an inventory field plots scattered across the study 
area with a distance of about 1 km. The sampling plots were 
circular with an area of 500 m2 (radius of 12.62 m). We used 68 
sampling plots (39 spruce, 14 beech and 15 mixed (spruce and 

beech)) for ROIs assignment in species classification of Resurs-
P and CASI data and validation of classification. 
A vector forest inventory map was provided by the Institute of 
Forest Management Brandys nad Labem of Agriculture of the 
Czech Republic (http://www.uhul.cz/kdo-jsme/o-uhul). The map 
contained forest management planning data that had been revised 
in 2010. These data were collected according to the Czech forest 
management planning standard (Stanek et al., 1997). Forest 

inventory data contained for each compartment more than 30 
characteristics about the species composition, area, age and 
heights of trees, type of forest, merchantable biomass, forest tier 
and others. Based on information from forest inventory map 
about tree species and share of tree species, we classified 1600 
forest compartments from the study area on 6 classes: spruce 
(more than 85 % of spruce), beech (more than 85 % of beech), 
mixed 1 (50 % spruce, 50 % beech), mixed 2 (70 % spruce, 30 % 

beech), mixed 3 (30% spruce, 70 % beech) and mixed 4 (spruce 
70%, pine 30 %). The classified forest compartments were used 
for validation of Resurs-P and CASI classification. 
 
2.3 Atmospheric correction of Resurs-P image 

Two steps preceded the atmospheric correction of Resurs-P 
image: 1/ deriving a radiometric correction coefficients, and 2/ 
approximation of spectral signature. 
 
2.3.1 Deriving a radiometric correction coefficients: 
Radiometric correction coefficients (K) were derived for Resurs-
P image to adjust the radiometric correction: 

𝐾 = 𝑟𝑎𝑑𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒/𝑟𝑎𝑑𝑓𝑖𝑒𝑙𝑑  (1) 

where radsatellite is a top of the atmosphere (TOA) radiance in each 
spectral band of Resurs-P image, radfield – TOA of ASD data. To 
recalculate field spectral top of canopy radiance (from ASD) to 
TOA radiance the model of atmospheric transmittance 
MODTRAN 5.3 was used. The input parameters for the model 
were obtained from nearby weather stations and field 
measurements of the sun photometer. A filter response function 

file with information about spectral bands, FWHM and spectral 
sensitivity of the sensor was generated for the model. 
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2.3.2 Approximation of spectral signature: The junction of 

arrays of hyperspectral data from two receiving detectors has 
caused the presence of "comb" structure of the spectrum in the 
wavelength range of 631-635 nm. A Savitzky–Golay filter 
(Savitzky & Golay, 1964) was applied to a data set to smooth the 
data and to increase the signal-to-noise ratio without greatly 
distorting the signal. Spectral bands from 405 to 456 nm were 
excluded from further analysis due to very low signal-to-noise 
ratio. 

 
2.3.3 Atmospheric correction: The atmospheric correction 
was done in FLAASH model using the following main 
parameters: rural aerosol model, mid-latitude summer 
atmospheric model, and initial visibility of 30 km.  
 

2.4 Evaluation of the reliability of transmission of surface 
spectral properties from Resurs-P data 

Because the spectral resolution of Resurs-P, CASI and ASD vary, 
the recalculation of reflectance values was implemented 
(subsection 2.4.1). To evaluate the reliability of transmission of 
surface spectral properties from satellite image we compared 
recalculated top of canopy reflectance of several landscape 

surfaces from Resurs-P, CASI and ASD. The satellite Resurs-P 
imaging platform has resolution of 30 m causing most of pixels 
to be a mixture of several materials. We used two vegetation 
surfaces which take more than 4 pixels on the satellite image 
(play field and grassland, subsection 2.4.2) and two asphalt 
surfaces which take around 40 % of pixel on the satellite image 
(subsection 2.4.3). 
 

2.4.1 Recalculation of reflectance values:  
The spectral resolution of ASD is higher than the spectral 
resolution of Resurs-P. The integration of ASD reflectance 
within the wave delta of Resurs-P was implemented as: 

𝜌𝜆𝑏𝑎𝑛𝑑 =
∫ 𝜌𝜆𝐴𝑆𝐷

𝐸𝜆𝑠𝜆𝑑𝜆
𝜆2
𝜆1

∫ 𝐸𝜆𝑠𝜆𝑑𝜆
𝜆2
𝜆1

,  (2) 

where 𝜌𝜆𝑏𝑎𝑛𝑑 is recalculated ASD reflectance, 𝜌𝜆𝐶𝐴𝑆𝐼 is ASD 

reflectance in wavelength 𝞴, E𝞴 is solar spectral irradiance in 𝞴, 

S𝞴 is a spectral sensitivity of Resurs-P sensor in each spectral 

band, 𝞴1 and 𝞴2 are starting and ending wavelengths in each 

spectral band. 
The coefficients (k) for each CASI spectral band corresponding 

to Resurs-P spectral bands were found to recalculate CASI 
reflectance: 

𝜌𝜆𝑏𝑎𝑛𝑑 = 𝜌𝜆𝐶𝐴𝑆𝐼 × 𝑘 

𝑘 =
𝐷𝑅𝑒𝑠𝑢𝑟𝑠

𝐷𝐶𝐴𝑆𝐼
,  (3) 

where 𝜌𝜆𝑏𝑎𝑛𝑑 is recalculated CASI reflectance, 𝜌𝜆𝐶𝐴𝑆𝐼 is CASI 

reflectance in wavelength λ, 𝑘 is coefficient, 𝐷𝑅𝑒𝑠𝑢𝑟𝑠 is wave 

delta of Resurs-P for each band and 𝐷𝐶𝐴𝑆𝐼 is wave delta of CASI 

for each band. 
 

2.4.2 Comparison between top of canopy reflectance of 
vegetation surfaces: The vegetation sites (play field and 

grassland) for reflectance comparison were assigned based on 
relative homogeneity of the surface and square of more than 0.6 
ha to minimize a mixing spectra of adjacent surfaces due to the 
effect of point spread function (PSF).  
 

 

Figure 2. Scheme of collect spectra. Test site 1 from Resurs-P 

(left) and CASI (right) 

 

Figure 3. Relation of pixels from Resurs-P and CASI sensors 

For test site 1 (Figure 2) we collected 9 reflectance spectra from 
each of Resurs-P, CASI and ASD data in corresponded points. 
While reflectance spectra of Resurs-P data have been collected in 
each of 9 pixels of the site, reflectance spectra of CASI data have 
been averaged and collected in the window of 30x30 pixels for 

each of 9 points of the site 1 (Fig. 3). Test site 2 occupied 6 pixels 
on the Resurs-P image. The same procedure of collecting spectra 
was implemented for 6 reflectance spectra from each data source. 
The absolute differences (AbsDif) in reflectance spectra between 
Resurs-P and CASI, and between Resurs-P and ASD, and the 
standard deviation of AbsDif (StDv) were calculated over the 
entire spectral range 461-1000 nm. 
 
2.5 Classification of tree species 

Object-oriented analysis of Resurs-P and CASI data was applied 
for tree species classification (eCognition Developer 8.9). The 
process was split into a segmentation and classification. The 
segmentation of the image into objects (group of pixels) included 

two levels with different parameters of scale, shape and 
compactness influencing the segmentation (Willhauck et al., 
2000). The weighting of these parameters established the 
homogeneity criterion for the object primitives. A visual 
inspection of the objects resulting from variations in the 
weightings was used to determine the overall values for the 
parameter weighting at each scale level. The following objects 
futures were applied for classification: mean layer values, ratio 

layer values, Red Edge Normalized Vegetation Index (reNDVI) 
(Gitelson and Merzlyak, 1994) and Red Green Ratio Index 
(RGRI) (Gamon and Surfus, 1999).  
The Resurs-P image was classified into the follow classes: 
settlements, fields, roads, spruce, beech, mixed 1, mixed 2, mixed 
3 and mixed 4. The CASI image was classified into the following 
classes: settlements, fields, roads, spruce, beech, pine. Classified 
pixels from forest classes were aggregated in forest compartment 

according to the forestry map. Finally, the compartments were 
separated into “spruce”, “beech”, “mixed 1”, “mixed 2”, “mixed 
3” and “mixed 4” classes based on pixel class assigned by object-
oriented analysis. 
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3. RESULTS 

3.1 Atmospheric correction of Resurs-P data 

A radiometric correction coefficients (K) (Figure 4) were applied 
to Resurs-P image before the atmospheric correction (Figure 5). 

 
Figure 4. Radiometric correction coefficients for Resurs-P 

image 
 

 
Figure 5. Spectre of grassland from Resurs-P before (left) and 

after (right) atmospheric correction  
 

3.2 Evaluation of reliability of transmission of surface 
spectral properties from Resurs-P image 

Comparisons between top of canopy reflectance of vegetation 

surfaces from CASI, ASD and Resurs-P (Figure 6) and artificial 
surfaces from ASD and Resurs-P (Figure 7) were performed. 

 
a) 

 
b) 

Figure 6. Average reflectance of grassland from Resurs-P, CASI 

and ASD data for test site 1 (a). Average absolute differences 
(AbsDif) in reflectance spectra between ASD and Resurs-P, and 
between CASI and Resurs-P (b). Confidence level of 95%. 
 

 
a) 

 
b) 

Figure. 7 Reflectance of asphalt and vegetation (a) and modelling 

reflectance of mixture of asphalt and vegetation (b) 
 
3.3 Classification results 

The accuracies of the classification from satellite and airborne 

data were estimated by comparing the classification results with 
ground truth via a confusion matrix. The result for Resurs-P 
demonstrated an overall accuracy of 67% and Kappa coefficient 
of 0.78. The species classification from Resurs-P omitted the 
“mixed 4” class with pine and spruce mixture. The result for 
CASI demonstrated an overall accuracy of 87% and Kappa 
coefficient of 0.82. We aggregated classified pixels of satellite 
and airborne images into forest compartment according to a mask 

from forestry map to compare the distribution of forest classes 
for study area (Figure 8). 
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Figure 8. Distribution of forest classes in forestry map, and in 
CASI and Resurs-P classification result (mixed 1 - 50 % spruce, 
50 % beech; mixed 2 - 70 % spruce, 30 % beech; mixed 3 - 30% 
spruce, 70 % beech; mixed 4 - spruce 70%, pine 30 %) 

 

4. DISCUSSION 

4.1 Evaluation of reliability of transmission of surface 
spectral properties from Resurs-P data 

Retrieved and analysed reflectance spectra from Resurs-P, CASI 
and ASD had similar shape. Radiometric correction eliminated a 
divergence of Resurs-P spectra from ASD spectra in the spectral 
region of 461 – 472 nm. Reflectance of grassland from Resurs-P 
are within the absolute error of ground measurements, which 
suggests the reliability of the spectral characteristics of 

vegetation from satellite image. The absolute difference in 
spectral reflectance of grassland was in 3-4 times larger in the 
region of 840 – 1000 nm than in the region of 461 to 838 nm 
between both ASD and Resurs-P, and CASI and Resurs-P. The 
largest difference in spectral reflectance of Resurs-P and 
modelled spectral reflectance of mixed surfaces (asphalt and 
grassland) is observed in the red-edge near-infrared region. The 
relative error of mixed reflectance from Resurs-P was determined 

as 10-20% for wavelengths up to 500 nm and near 5% for 
wavelengths after 500 nm. Based on evaluation of surface 
spectral properties, we can state, that an improvement of 
radiometric correction of Resurs-P data is needed to reduce the 
level of errors and uncertainties. 
 
4.2 Classification of tree species 

Satellite and airborne images had the same acquisition 
conditions. This notably facilitated the direct comparison of the 
classifications using data from the two sensors because no inter-
annual or seasonal differences were expected. Results of species 
classification from Resurs-P data were comparable with the 

forestry map and CASI classification distribution and area of 
forest classes. The airborne hyperspectral image with lower 
spectral resolution (62 spectral bands of CASI against 116 of 
Resurs-P) and higher spatial resolution (1 m of CASI against 30 
m of Resurs-P) yielded the best classification accuracies (CASI 
overall accuracy of 87% against Resurs-P overall accuracy of 
67%). This confirms a recent study (Goodenough et al., 2004) 
showing that airborne hyperspectral data can be used in species 

classification with higher accuracy than satellite hyperspectral 
data. However, Townsend and Foster (2002) demonstrated the 
classification using satellite Hyperion data was superior to that 
using airborne AVIRIS data for pine and maple forest. 
Classification results indicated that the lower spatial resolution of 
the Resur-P data (30 m) affected the ability to identify individual 
pine forest stands in spruce forest with an area near 0.004 ha. 

Dalponte et al. (2013) stressed that the spatial resolution had a 

strong effect on the classification accuracy in spruce, pine and 
birch mixed forest. The effect of spatial degradation of 
hyperspectral imaging for tree species classification was found in 
Pena et al. (2013). Their result indicated that pixels somewhat 
smaller than the tree canopy diameters were the most appropriate 
to represent the spatial variability of tree species in natural forest. 
Classification results showed that Resurs-P provides good ability 
to remotely map basic forest species and their mixture. 

 
5. CONCLUSIONS 

The study analysis demonstrated that the satellite hyperspectral 
sensor Resurs-P can produce useful informational and showed 
good performance relative to airborne CASI data for forest 

species classification, but also indicated that developments in 
pre-processing steps are still required to improve the mapping 
accuracy. Resurs-P can be helpful as a mean of extending forest 
mapping to large areas and areas not accessible to aircraft 
sensors. 
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