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ABSTRACT: 

 

This paper presents a Tsunami lead wave reconstruction method using noisy sea surface height (SSH) measurements such as 

observed by a satellite-carried GNSS reflectometry (GNSS-R) sensor. It is proposed to utilize wavelet theory to mitigate the strong 

noise in the GNSS-R based SSH measurements. Through extracting the noise components by high-pass filters at decomposition 

stage and shrinking the noise by thresholding prior to reconstruction, the noise is greatly reduced. Real Tsunami data based 

simulation results demonstrate that in presence of SSH measurement error of standard deviation 50 cm the accuracy in terms of root 

mean square error (RMSE) of the lead wave height (true value 145.5 cm) and wavelength (true value 592.0 km) estimation is 21.5 

cm and 56.2 km, respectively. The results also show that the proposed wavelet based method considerably outperforms the Kalman 

filter based method on average. The results demonstrate that the proposed wave reconstruction approach has the potential for 

Tsunami detection and parameter estimation to assist in achieving reliable Tsunami warning. 

 

 

 

1. INTRODUCTION 

A Tsunami is a specific ocean wave usually created by a natural 

process such as earthquake, volcano eruption, or landslide. 

Depending on how a Tsunami is triggered, The 2004 Indian 

Ocean Tsunami and the 2011 Japan’s Tsunami were both 

triggered by strong earthquakes. These two Tsunamis were so 

powerful and disastrous, causing huge damage and many life 

losses. That is why Tsunami warning is vital to reduce 

economic and life losses dramatically in the event of a strong 

Tsunami. A number of Tsunami warning systems or networks 

have been established on the globe (Bernard and Meinig, 2011; 

Falck et al, 2010) These systems basically make use of 

measurements from a network of seismic sensors installed on 

the ground or on the bottom of the ocean to derive the Tsunami 

parameters so as to deliver warning information. Real time 

Tsunami monitoring may be realized by using measurements 

from waverider buoys equipped with sea surface height (SSH) 

measurement sensors. Although such a network of buoys only 

covers a rather limited part of the ocean, they can provide 

accurate information of some Tsunamis which happen to 

propagate through the buoys. Satellite altimetry is another 

technique for real time Tsunami monitoring, providing SSH 

measurements with accuracy of a few centimeters (NOAA, 

2016). However, due to the limited coverage of a satellite 

altimeter, the chance that a Tsunami is captured by an altimetry 

satellite is rather small. That is why only a few out of more than 

one hundred Tsunami events were successfully identified by a 

satellite altimeter since the launching of the Topex satellite by 

NASA in 1993 (Hamlington, 2010).  

 

The main theme of the paper is the reconstruction of Tsunamis 

by use of GNSS-R based SSH measurements. In particular, we 

propose to exploit wavelet theory to mitigate measurement 

noise effectively. It is a fact that there is a wide range of 

filtering or smoothing methods which can be utilized for noise 

suppression (Anderson and Moore, 2005). However, wavelet 

based noise mitigation has been widely investigated in signal 

and image processing and is particularly suited for non-

stationary time-limited or transient signals (Daubechies, 1992; 

Mallat, 2008). Through wave reconstruction, Tsunami pattern 

and characteristics can be better identified. It is assumed that 

Tsunami detection is first performed by using GNSS-R 

techniques such as the methods proposed in (Stosius et al, 2010; 

Yu, 2016). Once a Tsunami is detected, Tsunami reconstruction 

is carried out to recover the original wave pattern which may be 

exploited to estimate Tsunami parameters (propagation 

direction and speed) (Yu, 2015).  

 

The remainder of the paper is organized as follows. Section 2 

describes the procedure to use wavelet theory to enable lead 

wave reconstruction. Section 3 shows the simulation results 

using real Tsunami lead wave data, and Section 5 gives the 

concluding remarks. 

 

 

2. WAVELET BASED RECONSTRUCTION METHOD  

The proposed lead wave reconstruction makes use of the 

wavelet theory to process a sequence of SSH measurement data 

samples such as produced with GNSS-R technique. It is 

assumed that the presence of a Tsunami lead wave is detected so 

that the sequence of data samples includes the lead wave 

samples. The functional diagram of the proposed wavelet based 

method is shown in Figure 1 (on the bottom of next page).  

 

Signal decomposition is first carried out by selecting the 

wavelet and the number of levels, which is constrained by the 

number of samples. The sequence of SSH measurement samples 

are simultaneously high-pass and low-pass filtered and then 

down-sampled. The low-pass filtered and down-sampled data 

sequence is again high-pass and low-pass filtered and then 

down-sampled. The procedure repeats for the predefined 

number of levels. The down-sampled output from each high-
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pass filter is then processed to mitigate the noise through 

thresholding. Signal reconstruction is then performed to 

reconstruct the lead wave using the high-pass and low-pass 

filters, up-sampling, the data sequence from the low-pass filter 

of the final stage (or level), and the data sequences resulting 

from processing data sequences generated by the high-pass 

filters during signal decomposition and noise mitigation. The 

reconstructed lead wave is then modeled mathematically using 

triangular functions (Yu, 2016) so that the wave heights and 

wave lengths can readily be determined.    

 

 

3. REAL SATELLITE TSUNAMI DATA BASED 

SIMULATION RESULTS 

 

3.1 Tsunami Lead Waves Observed by Altimetry Satellites 

When a Tsunami is observed by a satellite-carried sensor, the 

observed lead wave shape can be quite different from that 

observed by a buoy-based sensor, depending on the satellite 

moving direction and the SSH measurement accuracy. For 

instance, if the satellite is moving exactly in the same (or 

opposite to the) direction of the Tsunami propagation, the 

length of the observed wave is slightly longer (or shorter) than 

that of the real one. In some cases, the observed wave length by 

a satellite sensor can be significantly longer.  

 

Figure 2 shows the two lead waves of the Tsunami (triggered by 

2011 Japan’s earthquake) observed by Jason-1 altimetry 

satellite (pass 146, cycle 338) and Envisat satellite (pass 449, 

cycle 100). The distance is calculated using the sampling time 

intervals and the satellite ground velocity which is about 5.8 

km/s for Jason-1 and 6.86 km/s for Envisat. The start distance 

point on the horizontal axis is arbitrary. There are a few 

sampling time intervals in which SSH measurements are not 

available so that they are simply replaced with zeros. The data 

were downloaded from (Tudelft, 2016) which is managed by the 

Technical University of Delft, the Netherlands.  

 

The initially sensed SSH data were affected by a range of 

factors including troposphere, ionosphere, barometer, dynamic 

atmosphere, solid earth tide, ocean tide, load tide, pole tide and 

sea state bias. The downloaded data are the processed data after 

those effects are corrected. Thus, the resultant SSH (or sea level 

anomaly) could only consist of components contributed by the 

Tsunami, the residual error from the various corrections, and 

the SSH measurement error. The measurement accuracy of the 

Envisat and Jason-1 altimeters is about a few centimeters, while 

the residual error might also be a number of centimeters due to 

the increasingly enhanced performance in the modeling of the 

various factors. The sea surface locations of the two lead waves 

are listed in Table 1. 
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Figure 2, Tsunami lead waves triggered by 2011 Japan’s 

earthquake and observed by Envisat and Jason-1 altimetry 

satellites. 

 

Table 1. Locations of two Tsunami lead waves observed by two 

altimetry satellites.  

Satellite Latitude (deg) Longitude (deg) 

Start point End point Start point End point 

Jason-1 -38.2351 -41.9297 40.4309 43.0984 

Envisat -36.4802 -30.3041 156.4616 154.6962 

 

 

3.2 Simulation Results 

In this section modeled GNSS-R based SSH measurements 

using real Tsunami lead wave data observed by satellite Envisat 

 

Figure 1. Block diagram of the wavelet based Tsunami lead wave reconstruction approach 
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as shown in the upper panel of Figure 2 are used to evaluate the 

proposed Tsunami lead wave reconstruction approach. The SSH 

measurements are corrupted by Gaussian noise with a zero 

mean and standard deviation of 50 cm as shown in Figure 3. 

The distance interval is 6.86 km equivalent to sampling period 

or incoherent integration time of one second.  
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Figure 3. Modeled SSH measurements by adding noise of STD 

of 50 cm to Envisat SSH data. 

 

A number of wavelets including Daubechies, Meyer, Coiflet, 

and Biorhtogonal wavelets are widely used in signal and image 

processing. When wavelet parameters are properly chosen, the 

mentioned four wavelets produce very similar reconstruction 

results.  Figure 4 shows the impact of noise standard deviation 

on the reconstruction performance when four different standard 

deviation values are evaluated and the Daubechies wavelet is 

used. As expected, the performance degrades as the noise 

standard deviation increases. However, the impact is mainly on 

the lead wave height, while the reconstructed wavelength is 

only slightly affected. When noise standard deviation is 90 cm, 

useful information about the lead wave especially the height and 

length can still be obtained. 
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Figure 4. Effect of measurement noise standard deviation on 

lead wave reconstruction. 

 

Kalman filter (KF) has been widely employed to reduce noise 

and smooth data (Grewal and Andrews, 2008). Therefore, it is 

useful to evaluate the performance of the KF-based lead wave 

reconstruction. Figure 5 shows the filtering results when setting 

the noise standard deviation to be 50 cm and using a linear KF 

with state variance selected as 0.1 
2cm and observation 

variance selected as 2500 
2cm . By comparing with the 

modeled SSH measurements shown in Fig. 3, one can see that 

the noise is significantly reduced. However, the performance of 

the KF-based reconstruction is considerably inferior when 

compared to the wavelet based reconstruction approach in terms 

of wave heights. The reconstructed lead wave is also shifted 

slightly, although this may not be a significant issue. 
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Figure 5. Linear Kalman filter based Tsunami lead wave 

reconstruction results. 

 

The above results are obtained when giving a specific sequence 

of measurement noise samples. To have a better evaluation of 

the wavelet based reconstruction method, it is necessary to use a 

large number of noise sample sequences and use curve fitting to 

obtain the estimate of the wave heights and lengths from each 

sequence of data. Then the statistics of the lead wave parameter 

estimation errors can be determined. To achieve the goal, 200 

sequences of noise samples are generated and a lead wave 

model is obtained from the reconstructed data associated with 

each sequence of the noise samples. The fitted wave height is 

145.5cm and the fitted wavelength is 592.0km. The resulting 

root mean square error (RMSE) of the wave height and 

wavelength estimation is 21.5cm and 56.2km respectively for 

the wavelet-based approach, while they are 31.5cm and 65.0km 

respectively for the KF based approach. 

 

4. CONCLUSIONS 

In this paper, wavelet theory has been exploited to mitigate SSH 

measurement noise for Tsunami lead wave reconstruction and 

wave parameter estimation. The performance of the proposed 

method was evaluated through extensive simulations using real 

Tsunami lead wave data and modelled SSH measurement noise 

samples. The results have demonstrated that accurate lead wave 

reconstruction and wave parameter estimation are possible 

when the lead wave height is significantly greater than the noise 

standard deviation.  

 

Future work will focus on the evaluation of the proposed 

Tsunami reconstruction method using real Tsunami data 

observed by satellite-carried GNSS receivers. It is also useful to 

develop techniques to select the appropriate wavelet parameters 

to enable the good reconstruction performance.  
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