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ABSTRACT: 

 

Soil moisture is important to enable the growth of vegetation in the way that it also conditions the development of plant population. 

Additionally, its assessment is important in hydrology and agronomy, and is a warning parameter for desertification. 

Furthermore, the soil moisture content affects exchanges with the atmosphere via the energy balance at the soil surface; it is 

significant due to its impact on soil evaporation and transpiration. Therefore, it conditions the energy transfer between Earth and 

atmosphere.  

Many remote sensing methods were tested. For the soil moisture; the first methods relied on the optical domain (short wavelengths). 

Obviously, due to atmospheric effects and the presence of clouds and vegetation cover, this approach is doomed to fail in most cases. 

Therefore, the presence of vegetation canopy complicates the retrieval of soil moisture because the canopy contains moisture of its 

own.  

This paper presents a synergistic methodology of SAR and optical remote sensing data, and it’s for simulation of statistical 

parameters of soil from C-band radar measurements. Vegetation coverage, which can be easily estimated from optical data, was 

combined in the backscattering model. The total backscattering was divided into the amount attributed to areas covered with 

vegetation and that attributed to areas of bare soil. 

Backscattering coefficients were simulated using the established backscattering model. 

A two-dimensional multiscale SPM model has been employed to investigate the problem of electromagnetic scattering from an 

underlying soil. The water cloud model (WCM) is used to account for the effect of vegetation water content on radar backscatter 

data, whereof to eliminate the impact of vegetation layer and isolate the contributions of vegetation scattering and absorption from 

the total backscattering coefficient. 

 

 

1 INTRODUCTION 

Monitoring spatial patterns of properties of the soil in 

general, and the estimate of the true moisture soil in particular, 

is a crucial task of the Environmental Remote Sensing 

[Schmugge et al., 2002]. The spatio-temporal dynamics of soil 

moisture is especially needed to monitor semi-arid regions 

where drought stress can determine the productivity of woody 

and herbaceous vegetation [Kumar et al., 2002; Tansey & 

Millington, 2001]. 

The variation in the soil dielectric constant, as a result of the 

variation of the moisture content, has a greater influence than 

other characteristics [Svoray et al,. 2004]. Therefore, remote 

sensing radar is sensitive to soil moisture because the dielectric 

constant is one of the most important factors in radar 

backscatter intensity [Wang et al,. 2004].  

 

The characterization of soil surface roughness is also a 

key requirement for the correct analysis of radar backscattering 

behavior. Several experimental and theoretical studies  have 

been published dealing with the potential of radar 

backscattering to aid mapping of the distribution and 

morphology of shallow sub-surface features within a large 

spatial variability of classical roughness parameters ([Chen et 

al., 1988][Davidson et al,. 20000][Fung, 1994][Oh et al., 

1992]). They used the classical statistical description of natural 

surfaces and characterized roughness by statistical parameters 

namely correlation length and standard deviation. 

Nevertheless, the unreliability of the classical description of 

natural surfaces and their large spatial variability that affects the 

correlation function may render the classical roughness 

parameters highly variable and unstable. 

Many previous works have been devoted to the analysis of the 

backscattering characteristics of bare soils and have considered 

that natural surfaces are better described as self-affine random 

processes (1/f processes) than as stationary processes ([Farah L 

et al., 2006] [Birshak et al., 1974] [Song et al., 2009]). 

Furthermore, an important number of models simulating SAR 

backscattering have been developed for bare soils. Nevertheless, 

these models cannot be applied directly in vegetated areas due 

to the scattering of vegetation layer above the soil surface, it 

absorbs and scatters part of the incident microwave signal on it 

as well as the reflected microwave energy from underneath the 

soil surface. The amount that the vegetation absorbs is mainly a 

result of its water content while the scattering is influenced by 

its geometry. The effect of vegetation on backscattering 

decreases with increasing wavelength [Ulaby et al., 1981]. 

Therefore the backscattering on vegetated areas consists of the 

study of backscattering from the vegetation and the volume 

scattering from the underlying layers of the soils. 

Since natural surface parameters (soil moisture and surface 

roughness) cannot be controlled, many studies have focused on 

how best to configure the radar sensor parameters for optimum 

analysis of vegetation impact on backscattering [Svoray et al., 

2002] [Svoray et al., 2001]. 

 

Many backscattering models [Bindlish et al., 

2001][Prakash et al., 2012] have been developed over the past 

30 years to help determine the relationship between the radar 

signal and certain biophysical parameters, where numerous 
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studies have been carried out to further the understanding of the 

effect of surface parameters and vegetation [Gutman et al., 

1998][Zribi et al., 2003] in radar backscattering systems. 

The standard theoretical backscattering model witch is 

best suited for very smooth surfaces is the small perturbation 

model (SPM) [Chen et al., 1988]. 

The  SPM  was  originally  developed  for  scattering from  a 

bare  soil  surface,  and  therefore  the vegetation  scattering  

effects  are not explicitly  incorporated  in the model. 

On the other hand, the semi-empirical water cloud model, has 

been shown in various studies [Ulaby et al., 1979][Tansey et 

Millington, 2001] to ensure an adequate representation of 

vegetation canopy backscattering, as well as the soil beneath 

over the phenological cycle of crops. 

 

In this study, we tried to develop a microwave/optical 

synergistic method by coupling the water cloud model and a 

two dimensional SPM model with considering the multi scale 

description of soil surfaces, for the purpose of unraveling the 

scattering problem of electromagnetic waves from randomly 

rough vegetated surfaces. 

Moreover, we aim to develop and test an inversion algorithm in 

order to retrieve the soil moisture and multi-scale roughness 

parameters using as input the radar backscattering coefficients 

simulated by the proposed synergistic methodology and using a 

multilayer neural network (NN) architecture trained by a back 

propagation learning rule.  

For this purpose, we proceed as follows: 

The first section outlines a comparison between the Active and 

the Passive Microwave Remote Sensing. Section 2 described a 

two dimensional multi-scale description of natural surfaces 

simulated as a three-layered structure. 

Then, a backscattering model for investigating the effect of bare 

soil and vegetation parameters on backscattered energy of radar 

signal has been carried out in Section 3.  

The next section showed a sensitivity analysis of the impact of 

multi-scale parameters (roughness and moisture) on the amount 

of radar backscattering coefficient. 

In the next section a neural network based inversion procedure, 

the results and their accuracy were applied to estimate soil 

roughness and moisture.  

Finally, we present our conclusions in the last section. 

 

 

2 THEORY BEHIND REMOTE SENSING OF SOIL 

PARAMETERS 

 
By gathering rainwater, soil likewise gives a place to be 

stored for rain, and thus helps to prevent flooding. 

Water is not the only substance that the soil stores; it also 

consists of air, which represents a significant percentage of its 

volume. Thus, oxygen is needed for plant roots and vast masses 

of people living organisms in the sub-soils. 

Besides, plants and variations of the surface roughness can 

reduce the sensitivity of the microwave observations of changes 

in soil moisture. These effects increase as the frequency 

increases. 

The low frequencies can help in providing a sensitivity analysis 

to changes in soil moisture through a wide range of conditions of 

vegetation. They are better suited to monitoring the soil 

moisture, as they can easily penetrate plant cover for detecting 

moisture. 

However, with higher frequencies, adjustments are required to 

reduce atmospheric effects that severely limit the capabilities of 

microwave instruments. 

Moreover, soils and their properties are seen as functions of soil-

forming factors. Creatures that live in the ground die there too, 

generating organic matter disintegrated with a range of dead 

organisms on the surface: trees and other plants and the 

decomposed corpses of animals and humans that will ultimately 

become as well a part of the sub-soils. 

Both active and passive microwave remote sensing techniques 

utilize the large contrast between the dielectric constant of dry 

soil and water [Zhen et al., 2002] and can be used in all weathers 

for land-surface monitoring.  

Many factors may affect the microwave signature such 

as description of soil and the vegetation characteristics. 

Surface roughness in radar remote sensing has generally been 

described as a stationary single scale process characterized by 

the root mean square height (s) and the autocorrelation function. 

Investigating the impact of vegetation on backscattering radar 

signals is a recurring theme in research in remote sensing. The 

techniques for monitoring and estimating crop yields, 

estimating biomass and leaf area index and the vegetation 

classes in cartography are not rich in literature. 

 These techniques were developed largely for analysis of 

medium resolution sensor products, suitable for characterizing 

relatively large areas. However, the advent of commercial high-

resolution imaging satellites presents new opportunities for 

characterizing vegetation in greater detail than previously was 

practical.  

The ability to discriminate crop type and phenology stage with 

radar may be attributed to changes in both canopy geometry and 

plant biophysical parameters. The radar frequency and 

incidence angle will influence the relationship.  

The effects of plant parameters including biomass, plant water 

content, plant height and leaf area index (LAI) on radar 

backscatter are well documented for a variety of different crops 

[Brakke et al., 1981].  LAI is defined as the one-sided green leaf 

area per unit ground [Rozenthal et al., 1985]. 

 

2.1 The Water Cloud Model for Vegetation 

 

A classical simplified model used for exploring the basic 

microwave response of vegetation canopies is the water cloud 

model (WCM) whereby the canopy is modelled as a cloud of 

identical, randomly oriented scatterers. 

The WCM was developed by Attema & Ulaby in 1978 and 

modified or extended subsequently by various authors 

[Hoekman et al., 1982] [Ulaby et al., 1984] [Paris, J., 1986]. In 

these models, the power backscattered by the whole canopy is 

represented as an incoherent sum of the contributions of 

vegetation and soil. These models are simple and use few 

parameters and variables. The canopy is represented by “bulk” 

variables such as Leaf Area Index (LAI) or total water content. 

In the WCM, the vegetation layer is modelled by assuming that 

its dielectric constant, or permittivity is a random process, the 

moments of which (i.e. mean and correlation functions) are 

known. The microwave dielectric constant of dry vegetative 

matter is much smaller than the dielectric constant of water. 

Because of the “green” water-rich portion of the canopy (the 

leaves) constitutes one per cent or less of the overall volume. 

[Attema & Ulaby 1978] proposed that the canopy can be 

modeled as a water cloud whose droplets are held in place by 

structurally dry matter. 

In the water cloud model, the power backscattered by the 

whole canopy (𝜎0) is represented as the incoherent sum of the 

contribution of the vegetation (𝜎𝑣𝑒𝑔
0 ), the contribution of the 

underlying soil (𝜎𝑠𝑜𝑖𝑙
0 ), which is attenuated by the vegetation 

layer and the interaction between the vegetation layer and the 

soil accounts for multiple scattering effects (𝜎𝑣𝑒𝑔+𝑠𝑜𝑖𝑙
0 ). Thus, 

the backscattering coefficient can be represented in the 

following equation: 
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𝜎0 = 𝜎𝑣𝑒𝑔
0 (𝜃) + 𝛾2(𝜃)𝜎𝑠𝑜𝑖𝑙

0 (𝜃) + 𝜎𝑣𝑒𝑔+𝑠𝑜𝑖𝑙
0  (1) 

 

𝛾2 is the two-way attenuation through the canopy. In co-

polarized power scattered, the internal soil-vegetation 

interactions is not a dominating factor and thus can be neglected 

[Dobson et al., 1986] [Prevot et al., 1993a]. Many modifications 

to the model have been reported [Ulaby et al., 1982] [Bindlish 

et al., 2001]. Hence the equation is modified to: 

 

𝜎0 = 𝜎𝑣𝑒𝑔
0 (𝜃) + 𝛾2(𝜃)𝜎𝑠𝑜𝑖𝑙

0 (𝜃) (2) 

 

𝜎𝑣𝑒𝑔
0 (𝜃) = 𝐴 𝑉1 cos(𝜃)[1 − 𝛾2(𝜃)] 

 

(3) 

𝛾2(𝜃) = 𝑒𝑥𝑝[−2 𝐵 𝑉2/ cos(𝜃)] (4) 

 

𝜎𝑠𝑜𝑖𝑙
0 (𝜃) = 𝐶 + 𝐷𝑀𝑣 

 

(5) 

 

A and B are the vegetation parameters, they are empirical 

coefficients. A is the growth condition and B is the radar 

frequency. These two parameters depend on the vegetation type. 

C and D are bare soil parameters. 

V1 is a description of the canopy, and  V2 is a second description 

of the canopy. These two parameters describe the effect of 

canopy geometry and water content on the backscatter 

coefficient, and because an important part of the scattering and 

attenuation is controlled by the leaves, many studies [Lievens et 

al., 2011] [Moran et al., 1998] [Prevot et al., 1993a] propose 

using the LAI (kg m−2) as the canopy descriptor. 

 

 

3 A MULTILAYER DESCRIPTION OF NATURAL 

SOILS 

 

3.1 Description of soil moisture  

 

The proposed 2D description of the studied soil is showed 

below in figure 1. Medium 0 and 3 are half-spaces. 𝒅𝟏 and 𝒅𝟐 are 

respectively the thicknesses of medium 1 and medium 2, 𝑫 is the 

radar penetration depth. 𝑬𝒊 and 𝑬𝒓 are the incidence and reflected 

radar signal between mediums [Song et al., 2009]. 

This approach is conceptual as there is no physical layer, but 

rather a continuous variability. 𝜺𝒂𝒑𝒑  is the effective permittivity 

of the soil [Zribi et al., 2008]. 

The interface sandwiched between regions 0 and 1 is a 2D 

infinite rough interface represented by a continuum of plane 

waves and considered as a band limited fractal random process 

corresponding to a superposition of a finite number of one 

dimensional Gaussian processes [Farah, L et al., 2006]. 

The calculation of the dielectric constant is based on the 

consideration of a soil including the two fractions, a fraction of 

the soil and an air fraction. 

 
(6) 

νsoil is the fraction of the soil, εsoil is the dielectric constant 

of soil, εair is the dielectric constant of the air, the exponent 

α = 0.5 which represents best the mixing model. 

 
 

Figure 1: Studied surface geometry 

 

3.2 Roughness multi-scale 2D description 

 

Natural roughness is described as a multi-scale process 

having a 𝟏 𝒇⁄  spectrum with a finite range of spatial scales going 

from a few millimeters b (𝒃 ≤ 𝝀 𝟏𝟎⁄ ) to several meters 

(𝒃 ≤resolution cell) [Davidson et al., 2000] [Mattia et al., 1999]. 

We have considered the surface as a superposition of a finite 

number of one-dimensional Gaussian processes each one having 

a spatial scale  [Song et al., 2009] characterized by: 

 

𝒁𝒑(𝒙) = ∑ ∑ 𝒁𝒏
𝒎

+∞

𝒏=−∞

𝑷𝟐

𝒎=−𝑷𝟏

𝜳𝒏
𝒎(

𝒙

𝑳
) (7) 

 

Where 𝑍𝑛
𝑚 is a collection of Gaussian random independent 

variables with variance 𝛾0
22−𝑚, x is a normalized distance with 

respect to an arbitrary length 𝐿 =  2𝑏 𝑏 and 𝛹𝑛
𝑚  is a collection of 

orthonormal wavelet (4th Daubechies). The roughness multiscale 

parameter 𝜈 is related to the fractal dimension (𝜈 = 5 − 2𝐷 for 

mono-dimensional Euclidean surfaces and 𝜈 = 7 − 2𝐷 for bi-

dimensional surfaces [Mattia et al., 1999]) and γ is related to the 

standard deviation and the number of spatial scales is equal to 𝑃.  

In a previous work [Farah, L et al., 2006] [Farah, L et al., 2010], 

to describe more adequately natural surfaced, we have used the 

separable dyadic multi-resolution analysis introduced by Mallat 

[Mallat et al., 1989] to extend the wavelet theory from one-

dimensional to two-dimensional case.  

Using the bi-dimensional wavelet transform, we have 

obtained respectively the vertical wavelet component (9), the 

horizontal wavelet component (8) and the diagonal wavelet 

component (10) of the height 𝑍𝑝
𝑖 , (where i=Vertical, Horizontal 

or Diagonal). 

 

(8) 

 

 

(9) 

 

 

(10) 

 

And the standard deviation can be written as: 

 

𝑠2 = 𝑟𝑐
𝐻(0,0) = 𝑟𝑐

𝐷(0,0) = 𝑟𝑐
𝑉(0,0) (11) 
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We have simulated the 3D representation of the MLS surfaces 

for two different spatial scales, with P=5 in figure 2 and P=10 in 

figures 2 and 3. 

 

 
 

Figure 2: 3D representation of a multi-scale surface using 

Daubechies wavelet with multi-scale parameters (𝛎𝟏=1.3; 

𝛎𝟐=1.3; 𝛄= 0.2 cm), P=5 

 

 
 

Figure 3: 3D representation of a multi-scale surface using 

Daubechies wavelet with multi-scale parameters (ν1=1.3; 

ν2=1.3; γ= 0.2 cm), P=10 

 

 

4 MULTISCALE SURFACE MODEL FOR 

BACKSCATTERING COEFFICIENT 

CALCULATING 

 

As humidity increases, the dielectric constant of the soil-

water mixture increases and this change is detected by 

microwave sensors. In general, an increase in humidity of the 

soil leads to an increased backscattering coefficient. Despite the 

high sensitivity to soil moisture, the link between SAR signal 

and soil moisture is attenuated by variations in the geometrical 

structure of the soil surface (topography, roughness) and the 

density of the vegetation. 

In this study, a MLS SPM 2D was adopted for characterizing 

the backscattering from a three layered structure.  

The backscattering coefficient is calculated by a three-layered 

multi-scale SPM 2D, and is given by: 

 

 

(12) 

 

𝜎ℎℎ = 8𝑘4𝜎1
2|𝑅⊥𝑐𝑜𝑠2𝜃|2𝑊(2𝑘𝑠𝑖𝑛𝜃, 0) 

(13) 

 

 

 

(14) 

 

 

 

(15) 

𝐼𝑞𝑝 is a function of 𝜃, the sub-scripts p and q indicate 

polarization state. 𝐹𝑞𝑝 denotes the complementary field 

coefficient. 𝑊𝑛 is the Fourier transform of the n-th power of the 

surface correlation function. 𝜃 is the incident angle. 

 

 

5 BACKSCATTERING COEFFICIENT DEPENDENCE 

ON MULTI-SCALE SOIL PARAMETERS 

The model is based assumes that the the scattered field by 

a rough surface can be represented by an overlapping of plane 

waves propagating to the receiver. The amplitudes are 

determined using boundary conditions and divergence 

relationships. 

 

The model of small perturbations is best suited to surfaces 

of low roughness or smooth surfaces. 

The range of validity is limited to ks < 0,3 and m < 0,3 (k is the 

wave number, s is the standard deviation of heights and m is the 

standard deviation of slopes). 

 
5.1 Impact of Multi-Scale Roughness parameters 

 

To calculate direct backscattering and bi-static microwave 

scattering from the multi-layer medium has been studied based 

on three-layered multi-scale SPM 2D. 

We study the effect of surface environments such as soil 

moisture and roughness on changes in SAR backscattering; 

therefore we have simulated the angular trends of the three 

layers multiscale backscattering coefficient from 20 to 70 

degrees for different roughness parameters. 

In order to analyze the scattering dependence on fractal 

parameter ν, plots of backscattering coefficients are reported in 

both Figure 4 and figure 5. Thus, we fixed the parameter related 

to the Root Mean Square at 0.0031cm in VV and HH 

polarizations for five spatial scales. 

 

 
 

Figure 4: Backscattering coefficient dependence on fractal 

parameter ν at VV polarization for bare soil (dashed line) and 

for vegetated soil (full line)  
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Figure 5: Backscattering coefficient dependence on fractal 

parameter ν at HH polarization for bare soil (dashed line) and 

for vegetated soil (full line) 

 

It is noted that at small incidence angles, the backscattering 

coefficient increases as the fractal dimension 𝜈 increases, 

whereas at large incidence angles the dependence is just the 

opposite. 

 

By setting, as a second step, the ν parameter at 1.3 in VV and 

HH polarizations for five spatial scales, we get in the Figure 6 

and figure 7 the variation of the backscattering coefficient 

depending on the Root Mean Square γ at both polarizations VV 

and HH. 

 

 
 

Figure 6: Backscattering coefficient dependence on 𝛄, 

parameter related to the Root Mean Square at VV polarization 

for bare soil (dashed line) and for vegetated soil (full line) 

 

 
 

Figure 7: Backscattering coefficient dependence on 𝛄, 

parameter related to the Root Mean Square at HH polarization 

for bare soil (dashed line) and for vegetated soil (full line) 

 

It can be noted that the backscattering coefficient increases as γ, 

the parameter related to the standard deviation, increases. 

For all the simulations, the backscattering coefficient decreases 

with the incidence angle. This signal attenuation can be 

explained by the fact that the vegetation canopy can mitigate the 

density of soil backscatter through the layer of leaves. 

 

5.2 The Impact of soil moisture parameters  

 

The soil moisture is related to the complex dielectric 

constant ε. In Figure 8, figure 9, figure 10 and figure 11, we 

have represented radar backscattering as angular trends for 

different values of the complex permittivity of the second 

effective layer in the two polarizations VV and HH. 

 

 
 

Figure 8: Backscattering coefficient dependence on 𝛆𝟏
′ at VV 

polarization for bare soil (dashed line) and for vegetated soil 

(full line) 
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Figure 9: Backscattering coefficient dependence on 𝛆𝟏
′  at HH 

polarization for bare soil (dashed line) and for vegetated soil 

(full line)   

 

 
 

Figure 10: Backscattering coefficient dependence on ε2
′  at VV 

polarization for bare soil (dashed line) and for vegetated soil 

(full line)   

 

 
 

Figure 11: Backscattering coefficient dependence on ε2
′  at HH 

polarization for bare soil (dashed line) and for vegetated soil 

(full line)   

 

It can be noted that at small incidence angles the backscattering 

coefficient decreases as soil moisture related to the dielectric 

constant, increases. 

This can be explained that according to the abundance of 

vegetation, its dielectric properties, height and geometry (size, 

shape and orientation of its component parts) the sensitivity of 

microwave backscatter to volumetric soil moisture may be 

significantly reduced. 

 

 

6 INVERSION STRATEGY 

 

The input parameters correspond to the multi-angle 

scattering data. We introduced 12 backscattering coefficients for 

incident angles varying from 20 to 70 degrees at the both 

polarizations HH and VV.  

We have opted the gradient backpropagation algorithm as 

learning algorithm that turns out the most appropriate to our 

inversion problem (Satalino et al., 2002). 

We have used an input layer, two hidden layers and an output 

layer. 

 

6.1 Inversion results 

 

We have tested the network on known data to retrieve the 

sought parameters of moisture and multi-scale roughness. The 

following tables present respectively original and Retrieval 

Values. 

 

 
 

TABLE I.  ORIGINAL VALUES 

 

 
 

TABLE II.  Retrieval Values (without impact of vegetation) 

 

 

 
 

TABLE III.  Retrieval Values (with impact of vegetation) 
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TABLE IV.  AVERAGE ERROR RATE FOR EACH RETRIEVED 

PARAMETER (WITHOUT IMPACT OF VEGETATION) 

 

Due to the presence of vegetated layer, radar energy suffers a 

loss. This loss is known as the vegetation attenuation, whose 

quantity increases significantly depending on the density of the 

vegetation area. 

 

 

7 CONCLUSION 

 

The backscattering radar signal inversion in order to 

recover the physical parameters of large-scale natural surfaces is 

a major challenge for several applications in hydrology, 

geophysics and geology for predicting risks, monitoring the 

erosion and gully erosion. Data supplied by inversion process 

provide a comprehensive large-scale monitoring of natural 

surfaces over time and enabling firstly a major time savings 

compared to conventional data collection and secondly a 

broader vision. 
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