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ABSTRACT: 

 

Accurate positioning of vehicles plays an important role in autonomous driving. In our previous research on landmark-based 

positioning, poles were extracted both from reference data and online sensor data, which were then matched to improve the 

positioning accuracy of the vehicles. However, there are environments which contain only a limited number of poles. 3D feature 

points are one of the proper alternatives to be used as landmarks. They can be assumed to be present in the environment, independent 

of certain object classes. To match the LiDAR data online to another LiDAR derived reference dataset, the extraction of 3D feature 

points is an essential step. In this paper, we address the problem of 3D feature point extraction from LiDAR datasets. Instead of 

hand-crafting a 3D feature point extractor, we propose to train it using a neural network. In this approach, a set of candidates for the 

3D feature points is firstly detected by the Shi-Tomasi corner detector on the range images of the LiDAR point cloud. Using a back 

propagation algorithm for the training, the artificial neural network is capable of predicting feature points from these corner 

candidates. The training considers not only the shape of each corner candidate on 2D range images, but also their 3D features such as 

the curvature value and surface normal value in z axis, which are calculated directly based on the LiDAR point cloud. Subsequently 

the extracted feature points on the 2D range images are retrieved in the 3D scene. The 3D feature points extracted by this approach 

are generally distinctive in the 3D space. Our test shows that the proposed method is capable of providing a sufficient number of 

repeatable 3D feature points for the matching task. The feature points extracted by this approach have great potential to be used as 

landmarks for a better localization of vehicles.   

 

 

                                                                 
*  Corresponding author 
 

1. INTRODUCTION 

Advanced Driver Assistance Systems (ADAS) are nowadays a 

popular topic in research and development, aiming at increasing 

the safety of vehicles. The precise localization of vehicles is 

essential for a safer driving. The standard Global Navigation 

Satellite System (GNSS) cannot achieve a sufficient accuracy 

and availability in many circumstances, e.g., in cities with lots 

of high buildings and tall trees, because of the multi-path effect 

of the GNSS, or in tunnels where no GNSS signal can be 

received.  

 

While currently, mostly self-driving cars are equipped with 

LiDAR sensors, it is expected that LiDAR will be a standard 

component of future ADAS systems, used for obstacle detection 

and environment sensing. The use of these sensors in ADAS 

will also improve the localization of vehicles. Vehicles can 

localize themselves in a known environment by measuring the 

distances to some known landmarks. In Brenner (2010), poles 

were extracted from the dense 3D point cloud measured by a 

mobile mapping LiDAR system. Using these extracted poles, a 

map of landmarks was generated as reference data, and stored in 

a GIS. The vehicle data was provided by four SICK laser 

scanners, mounted in pairs of two on rotary units on the vehicle 

roof. The localisation accuracy of the vehicle was significantly 

improved by matching the poles detected in vehicle data with 

the reference data. In Schlichting and Brenner (2014), the 

vehicle data was measured by an automotive multilayer laser 

scanner mounted on the front of a vehicle. The poles extracted 

from the vehicle data were then matched with the reference 

data, which consists of the landmarks derived from a dense 

mobile mapping LiDAR point cloud. This approach has also 

improved the localization accuracy. 

 

But the number of poles in the environment is sometimes 

limited. If the poles can be replaced by generic 3D feature 

points as landmarks, this will greatly enhance the ability to 

localize vehicles in general environments. To realize this goal, 

automatic 3D feature point extraction and matching methods 

between LiDAR datasets are necessary. 

 

The main goal of this paper is to find a proper solution for 

extracting 3D feature points from LiDAR point clouds. The 

extracted feature points should be distinctive and repeatable in 

both datasets. Distinctiveness describes how suitable these 

points are used for the effective description and the matching 

between scans. Repeatable means the points should be robust 

against noise and changes in viewpoint (Tombari, 2013). These 

two criteria are used later for the evaluation of our approach. 

Afterwards our approach is also compared to other existing 

methods of feature point extraction and description, and the 

influence on registration tasks is analyzed. 

 

The paper is organized as follows. After the introduction, 

Section 2 addresses related work regarding 3D feature point 

extraction and point cloud registration. In Section 3, our method 

to extract 3D feature point using a neural network is proposed. 

The result and overall test of this method on the mobile 
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mapping LiDAR datasets is given in Section 4. Finally, in 

Section 5, we conclude and give an outlook on future work. 

 

2. RELATED WORK 

The matching between LiDAR datasets using 3D feature points 

can be simplified as a keypoint-based registration problem. A 

widely used approach for registration is the Iterative Closest 

Point (ICP) algorithm (Besl and McKay, 1992). It assigns 

closest points and estimates the least squares transformation 

between two scans. Then, the closest point sets are redetermined 

and the procedure is iterated until the minimum error is 

achieved (Myronenko et al., 2006). The key to a successful 

registration with ICP is a good initial guess of the relative 

transformation, otherwise it will likely converge to a local 

minimum. 

 

A keypoint-point based registration can reduce the search 

complexity greatly and provide the required initial 

transformation. For the feature point extraction methods for 3D 

point clouds, there are generally two groups of approaches. One 

extracts feature points directly based on their local 

neighbourhood in 3D space, such as Intrinsic Shape Signature 

(ISS) (Zhong, 2009), Key Point Quality (KPQ) (Mian et al., 

2010), which usually use the Principal Component Analysis 

(PCA) of the neighbourhood in 3D space and use a set of 

criteria to identify feature points. For a dense point cloud data 

with a relative large area, and thus very many points, the 

method which iterates over each data point may be very time 

consuming.  

 

The other group of approaches extracts feature points on a 2D 

representation of the 3D point clouds (e.g. range image, 

intensity image) and retrieves the 3D coordinates based on their 

range information. The standard 2D feature detection and 

description methods, such as SIFT (Scale-Invariant Feature 

Transform) (Lowe, 2004), SURF (Speeded-Up Robust 

Features) (Bay et al., 2008) and ORB (Oriented FAST and 

Rotated BRIEF) (Rublee et al., 2011) were used for registration 

between terrestrial laser scans (Urban and Weinmann, 2015). 

They extract a large number of feature points but with less 

distinctiveness and repeatability. Even though RANSAC can be 

used to remove wrong assignments, the large number of 

mismatched points would still have negative effects on the 

registration. A major objective is therefore to get a low number 

of feature points with a high quality. 

 

3. METHODOLOGY 

Instead of handcrafting a model to extract 3D feature points 

beforehand, we convert the 3D feature extraction into a 

classification problem. When we look at the range images 

generated from LiDAR scans, there are certainly some points in 

our mind, which are thought to be unique and distinctive in their 

local neighbourhood. For example, the corners of buildings, 

traffic lights, poles and windows. Our goal is to train a classifier 

using a small dataset labelled as feature point or non-feature 

point, using some representative features. Then, the algorithm is 

expected to learn the characteristics of feature points and extract 

them for all datasets which were measured in similar scenarios.  

 

To handle this non-linear classification problem with a large 

number of features, we chose a neural network using back 

propagation as classifier. As stated in LeCun et al. (1989), the 

artificial neural network using back propagation has shown a 

great success in handwritten zip code recognition, which 

inspires us to exact feature points also with this method. With 

the generalization ability of this neural network classifier, more 

distinctive feature points are expected to be extracted.  

 

Our approach for 3D feature point extraction from LiDAR data 

consists of five major steps: (i) generating range images, 

(ii) corner detection on range images, (iii) derivation of training 

examples, (iv) neural network training using back propagation 

and (v) prediction for the 3D feature points. 

 

3.1 Generating Range Images 

Before generating range images from the LiDAR point cloud, 

we firstly removed the points on the ground, because these 

points usually have less distinctiveness in the 3D scene. Then, a 

range image was generated based on a 3D observation point and 

a heading angle.  

 

With given horizontal and vertical opening angles, a raster with 

a certain resolution was computed. The resolution used in our 

experiments was 0.06° both in horizontal and vertical direction. 

Afterwards, we calculated the distance between the observation 

point and all the data points in the point cloud. These distance 

values were then inserted into each corresponding cell on the 

raster according to their angular relationship to the observation 

point. If several data points were found in the same cell, the 

point nearest to the observation point was chosen.  

 

The mobile mapping system recorded the trajectories of the 

vehicle using a GNSS and an Inertial Measurement Unit (IMU). 

With these trajectories, a sequence of range images was 

generated along the driving direction as shown in Figure 1. 

Since we later used the curvature value and normal vector value 

as 3D features for the training, we estimated the normals of the 

point cloud using the implementations in the Point Cloud 

Library (PCL, 2014) and generated the images for these two 3D 

features, as shown in Figure 2. 

 

 

Figure 1. Generated range image 

 

  

Figure 2. Image of the curvature value (left) and normal vector 

component in z direction (right) 

 

3.2 Corner Detection 

Based on the idea introduced above, we are building a 

supervised learning algorithm. For the range images, it is 
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impractical and also time consuming to take all the pixels on the 

images into account for the training. To reduce the complexity 

of the training data, a better solution is to detect as many 

candidates as possible on the image and carry out the training 

only on these candidates. The candidates should be 

representative in the local areas and possess a dense coverage 

on the range images. 

 

In this case, corner detectors on 2D images are good choices to 

detect feature point candidates. The Shi-Tomasi corner detector 

(Shi and Tomasi, 1994), a modification of the Harris corner 

detector (Harris and Stephens, 1988), shows a good result with 

representative and dense coverage of the stable corner points in 

the 2D images. The points are extracted only using eigenvalue 

decomposition, which makes it fast and robust.  

 

The LiDAR data has the same resolution in general but the 

range images generated from the observation points on the 

streets have finer resolution in the near range and coarser 

resolution in the far range. Thus, there are lots of small holes as 

well as noisy points to be found in the near range area on the 

range images. Small holes were removed using morphological 

closing in image space, and a median filter was applied to 

reduce noisy points. 

 

3.3 Derivation of Training Examples 

Some of the corner points extracted in the range images after 

morphological closing and median blurring cannot be retrieved 

directly in the original point cloud. This is because these two 

operations changed the edge of the objects significantly. To 

avoid this situation from happening, a table was set up when 

range images were generated from the 3D point cloud. The table 

records the correspondence between each pixel in the range 

image and its corresponding 3D coordinates. When the detected 

corner point has no pixel value on the original range image, a 

kd-tree search is used to find the nearest neighbour pixel with 

value in the local 2D space. If a point with range value is found 

in the neighbourhood, it replaces the old point. If no nearest 

point can be found in the local area, this point is discarded. 

After that, the corresponding 3D point for each 2D feature point 

can be found with the correspondence table generated 

beforehand by a simple lookup. 

 

 

Figure 3. The templates in 32×32 window 

 

With the retrievable candidates detected by the Shi-Tomasi 

corner detector, as described in Section 3.2, a 32×32 window 

was centred at each candidate to extract templates, which were 

later used as training data for the neural network. Figure 3 

shows some of the template examples and their grey values at 

each template indicate the distances to the current observation 

point. To simplify the training data, the following three 

modifications were made to facilitate training of the neural 

network.  

 

First, with the application of an adaptive threshold for each 

template, the grey scale templates were converted into binary 

value templates. In this case, we focus on detecting the shape of 

the candidates and by binarization, the corners at far range and 

near range look the same for the training algorithm.  

 

Second, to reduce the number of different corners to train, we 

normalized the window such that if more than 50% of the pixels 

are occupied, all pixels in the window are inverted. 

 

 

Figure 4. Rotation of the templates for each 90°, the procedure 

will pick the orientation in the first line. 

 

Third, each corner was rotated in steps of 90° and the 

histograms were calculated according to its horizontal and 

vertical axis as shown in Figure 4. The rotation with a 

histogram which shows an accumulation of pixels at the upper 

left side was selected for training. This approach grouped 

similar templates which have the same shape.  

 

Considering only the shape of each candidate in the local area is 

not enough. To make the feature point extraction method more 

robust in 3D space and improve its performance, two additional 

3D features were taken into consideration for the neural 

network training: the local curvature value and normal vector 

component in z direction.  

 

The curvature calculated from the point cloud indicates the local 

variation of the surface around a given point. The points at 

corner regions have higher curvature values than the points 

lying on planes. The surface normals calculated from the 3D 

point cloud show generally the vectors orthogonal to the local 

surface. The normal vector components in x and y direction are 

determined by the orientation of the streets and buildings. 

However, a large normal vector component in z normally 

indicates points which are unique in their neighbourhood, after 

removing the ground.  

 

Currently, the template of each corner can be interpreted as a 

32×32 binary matrix. This was flattened to a 1×1024 vector. By 

including curvature and z component, the vector was extended 

to 1×1026. With n labelled training examples, the final input for 

the neural network was a n×1026 matrix. 

 

Then, all the templates were marked as feature or non-feature. 

Generally, there are some rules for the selection of feature 

points. As previously mentioned, the corners of buildings, 

traffic lights, poles and windows are assumed to be good feature 

points. The templates with significant rectangle or corner 

structures were marked with feature points. Others were marked 

as non-feature points.  
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3.4 Neural network training using Back Propagation  

The neural network using back propagation is generally a 

supervised learning method. It tries to imitate how the neurons 

exchange information with each other in the brain in a simple 

way. Each connected nodes in the neural network constitute the 

simplest representations of the connected neurons in the brain.  

 

In LeCun et al. (1989), an artificial neural network using the 

backpropagation algorithm was applied to recognize 

handwritten zip code. It presented good results on recognizing 

the numbers written in grey value pixels. Inspired by this 

application, we want to learn “good” landmark points among 

the ones detected by the Shi-Tomasi corner detector, based on 

our local feature vector. The algorithm of the neural network 

consists of two parts. One part is the forward propagation, 

which is used for prediction, and the other part is the 

backpropagation which is used for training. 

 

We implemented the neural network algorithm according to 

Bishop (2006). To minimize the cost function in the 

backpropagation part, we used a nonlinear conjugate gradient 

algorithm provided by Scipy (2013). 

 

3.5 Prediction for the 3D feature points 

After the training process as described in Section 3.4, the weight 

parameters between each two neighbouring layers were 

estimated as two matrixes. With these parameters, the forward 

propagation algorithm can be used to predict all unlabelled 

examples only by matrix multiplication and application of the 

activation function, which makes this approach efficient. With 

the candidates predicted as feature points in 2D space, their 3D 

coordinates can then be retrieved using the correspondence table 

mentioned in Section 3.3. 

 

4. EXPERIMENTAL RESULTS 

4.1 Data 

The LiDAR data for our experiments were collected by a Riegl 

VMX-250 Mobile Mapping System (as shown in Figure 5) in 

the city centre of Hannover, Germany. The system includes two 

Riegl VQ-250 laser scanners, which can measure 600.000 

points per second (Riegl, 2012). Position and orientation of the 

system were measured by a GNSS receiver, an IMU and an 

external Distance Measurement Instrument (DMI). All the data 

were post-processed using RIEGL software packages and 

additional software for GNSS/IMU processing to generate the 

geo-referenced LiDAR point clouds.  

 

 

Figure 5.  Riegl VMX-250 

 

4.2 Experiments 

With the idea introduced in Section 3, we realized our approach 

using a neural network with 3 layers: one input layer with 1026 

nodes, one hidden layer with 60 nodes and one output layer with 

2 nodes. As we aim at classifying the candidates into feature 

and non-feature points, the output layer contains only 2 nodes. 

Using 4985 manually labelled examples, the training of this 

neural network using back propagation reached an accuracy of 

79.59 % with a k-fold cross-validation where k is 10. This 

accuracy also indicated that this 3 layer structure could cover 

the complexity of this classification problem. To show an 

example, we extracted feature points on one of the generated 

range images as shown in Figure 6. Their corresponding 3D 

positions were then retrieved by looking up the correspondence 

table, as shown in Figure 7.  

 

 

Figure 6. Feature points extracted by our approach on the range 

image (Candidates detected by Shi-Tomasi corner detector as 

red points, the selected feature points in green windows) 

 

 

Figure 7. The extracted feature points, shown in the 3D point 

cloud 

 

The results above indicate that the 3D feature points extracted 

by our approach are generally distinctive. The feature points are 

located at the desired positions, such as the corners of buildings 

and traffic lights. The repeatability test and the comparison to 

the currently used feature point extraction methods are 

conducted in the following two sections. 

 

4.2.1 Test on the identical LiDAR dataset with different 

trajectories 

 

To evaluate the robustness of our approach against changes in 

location, we generated depth images for two slightly different 

trajectories, as shown in Figure 8. We applied the well-known 

detectors SIFT, SURF and FAST (Features from Accelerated 

Segment Test) on the range images to compare them with our 

approach. FAST is the feature detector used in ORB. 
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Figure 8. Trajectories. The reference feature point dataset was 

generated from the red trajectory, the current feature point 

dataset from the green trajectory 

 

One of these trajectories was used as reference and all the 

feature points generated at each position were combined as a 3D 

feature point reference dataset. Another trajectory was used for 

checking, and we matched 3D the feature points extracted at 

each position with the reference dataset. The result was 

calculated based on a 5 cm threshold. If a point has a neighbour 

in the reference dataset within this distance, it is considered to 

be a repeatable point. 

 

In this test, using 2 trajectories, the algorithm may suffer from 

changes in scale, rotation and perspective. The comparison 

includes the following three aspects: repeatability (as shown in 

Figure 9), Root Mean Square (RMS) error (as shown in Figure 

10) and the count of feature points (as shown in Figure 11). 

 

 

Figure 9. Repeatability of the extracted feature points  

 

 

Figure 10. RMS error of the extracted feature points  

 

 

Figure 11. Number of the extracted feature points  

 

The average repeatability using SIFT, SURF, FAST and our 

approach were 44%, 39%, 35% and 49%, respectively. That is, 

our approach showed a higher reliability than the other detectors 

in all cases except one, and also on average. In addition, the 

RMS error is significantly lower. On the other hand, our 

approach extracts far less feature points, which, however, we 

see as advantage, since for positioning, we need only three point 

correspondences, so that a small number of points with a high 

quality is preferable. 

 

4.2.2 Test between two LiDAR scans 

 

 

 

Figure 12. The aligned point cloud  using our approach (aligned 

point cloud in red, reference point cloud in green, both sides of 

the road) 

 

As a second scan of the same location is available, we 

conducted the comparison to evaluate its influence on the 

alignment task. With the range image pairs generated from both 

LiDAR scans, we applied SIFT, SURF and our approach on 

these images to extract feature points. For SIFT and SURF, we 

used the detector and descriptor implementation offered by 

OpenCV (2014a). For our approach, we used Histogram of 

Oriented Gradients (HOG) (OpenCV, 2014b) as descriptor.  

With the keypoints and descriptors, the 2D, good matches were 

found using the Fast Library for Approximate Nearest 

Neighbours (FLANN) based matcher (OpenCV, 2014c). 

Afterwards, the 3D coordinates of the 2D good matches were 

found based on the correspondence table. Using only these 

matched 3D corresponding feature point pairs, we estimated the 

rotation and translation with 6 degrees of freedom. The scale 
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was not taken into consideration (fixed at 1.0), because the point 

cloud datasets have the correct scale due to the LiDAR 

measurement principle. Afterwards, we applied this 

transformation on one of the LiDAR scans and obtained an 

aligned point cloud. The aligned LiDAR scan, which contains 

over 5 million points, is shown in Figure 12. 

 

 

Figure 13. Distance between two LiDAR scans computed by 

CloudCompare (blue is 0 cm, green 10 cm and red 25 cm) 

 

Then, we analysed the behaviour of each method with the 

following strategy. Although both of the scans were taken at the 

same area, there are still large differences because of moving 

pedestrians and vehicles, or the change of curtains behind the 

windows. After we computed the distance between two point 

clouds using CloudCompare (CloudCompare, 2015), we 

obtained the result shown in Figure 13. We can assume that 

point distances of 0.25 m or more are due to real differences 

between two laser scans, such as the walls (marked in red), 

which were not scanned in the other dataset.  The goal of the 

alignment is to maximize the number of points which have close 

neighbours in the other scan. Therefore, we analyzed the 

histogram of all point cloud distances as shown in Figure 14 and 

used this to compare the given methods. 

 

 

Figure 14. Point cloud alignment comparison between different 

methods 

 

We set two thresholds: 0.05 m and 0.25 m. The lowest entry in 

the figure shows that 46.6% of the point distances are within 

5 cm, using the initial geo-referenced datasets. With the 

alignment using 3D feature points extracted with different 

methods, the number of points which have a distance less than 

5 cm is maximized. In the comparison, we found that our 

approach works slightly better than the other approaches, such 

as SIFT and SURF.  

 

5. CONCLUSIONS 

In this paper, we proposed a 3D feature point extraction method 

from range images. We firstly generated the range images from 

LiDAR point clouds by projection of the points. Then, we 

applied the Shi-Tomasi corner detector on these images to 

extract 3D feature point candidates. With a manually labelled 

dataset, we trained a neural network, using a feature vector 

consisting of local shape, curvature value and normal vector z 

component. Using the trained neuronal network, we are able to 

predict 3D feature points for other datasets measured in similar 

scenarios. 

According to our evaluation, our approach produces a smaller 

number of feature points, which have a higher quality in terms 

of repeatability and RMS error, compared to SIFT and SURF 

features. When we used the point correspondences to align two 

point clouds, our approach showed the best result. The tests 

indicate that the 3D feature points extracted by our approach 

have a great potential to be used as landmarks for the 

localization of vehicles.   

 

In terms of future work, the next step is to test our approach 

with a proper 3D descriptor. The DOG descriptor we have used 

so far generally includes only the shape information on the 

range images. A robust and informative 3D descriptor is 

expected to improve the alignment between LiDAR scans. 
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