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ABSTRACT: 

 

Ground-based lidar, working as an effective remote sensing tool, plays an irreplaceable role in the study of atmosphere, since it has 

the ability to provide the atmospheric vertical profile. However, the appearance of noise in a lidar signal is unavoidable, which leads 

to difficulties and complexities when searching for more information. Every de-noising method has its own characteristic but with a 

certain limitation, since the lidar signal will vary with the atmosphere changes. In this paper, a universal de-noising algorithm is 

proposed to enhance the SNR of a ground-based lidar signal, which is based on signal segmentation and reconstruction. The signal 

segmentation serving as the keystone of the algorithm, segments the lidar signal into three different parts, which are processed by 

different de-noising method according to their own characteristics. The signal reconstruction is a relatively simple procedure that is 

to splice the signal sections end to end. Finally, a series of simulation signal tests and real dual field-of-view lidar signal shows the 

feasibility of the universal de-noising algorithm.  
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1. INTRODUCTION 

Ground-based lidar is an effective remote sensing tool in 

atmosphere remote sensing(Kovalev and Eichinger, 2004). The 

raw lidar signal can directly show the information of the 

atmospheric condition. Yet, the noise in signal is inevitable, 

leading to difficulties in digging more information about aerosol, 

cloud and other interesting factors. The signal-to-noise ratio 

(SNR) can sharply decreases due to the existence of noise at 

high altitude. 

To reduce the noise level, many methods have been adopted. 

The low-pass filters are mostly accepted de-noising methods. 

The multiple-pulse accumulation and averaging can reduce the 

noise level to 1/ n , yet the temporal and spatial resolution are 

greatly limited(Milton et al., 1992). The other low-pass filters, 

including Fourier transform (FT), empirical mode 

decomposition (EMD), and wavelet transforms (WTs), are 

widely used in signal de-noising(Rabiner and Gold, 1975, 

Huang et al., 1998, Flandrin et al., 2004, Mallat and Hwang, 

1992). However, each individual method has its own feature 

that can suit a unique situation. The FT cannot work well when 

dealing with lidar signal, the EMD results in errors when 

encounter with lidar signal that has huge signal fluctuation(Tian 

et al., 2014), while the WTs have to select a proper wavelet base 

to adapt different signals(Fang et al., 2005). Currently, there is 

no universal de-noising method that can fit all lidar signals. 

In this paper, we introduced a universal de-noising method for 

ground-based lidar signal based on signal segmentation and 

reconstruction. Considering the variation of lidar signal caused 

by weather and other influences, we segment the signal into 

different parts, which can be processed by different de-noising 

method based on their own characteristics. Then, the simulation 

signal and real lidar signal experiments are introduced and 

discussed to show the feasibility of the proposed method. 

2. METHOD DESCRIPTION 

EMD is an adaptive de-nosing method, but has some innate 

drawbacks, such as overshoot and edge effect. The de-noising 

accuracy of WT is high, but it has to select a proper wavelet 

base varied with signal. The proposed de-noising method 

combined the advantages of EMD and WT, but has its own 

characteristic, which can be described as follows: 

a. Background noise deduction. The background noise of lidar 

signal includes the background light noise and detector noise. 

The former one can be defined as the averaged signal intensity 

at the farthest altitude of the each received signal. The latter one 

can be measured as a profile when covering the telescope to 

make sure that no light arriving at the detector. Then, the 

pretreated signal can be obtained by removing the background 

noise. 

b. Layer detection. The layer signal has large signal fluctuation, 

which is unfavorable to the procession of EMD. Thus, if the 

layer is determined before signal de-noising and processed by a 

proper method, the de-noising accuracy will be greatly 

improved. And the algorithms for layer detection is quite mature, 

which will not be discussed here(Pal et al., 1992). 

c. Signal segmentation. Considering the fact that the signal SNR 

at low altitude is quite high, we define the noise-free signal that 

is reserved without de-noising processing. Firstly, the lidar 

equation should be simplified as a linear one as follows: 

ln[ ( )] ln( )P r a r b    (1) 

where  ln[P(r)] = the natural logarithm of P(r) 

 ln(r) = the natural logarithm of r 

 a, b = coefficients of the least square linear fitting 

The signal variation  V ri is defined as follows: 
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where  i = the center bin number of a piece of the local signal 

The calculation number of the variation in the signal per piece 

is 2n+1. The linear fitting coefficients will differ for every piece 

of local signal. 

A pre-set threshold   is given based on the experiment results. 

If the  V rm  is smaller than  , the noise-free signal is 

defined as  the bins that lower than m nr  . 

Then the signal is segmented into three parts: the noise-free one, 

the layer one and the remaining one. 

d. Signal processing. Each signal piece should be processed by 

a proper de-nosing method, according to its own feature. The 

noise-free signal should not be processed. The layer signal is 

de-noised by discrete wavelet transform (DWT) with Symlet 4 

as its wavelet base and a hard thresholding to guarantee the 

preservation of the sharp feature of layer signal. At last, the 

remaining signal is handled by the SG-EMD(Boudraa and 

Cexus, 2007), which is a combination of SG filter and EMD, 

obtaining a better de-noising effect. 

e. Signal splicing. At last, the several signal segments can be 

spliced into an integrated noise-reduced signal 

 
3. DATA ILLUSTRATION 

To validate the effectiveness of the proposed de-noising method, 

the simulation signal and real lidar signal are both adopted in 

this article. 

3.1 Simulation signal 

The simulation signal can evaluate the de-noising effect 

quantitatively. And the simulated lidar signal ( )sP r can be 

expressed as follows: 

( ) ( ) ( )s tP r P r e r   (3) 

where  Pt(r) = the true and pure signal without noise 

 e(r) = the added Gaussian white noise 

Figure 1 shows the simulated noisy signal, which has two layers 

at the altitude of 2200 m and 4300 m.  
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Figure 1. The simulated noisy signal 

 

3.2 Dual field-of -view Mie lidar signal 

The dual field-of-view Mie lidar (DFML) provides the 

possibility of evaluation for real signal. The original purpose of 

this DFML is to increase the dynamic range of a lidar signal 

using two independent receiving channels: one with large FOV 

aimed at a lower altitude, named as near-range signal, while the 

other one with small FOV aimed at high altitude, named as far-

range signal. Actually, a large FOV can bring in more 

background light noise. In contrast, a small FOV will limit the 

noise level at a limited altitude. Considering the valid altitude 

for a far-range signal, the altitude of the signal adopted is 

limited from 2500 to 5000 m. Figure 2 shows the local near-

range and far-range raw signal at the same altitude after the 

signal normalization.. 
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 Figure 2(a). The near-range signal 
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Figure 2(b). The far-range signal at the corresponding altitude 

 

The far-range and near-range signals show the same tendency 

and even show a high similarity in some local areas. Yet, the 

former is obviously clean with high SNR, which is the basis for 

the evaluation of the noise reduction effect of the different de-

noising methods for DFML signals. 

 

4. RESULTS AND DISCUSSION 

4.1 Simulation signal de-noising 

The simulated signal in figure 1 is processed by different de-

nosing methods, including EMD, DWT and the proposed 

method. Figure 3 shows the de-noising result with the proposed 

method, it can clearly seen that the noise level is greatly limited 

compared with figure 1. 
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 Figure 3. The de-noised simulation signal by the proposed 

method 

 

Then, the SNR (Signal-to-Noise Ratio) is defined to evaluate 

the de-noising effect as follows: 
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where  Pde(ri) = the de-noised signal at altitude ri 

 n = the signal length 

The results in table 1 show that EMD cannot work well as the 

others, since the simulation signal has obvious layer that will 

cause serious overshoot effect. DWT with db2 as the wavelet 

base is relatively satisfied but still can reach the best de-noising 

result. The main reason is that the db2 has a big difference with 

the lidar signal with layers. The results demonstrated that a 

proper base for DWT is much important when dealing with 

various type of lidar signal. 

 Single 

layer 

Multiple 

layer 

Noise-added signal 15.51 34.78 

EMD 20.11 39.22 

DWT 24.54 42.52 

The proposed method 27.32 49.27 

Table 1. The signal SNR after processed by different methods  

 

4.2 DFML signal de-noising 

The presence of DFML provides the possibility of an evaluation 

in actual experiments. The far-range signal with a small FOV 

with little noise in a limited range can be used as a noise-free 

signal, and the near-range signal with a large FOV can be 

considered as a polluted signal. Figure 2a and 2b shows that the 

near- and far-range signals display similar trends but with 

markedly different noise levels, and the former has a higher 

SNR. The similarity of the signals lies in the fact that the two 

telescopes are aimed at almost the same atmosphere, whereas 

the different noise level is caused by the different FOVs.  

Thus, the de-noised near-range signal can be compared with the 

far-range signal, and the effect of the proposed de-noising 

algorithm and the other methods can also be tested at the 

limited range. The pseudo SNR serves as an important indicator, 

which can be defined as follows: 
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where  Pfar(ri) = the far-range signal at altitude ri 

A group of typical normalized DFML signals is shown in figure 

2. The de-noising result of the near-range signal shown in figure 

2(a) processed by the proposed method is shown in figure 4, 

where the noise-level of the de-noising signal is greatly reduced 

compared with the near-range signal. The de-noised signal 

retains the local detail features when referred to the far-range 

signal shown in figure 2(b). 
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 Figure 4. De-noised signal using the proposed method 

 

Table 2 lists the SNR for the different types of de-noising 

methods. Generally, the DWT works more steadily than the 

EMD mainly because the chosen local signals share a steady 

trend. The DWT with a proper wavelet function can certainly 

work well when dealing with this type of signal. With regard to 

the local signal, the overshoot effect may be reduced when no 

large fluctuation occurs. Thus, the de-noising effect of the EMD 

is comparable with those of the other methods. The combination 

of the simulated and experimental signals indicates that a 

normal EMD cannot deal with signals collected in a cloudy 

situation unless improved by some means. With regard to the 

proposed method, the combination of the advantages of the 

EMD and DWT making the de-noising effect enhance. Similar 

to the result of the simulated signal, the proposed method still 

occupies a superior status, yielding the highest SNR. 

 1 2 

Near-range signal 40.76 38.64 

EMD 48.22 44.05 

DWT 48.03 47.02 

The proposed method 49.59 49.36 

Table 2. The pseudo SNR after processed by different methods  

 

5. CONCLUSTIONS 

Because of the variation in the lidar signal, no universal de-

noising method can fix all situations. In this article, a de-noising 

algorithm has been proposed based on signal segmentation and 

reconstruction. The simulation and real experiments showed the 

validation of the proposed method. Further work should be 

focused on the efficiency of the de-noising algorithm. 
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