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ABSTRACT: 
 
In mobile laser scanning systems, the platform’s position is measured by GNSS and IMU, which is often not reliable in urban 
areas. Consequently, derived Mobile Laser Scanning Point Cloud (MLSPC) lacks expected positioning reliability and accuracy. 
Many of the current solutions are either semi-automatic or unable to achieve pixel level accuracy. We propose an automatic 
feature extraction method which involves utilizing corresponding aerial images as a reference data set. The proposed method 
comprise three steps; image feature detection, description and matching between corresponding patches of nadir aerial and 
MLSPC ortho images. In the data pre-processing step the MLSPC is patch-wise cropped and converted to ortho images. 
Furthermore, each aerial image patch covering the area of the corresponding MLSPC patch is also cropped from the aerial 
image. For feature detection, we implemented an adaptive variant of Harris-operator to automatically detect corner feature 
points on the vertices of road markings. In feature description phase, we used the LATCH binary descriptor, which is robust to 
data from different sensors. For descriptor matching, we developed an outlier filtering technique, which exploits the 
arrangements of relative Euclidean-distances and angles between corresponding sets of feature points. We found that the 
positioning accuracy of the computed correspondence has achieved the pixel level accuracy, where the image resolution is 
12cm. Furthermore, the developed approach is reliable when enough road markings are available in the data sets. We conclude 
that, in urban areas, the developed approach can reliably extract features necessary to improve the MLSPC accuracy to pixel 
level.  
 
 

1. INTRODUCTION 
 
Over the past few years, use of the mobile mapping data 
products have been growing constantly. Data providers 
want to produce highly accurate data products, and to 
generate them more frequently at lower costs. However, it 
is always necessary to utilize manual ground control points 
for the data correction and adjustment due to the low 
positioning accuracy of the GNSS in urban areas.  
 
Automatic feature extraction between Mobile Laser 
Scanning Point Cloud (MLSPC) and Aerial imagery is 
very advantageous for maintaining MLSPC product 
quality and evaluation. Especially, in the urban canyons, 
where GNSS based positioning inaccuracies are common. 
A solution to the problem is to use manually measured and 
handpicked Ground Control Points (GCPs), which could 
not achieve the pixel level accuracy. Moreover, acquiring 
the ground control point is a very labour intensive and 
tedious work and hinders the acquisition of the high 
quality data in automatic fashion. There are many 
techniques available, which can try to minimize the 
number of ground control points which are required to 
correct a data product. However, even acquisition of fewer 
ground control points requires manual interventions. This 
manual post processing step of data correction forces 
surveyors to survey a city site less frequently at the cost of 
more manual effort, while as a consequence customers use 
the outdated, imprecise and expensive data sets. 

                                                                 
*  Corresponding author 
 

Previous research has shown that the automatic image 
feature extraction can be used for the registration between 
two data sets from different sensors. The obtained 
transformation can be used to correct a data set when the 
other already has a reliable accuracy. Jende, Hussnain et 
al. (2016) have shown the preliminary results of 
registration between aerial and ground (MLSPC and 
terrestrial ortho images) data sets. Similarly, Gao, Huang 
et al. (2015) have improved the Mobile Laser Scanning 
(MLS) data accuracy by its automatic registration with 
high –resolution –accurate UAV’s imagery. They 
performed bundle adjustment between UAV imagery and 
rasterized MLSPC ortho image patches using the Harris 
corner keypoint detection and edge based template 
matching. This work reported the RMS -∆X=0.086m -
∆Y=0.063m -∆Z=0.106m in the corrected data set. A SIFT 
based feature detection and matching approach for 
registration of aerial lidar to aerial image was described in 
Abedini, Hahn et al. (2008), however, the achieved 
accuracy of feature matching was not described. 
 
Frueh and Zakhor (2003) proposed to utilize the aerial 
imagery as a reference global edge map for the lidar 
observation on the ground and achieved an absolute 
coordinate difference of ±5 meters using Monte-Carlo-
Localization (MCL). Kümmerle, Steder et al. (2011) 
developed a simultaneous localization and mapping 
(SLAM) approach that computes its global position for 
every node,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-609-2016

 
609



 
Figure 1. Flow diagram of the developed method for MLSPC to Aerial image registration.

Where MLSPC is the observation and the aerial image is 
the reference. In this approach, the accuracy is defined by 
the distance from true orientation of building edge/wall to 
the estimated orientation of edge/wall, and it is 0.2m for 
five used test data sets.  
 
The automatic feature extraction and matching from two 
sensors is a challenging task, due to difference in sensor 
characteristics. The aerial image is acquired through 
camera by capturing white light reflection of scene, where, 
the MLSPC is acquired by lidar sensor and represents the 
geometrical information of the scene in the form of 3D 
positions and the reflection intensity of each surface point. 
Moreover, the optical images have a regular grid of pixels 
over the image space, whereas the MLSPC’s point density 
is variable and depends on the distance of the lidar sensor 
to object and on speed of MLS car. Furthermore, the laser 
reflection intensity of each point is not same as the white 
light surface reflection intensity. 
 
In this scenario, designing an automatic feature extraction 
technique which can detect common features, is a difficult 
but important task. Once achieved automatically, the 
feature extraction can save lots of extra effort, cost and 
time. It could be used to improve the accuracy of the 
already refined or raw data sets. Moreover, the data can be 
acquired more frequently because no manual adjustment 
would be required. Furthermore, the extracted features 
could be used for the automatic data evaluation and quality 
control. 
 
The purpose of our research work is to develop an 
automatic pipeline, which can be used to correct the 
MLSPC using the aerial images of the corresponding area. 
The technique is developed to automatically extract the 
accurate low-level (2D) features from MLSPC and aerial 
imagery. 
 
In the given situation and the data sets, it is apparent that 
the road surface is a biggest part in the data which is 
common between the aerial image and the MLSPC. Apart 
from the different characteristic of the involved 
information, the road plane area can be used for the 2D 
features extraction. Mainly, the road markings are objects 
which are visible in aerial images and also present in the 
MLSPC as laser reflectance of each 3D point. To generate 
a 2D image from MLSPC, 3D points are projected to 2D 
ground plane, and the reflection property of each 3D point 
is assigned to the corresponding pixel in 2D image. The 
MLSPC are long consecutive series of points and due to 
the limitation of the computational power, it is useful to 
crop the point cloud in to small pieces. Therefore, first the 
MLSPC is patch-wise cropped to small tiles and then each 
tile is projected to ground plane to generate a 2D image. 
Furthermore, each aerial image patch of the same size and 
covering the same area is also cropped from a large 
original aerial image. Then for the feature detection from 
the ortho images, we implemented an adaptive variant of 
Harris keypoint detection, so, it can automatically detect 

common and reliable features from the images of the 
different sensors. For description of the feature points, we 
use binary descriptor called Learned Arrangements of 
Three Patch Codes (LATCH), which is robust to noise in 
both the MLSPC and aerial ortho images because it utilizes 
patches of pixels instead of single pixel to establish a 
binary relation. For descriptor matching, firstly the 
descriptors are matched based on their binary differences 
and secondly filtered by  exploiting the arrangement of 
relative Euclidean-distances and angles between both 
corresponding sets of feature keypoints. 
 
The developed technique is dependent on the road 
markings in data sets. So, in case the road markings are not 
presents in the both data sets at all or completely repainted 
to different positions, then this technique could not yield 
reliable correspondences.  Usually, it is not required to 
have road marking in each tile because state of the art 
position filtering methods need accurate correspondences 
only after every 100 meters. 
 
The organization of sections in this paper is presented 
according to the developed method’s work flow diagram 
in Figure 1. At the end, section 4 describes results followed 
by evaluation and conclusion.  
 

2. FEATURE EXTRACTION 
 

As, described earlier that feature extraction will be 
performed on the 2D images, therefore, the data sets 
should be cropped and projected on the ground to generate 
the 2D images. In this section, first we will describe the 
selection of test area and the preprocessing followed by the 
feature extraction from both datasets. 
 
2.1 Selection of test area 

 
In this project, we used the data sets of the Rotterdam city. 
The MLSPC is acquired by the Topcon® IP-S3 mobile 
mapping system, it has a built-in 360 degree lidar sensor 
which captures 700,000 pulses per second. First, an 
arbitrary consecutive part of 527 m in MLSPC is selected, 
which is visualized in Figure 2. Moreover, the aerial 
images of the same area are also obtained, where each 
original aerial image has 20010x13080 pixels and the 
resolution of 12 cm. The visualization of the aerial imagery 
is shown in Figure 3. The test area is selected such that the 
following disturbances are included: 
 

i) GNSS error (MLSPC), (Figure 22) 
ii) different types of road markings (both) 
iii) occlusions (both) 
iv) traffic (both) 
v) trees (both) 
vi) shadows (aerial) 
vii) different level of noise (MLSPC) 
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2.2 Preprocessing 
 

Each selected data set is cropped in to 14 tiles, where each 
tile has a size of 38x38 meters approximately. The size of 
a tile is influenced by the relative accuracy of the MLSPC 
and the total computational time required to detect and 
match features. The 14 tiles of MLSPC and aerial images 
are shown in Figure 2 and Figure 3 respectively. 
 

 
Figure 2. Visualization of the MLSPC of the test area and 

cropped tiles. 

 

 
Figure 3. Visualization of the aerial image of the test area 

and cropped tiles. 

 
2.2.1 MLSPC ortho image generation 

 
The MLSPC is automatically cropped based on the 
coordinate bounds of X, Y and Z axis. The bounds are 
originated from the MLS platform’s 3D position in the 
trajectory, and extended outward to crop a tile of size 
38x38 meters. Now, each cropped tile is still a small point 
cloud as shown in Figure 4 (left). Then, to convert it to a 
2D image, the obtained point cloud is projected on the 
ground plane and an ortho image is obtained as shown in 
Figure 4 (right). Moreover, the laser reflectance property 
of each projected 3D point is used to calculate the grey 
values of the corresponding pixels in raster image. The 
interpolation of the grey values is achieved by the linear 
interpolation. Furthermore, points above 4 m ground level 
are also removed before the projection. The 4 m height can 
easily remove the unnecessary information like trees, 
poles, building etc., while at the same time preserves the 
parts of road which are relatively higher. 
 

 
Figure 4. Point cloud patch on the left is converted to an 

ortho image on the right. 

 
2.2.2 Aerial ortho image generation 
 
As the MLS platform’s 3D position is used to generate the 
MLSPC ortho image, the same position is also back 
projected to the original nadir aerial image and a patch of 
300x300 pixels is cropped as illustrated in Figure 5. At this 
moment, it is assume that the interior and exterior 

orientations of the aerial image are very accurate and it is 
considered that there is no image distortion.  
  
 

 
Figure 5. Acquisition of the aerial image patch by 

projection of 3D point. 

 
2.3 Feature detection 
 
The main focus in this step is to accurately detect all 
important features in the images. Moreover, the features 
should be detected reliably and automatically. Corners are 
the most common 2D features which could be detected 
from the image gradients. Therefore, a corner feature 
detection algorithm Harris and Stephens (1988) is used. 
Harris corner detector is used because it can be adapted 
automatically according to our feature detection 
requirements. An automatic parameter adaptation is 
required because when Harris detector is setup with fixed 
parameters to perform robustness to weak gradient 
changes then it becomes too sensitive to the sensor noise 
and detects many false keypoints. Moreover, the fixed 
parameters may not even work with the images from the 
same sensor. To overcome this problem, these parameters 
can be dynamically computed by an adaptive approach. In 
order to automatically adopt the parameters according to 
any image type, we implemented a dynamic threshold 
computation, which can detect important features reliably. 
This type of automatic parameterization is also necessary 
for the automatic feature extraction pipeline and can 
compensate for cross and inter sensor characteristics and 
noise. 
 
As shown in Figure 6 (top, middle), the gradient values of 
the same piece of road marking in both data sets are quite 
different, where, the adaptive approach detects keypoints 
reliably as shown in Figure 6 (bottom). Usually, a corner 
feature can be detected at the intersections of two edges. 
However, sometime due to the large difference in 
descriptor space, an isolated corner point may fail in 
descriptor matching. That’s why instead of relying on a 
single corner, adaptive approach detects multiple corners, 
which are more reliable while descriptor matching. 
Thereby, features are detected as clusters of corner 
keypoints. 
 
The adaptive approach requires a constant input parameter, 
which in our case is the number of required keypoints. The 
number of keypoints required are set to 5000 ±100 
(100=tolerance), where iterations are incremented by the 
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gradient threshold on normalized resultant gradient image. 
The number of required keypoints is calculated from the 
size of a tile. As, a tile covers an area of 38x38 m2, which 
means roughly two keypoints for 1 m2. The required 
number of keypoints is also influenced by the 
computational costs for matching maximum keypoints 
reliably. The different steps of detection of 5000 keypoints 
from a MLSPC ortho image and from an aerial ortho image 
patch are shown together in Figure 7. An automatic 
adaptive approach is not only useful for the data from 
different sensors but also for the images captured with 
same camera, this type of inter sensor keypoint detection 
and differences are shown in Figure 8.  
 
 

 
Figure 6. Example of adaptive Harris corner keypoint 

detection of a road marking, multiple keypoints (red dots) 
are detected over two observable corner. 

 
 
2.4 Feature description 

 
The Learned Arrangements of Three Patch Codes 
(LATCH) feature descriptor proposed by Levi and 
Hassner (2015) is used for keypoint description. LATCH 
is useful in our problem for two reasons, firstly, it is a 
binary descriptor, and thereby the descriptor matching is 
very fast. Where, computational time is an important issue 
because we would like to process a lot of keypoints. 
Secondly, the grey values of images from sensors of 
different characteristic cannot be compared directly but 
patterns of higher/lower grey values are comparable. 
Moreover, patch triplet approach is robust to noise and it 
is better than using a single pixel value as practiced in pixel 
pairs approach. Due to these properties, LATCH can 
ignore occluded and cluttered location in the ortho image 
of the MLSPC. Also, it can compensate for shadows and 
occlusions in aerial images. The MLSPC has different 
level of sensor noise than white light camera images, and 
LATCH descriptor avoid sensitivity to individual sensor 
noise by not sampling individual pixels.  

The arrangement of the all patch triplet is already learned 
from the data sets provided in Brown, Hua et al. (2011). 
The data used for the training is of generic type, thereby, 
 

 
Figure 7. Adaptive Harris keypoint detection of a whole 
tile, with the total number of keypoints, threshold and 

required iterations. 

 

 
Figure 8. Adaptive approach for different aerial images of 
the same scene. The underlying image differences can be 

realized by comparing the threshold, iterations and the 
obtained keypoints. 

 
it is not required to learn the arrangement from our data.  
Performance results of the LATCH descriptor over 
benchmark data set and comparison with other binary 
descriptors and with float descriptors are also described in 
Levi and Hassner (2015). 
 
The LATCH descriptor returns a binary string of 32 bytes 
or 256-bits for each keypoint (Figure 9), so, a total of 256 
triplets will be computed for each descriptor. The size of 
each mini patch is 7x7 pixels. There are total three patches 
in a triplet, one of the middle one is called ‘Anchor’ and 
other two are ‘companions’ or C1 and C2 Levi and Hassner 
(2015). A descriptor’s binary string is calculated based on 
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the comparison between SSD1 and SSD2, here, SSD stands 
for the sum-of-squared difference of two (7x7 pixels) 
patches, where SSD1 is computed between the anchor and 
C1 patches and SSD2 is computed between the anchor and 
C2 patches. If SSD1 is greater than the SSD2 then the 
returned binary value is 0 and otherwise it is 1. The 
descriptors are computed around the all keypoints in both 
images. 
 
 

 
Figure 9. The computation of a particular LATCH 

descriptor used in this project. 

 
3. DESCRIPTOR MATCHING 

 
Like other binary descriptors, LATCH descriptor 
matching is also based on similarity of corresponding 
binary strings. The distance of each descriptor from a list 
of length n to all descriptor in list of length m is calculated 
by Hamming distance, which is the number of total 
different bits occurred in two binary strings. Moreover, for 
Lowe’s ratio test, the threshold of 0.99 is used as proposed 
by Levi and Hassner (2015), which was proposed as 0.66 
in the original setting Lowe (2004).  
 
Sometime in descriptor matching, the correct 
corresponding descriptors are not near in descriptor space 
and may be even inaccurate corresponding descriptors are 
near in descriptor space. For this reason, instead of the one 
closest descriptor, first five nearest descriptors are 
obtained by k-NN based descriptor matching. Therefore, 
for an each query descriptor in first image, up to five 
nearest neighbours in the descriptor space of the second 
image are retrieved. Thereby, one query descriptor is 
linked with up to 5 descriptors as illustrated in Figure 10 
and matched keypoints are shown in Figure 11. In the 
obtained correspondences, the inlier ratio is small, 
however, more importantly there are all important and 
correct correspondences. So, during inevitable situations, 
when there is noise and occlusion, the flexibility of 
descriptor matching could reliably include correct matches 
which could be rejected otherwise. Later, the great number 
of outliers can be removed by a filtering algorithm. In 
simple case of outlier filtering, the relative Euclidean 
distance and angle between the keypoints can be exploited. 
 

 
Figure 10. Illustration of the matched descriptors of 

image 1 and image 2. 

 
Figure 11. Hamming distance based descriptor matching 

of an example tile with five nearest neighbours (k=5). 

 
3.1 Outliers filtering 

 
First we will discuss the developed outlier filtering 
approach, followed by homography based approach, 
homography based technique is only useful when error in 
rotation is large. 
 
3.1.1 Developed filtering approach 
 
The filtering approach is developed to filter outlier 
correspondences which are introduced during the 
descriptor matching. Most of the outliers are included due 
to the descriptor matching with five nearest neighbours. 
As, the given data sets have a large error in translation and 
small error in scale and rotation, we have developed a 
method to remove the outliers based on their relative 
Euclidean distances and the angles with a seed feature 
point. This method is a brute-force method and iterate 
through each keypoint in any one of the list (in Figure 10), 
a seed feature point is illustrated in Figure 12. In this 
illustration, the image 1 has a seed feature point P1 and its 
relative correspondence points are P2, P3 and P4, moreover, 
in image 2 the seed point P’1 has relative correspondence 
points P’2, P’3 and P’4, where dn is a relative distance of nth 
correspondence Pn to a seed feature point and θn is a 
relative angle. Due to the distortion in data sets, these 
parameters are relaxed by a tolerance, so, abs(d’n − 
dn)<toleranced and abs(θ’n − θn,)<toleranceθ. The 
relaxation by tolerance is consider as the maximum 
accuracy which can be achieved. In other words, a very 
small value of tolerance could yield very accurate matches 
but due to the distortion many potential correct 
correspondences will be also missed. Therefore, it is 

Keypoint

M
in

i p
at

ch
es

Large patch around a keypoint

Anchor
C1

C2

...0 1 1 0
256 bits

  x  48
48

    x  7
7

    x  7
7

    x  7
7

    x  7
7

    x  7
7

    x  7
7

C2

C1

Anchor

SSD1

SSD
2

SSD 1  >
 S

SD 2 

. . .
SSD 1  < SSD 2 

SSD1

SS
D 2

... ...

List of descriptors
image 1

1

2

3

n
m

1

2

3

.
.
.

.
.
.

...1 1 0 0

...1 0 0 0

...0 1 0 1 ...1 1 1 0

...1 0 0 1

...0 1 1 1

List of descriptors
image 2

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-609-2016

 
613



important to not neglect these correct matches and increase 
the tolerance to the maximum value. Consequently, we set 
toleranced to 0.9 pixel(s) and toleranceθ to 0.15 degree, 
which maintain the final accuracy to pixel level.  
 

 
Figure 12. The (P2↔P’2) and (P4↔P’4) are correct 

matches in image 2 with respect to image 1 but (P3↔P’3) 
is an incorrect match due to different value of θ3. 

3.1.2 Homography based filtering approach 
 
When there is large error in rotation between two data sets 
(which is not the case with the test data sets), then the 
developed outlier filtering technique could not be used. 
Moreover, the Homography (computed with RANSAC) 
based outlier filtering could not be used directly as the 
inliers ratio is very low after descriptor matching. 
However, if the error in scale is small, then it is possible to 
only use the dn constraint in the developed filtering 
approach, an example result is shown in Figure 13, which 
contains a small amount of outliers. From the 
correspondences in Figure 13, an accurate homography 
matrix can be computed as the inlier ratio is large. Now, 
with the obtained homography the outlier correspondences 
can be removed directly after the descriptor matching. The 
result of same example after the outlier removal using 
Homography is shown in Figure 14.  
 

 
Figure 13. Correspondences computed without θn 

constraint. Blue arrows are pointing toward some visible 
outlier correspondences. 

 
Figure 14. Homography based outliers filtering. 

                                                                 
1 This image can be zoomed to 6400% for a very close 

observation by using the digital copy of this paper. 

 
4. RESULTS 

 
In this section we will describe the results according to 
the feature extraction steps. 
 
4.1 Feature detection 
 
An example result of the keypoint detection is provided in 
Figure 15. The two different zoom levels are provided to 
visualize the feature detection, one is a normal view 
(Figure 15, top) as well as a zoomed view (Figure 15, 
bottom). Overall, there are lots of clusters of keypoints 
detected at the corners of road markings. Many keypoints 
are also detected at the edges of a traffic light passing over 
the zebra crossing in the aerial image patch. 
 
Comparatively, more keypoints are detected at the corners 
of the road markings in the aerial images than in the 
MLSPC ortho image. It can be noticed with a close 
observation that the correct corresponding keypoints are 
inside the clusters of keypoints in the both images. For 
detailed inspection, it is possible to further zoom-in and 
analyse the grey values and the detected keypoints (in 
digital copy).  
 
For the keypoint detection from all tiles, the threshold and 
the total iterations required to obtain the keypoints are 
provided in Table 1. The extremely different requirements 
of threshold and the number of iterations required for the 
tile 2 and tile 6 shows the noise difference in the images of 
the same sensor. 
 

 
Figure 15. Adaptive Harris corner feature detection from 

aerial (left) and MLSPC (right) image patch1. 
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1 782/85 7.8/0.83 5098/5091 
2 1151/179 11.50/1.78 5096/5091 
3 1250/346 12.49/3.45 5100/5100 

P1

P2

P3

P4

d1

d2

d3

Image 1

 

P1

P2

P4

d1

d2

Image 2

θ2 θ3 

θ2

 θ1

θ1

θ3

'

'

'
'

'

'

'

'

'P3

d3

'
x

y

x

y

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed.  
doi:10.5194/isprsarchives-XLI-B1-609-2016

 
614



4 885/147 8.84/1.46 5095/5099 
5 369/25 3.68/0.24 5090/5074 
6 160/24 1.59/0.23 5088/5078 
7 359/62 3.58/0.61 5092/5060 
8 483/121 4.82/1.2 5091/5100 
9 256/167 2.55/1.66 5094/5100 
10 568/13 5.67/0.12 5097/5100 
11 529/7 5.28/0.06 5097/5100 
12 310/35 3.09/0.34 5088/5053 
13 707/88 7.06/0.86 5098/5098 
14 778/273 7.77/2.72 5098/5092 

Table 1: Results of the adaptive Harris keypoint 
detection. 

4.2 Feature matching2 
 

In this section we will discuss the results of the developed 
filtering approach. 
In first glance, matched features appear as random clusters 
of the keypoints detected in the image pair (Figure 16, top). 
A zoomed visualization of the matched keypoints with 
connecting lines is also crowded due to many matches 
(Figure 16, middle). Therefore, more interactive 
visualization of the results with Lego patterns is provided 
in (Figure 16, bottom). By a close observation of the Lego 
patterns, it can be realized that the patterns are exactly 
same in corresponding images. Which also shows that the 
features are matched to the pixel level accuracy. 
Furthermore, the grey values and edges in context of the 
road markings are also same with respect to each image. 
We also analysed the normal probability function of the 
error in translation of the obtained correspondence and the 
total number of matched correspondences together with 
mean (µ) and sigma (σ) of X and Y axis for all tiles in 
Table 2. 
 

 

 

 
Figure 16. Different visualizations of the feature 

matching with developed method.1 

 

                                                                 
2 Visualizations of all matching results are provided at: 

https://www.researchgate.net/profile/Zille_Hussnain 
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1 4393 140 -2.16 0.87 0.03 0.08 
2 7016 930 -2.07 0.95 0.06 0.06 
3 12961 1703 -2.02 0.81 0.07 0.05 
4 8159 702 -1.99 0.93 0.08 0.05 
5 3702 275 -2.16 1.01 0.07 0.08 
6 5090 316 -1.93 1.00 0.05 0.09 
7 5318 456 -1.82 0.87 0.09 0.07 
8 9403 495 -1.74 0.85 0.04 0.08 
9 6050 438 -1.74 0.90 0.06 0.08 
10 4109 65 -1.90 0.87 0.07 0.02 
11 6043 748 -1.78 1.00 0.05 0.08 
12 4849 185 -1.91 0.93 0.08 0.04 
13 6460 561 -1.78 1.05 0.06 0.07 
14 8824 750 -1.81 1.02 0.07 0.05 

Table 2: Number of Matched keypoints and the normal 
probability function parameters of translation (all units 

are in meters) for each tile2. 

4.3 Discussions  
 

The matching results have shown that the developed 
method has achieved the pixel level accuracy on the given 
data sets. The developed filtering approach can work only 
when the error in rotation and scale is small. When the 
error in rotation is large, then without the rotation check in 
the filtering part, only the distance constraint can be 
imposed. The resultant correspondences together with a 
small subset of outlier can be used to compute the accurate 
homography matrix and the outliers can be removed easily 
from the initial correspondence. 
 
Even though the aerial imagery was captured in winter and 
the roads are comparatively well visible, the occlusion due 
to the trees branches was the biggest problem. We have 
noticed that the low point density and small occlusions in 
the point cloud do not have much effect on the results. So, 
the developed method can give better results, when the 
road surface is clearly visible in the aerial imagery. 
 
Overall, distortion in the aerial imagery due to the 
atmospheric dispersion, different level of contrast/ 
illumination and variable exposure could hinders the 
keypoint detection, however, these problems were handled 
by the adaptive Harris keypoint detection. The false 
keypoint detection caused by shadows, trees and poles, and 
matching was handled by the outlier filtering approach. 
 
4.4 Evaluation of estimated shift 

 
The actual error in the MLSPC relative to the aerial 
imagery could be measured roughly by handpicked 
correspondences. The evaluation method only considers 
the error in translation and does not consider the error in 
rotation. Though not very accurate, still this method can 
provide a rough evaluation of the error presents in the 
MLSPC.  
 
An example of manual selection of corner point is shown 
in Figure 17. In this figure, it has been shown that the top 
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left corner point of a road marking (bounded by green 
window) is selected as a same corresponding point in both 
images. This process was repeated for each tile and few 
well distributed points were obtained. The distribution of 
the obtained error is shown in the Figure 18. As it is not 
possible to show the results from all tiles, only accurate 
and least accurate results from two different tiles are 
shown in Figure 18, top and bottom respectively.  
 

 
Figure 17. Manual selection of road marking's corner 

point for result evaluation. 

 
5. CONCLUSION 

 
In this paper we have implemented an automatic and 
reliable feature extraction procedure for the MLSPC and 
aerial ortho images, which can compute correspondences 
with up to pixel level accuracy. The feature matching 
results have shown that the MLSPC can be corrected 
reliably to the pixel level accuracy.  
 
The filtering technique proposed is feasible for the real 
world problem of MLSPC correction. The developed 
filtering technique cannot compensate for the scale 
variations and large rotations. Moreover, the filtering 
technique is a brute-force method as it is developed for the 
post processing purpose and it cannot be used for the real 
time applications. The advanced searching algorithms will 
be introduced to decrease the total time required for feature 
matching and to compensate rotation and scale variations.  
 
Image filtering methods can be used to save the time spent 
on computation of feature detection parameters, it will 
avoid the need to adapt the parameters to images from 
same sensor. Furthermore, the evaluation of the matching 
result is a rough estimation of the error because manual 
correspondence selection is error prone. A more accurate 
evaluation method will be used in future. 
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Figure 18. Overlap of PDFs of X and Y coordinates, 

estimated by the developed method (DM) and manually 
measured (MM), tile 4 (top) and tile 8 (bottom). 
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