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ABSTRACT:

Mobile Mapping System (MMS) simultaneously collects the Lidar points and video log images in a scenario with the laser profiler and
digital camera. Besides the textural details of video log images, it also captures the 3D geometric shape of point cloud. It is widely
used to survey the street view and roadside transportation infrastructure, such as traffic sign, guardrail, etc., in many transportation
agencies. Although many literature on traffic sign detection are available, they only focus on either Lidar or imagery data of traffic sign.
Based on the well-calibrated extrinsic parameters of MMS, 3D Lidar points are, the first time, incorporated into 2D video log images
to enhance the detection of traffic sign both physically and visually. Based on the local elevation, the 3D pavement area is first located.
Within a certain distance and height of the pavement, points of the overhead and roadside traffic signs can be obtained according to the
setup specification of traffic signs in different transportation agencies. The 3D candidate planes of traffic signs are then fitted using the
RANSAC plane-fitting of those points. By projecting the candidate planes onto the image, Regions of Interest (ROIs) of traffic signs are
found physically with the geometric constraints between laser profiling and camera imaging. The Random forest learning of the visual
color and shape features of traffic signs is adopted to validate the sign ROIs from the video log images. The sequential occurrence of a
traffic sign among consecutive video log images are defined by the geometric constraint of the imaging geometry and GPS movement.
Candidate ROIs are predicted in this temporal context to double-check the salient traffic sign among video log images. The proposed
algorithm is tested on a diverse set of scenarios on the interstate highway G-4 near Beijing, China under varying lighting conditions
and occlusions. Experimental results show the proposed algorithm enhances the rate of detecting traffic signs with the incorporation of
the 3D planar constraint of their Lidar points. It is promising for the robust and large-scale survey of most transportation infrastructure
with the application of MMS.

1. INTRODUCTION

The improvement of Intelligent Transportation System is not on-
ly beneficial to our daily transportation but also gathering more
intelligence in predicting the possible risk of driving. Traffic sign
plays a significant role in regulating and controlling traffic ac-
tivities, and ensures a safe and smooth traffic. The accurate de-
tection and localization information of traffic signs are necessary
for many intelligent transportation-related applications, like those
systems of autonomous driving and driver assistance. As a result,
automated traffic sign detection and recognition techniques are
crucial for the transportation agencies to update the traffic sign
inventory timely, and to improve the traffic quality and safety
quickly.

Traditionally, most of the traffic sign detections are based on tex-
tual and color details of video log images. But only images can
hardly achieve precise detection results. It is challenging to cope
with the complex texture and color corruption in the urban envi-
ronment. With the laser profiler and digital camera, mobile map-
ping system (MMS) provides an effective way for acquiring very
dense point clouds as well as road video log images in a scenari-
o. Mobile laser scanning (MLS) has proven to be very efficient
in acquiring very dense point clouds (over 800 points per square
meter) along road corridors. Integrated in a mobile mapping sys-
tem, the data acquired by laser scanners can be used to robustly
capture the geometry of the road environment and be the basis for
the recognition of a wide range of objects.
∗Corresponding author

Traffic sign detection can be classified into color-based, shape-
based, or both. Different color spaces have been used, for in-
stance, HSI-HSV (Fleyeh, 2006, Gomez-Moreno et al., 2010),
YUV (Shadeed et al., 2003) or Gaussian color model (Li et al.,
2015) as a visual feature to define a traffic sign region. Shape
features have also been studied, such as Hough Transform (Bar-
rile et al., 2008), Local Contour Pattern (Landesa-Vazquez et al.,
2010), or Local Binary Patterns (Liu et al., 2014). There are many
intense efforts in computer vision (Heng et al., 2011, Crandall et
al., 2011, Heng et al., 2011) focus on image-based 3D reconstruc-
tion at large-scale internet imagery. For example, image-based
3D point clouds and semantic texton forests are used to segmen-
t and recognize the highway assets(Golparvar-Fard et al., 2012).
The color-coded point clouds and the geo-registered video frames
are integrated together which enables a user to conduct visual
walk through and query different categories of assets. Semantic
texton forests and SVM (Support Vector Machine), proposed by
(Golparvar-Fard et al., 2012, Yang et al., 2015) are used to rec-
ognize the traffic signs. (Riveiro et al., 2015) is focused on the
detection and classification of retro-reflective vertical traffic sign-
s for their function (danger, give way, prohibition/obligation, and
indication) from mobile laser scanning data by considering ge-
ometric and radiometric information. (Yu et al., 2016) achieve
recognition task by using Gaussian-Bernoulli deep Boltzmann
machine-based hierarchical classifier on 2-D images. They fo-
cus on the detection of vertical traffic signs in 3D point clouds
acquired by a LYNX Mobile Mapper system, comprised of laser
scanning and RGB cameras (Soiln et al., 2016).
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However, to take full advantage of using MMS, they must be
used in optimal applications. Unlike other literatures, the 3D
point cloud will play a special role in traffic sign detection. In
this study, we focus on the detection and tracking of traffic signs
using 3D Lidar points and 2D video log images by considering
the imaging geometry and GPS movement. The global strategy
for detection and tracking by filtering the noise point through set-
ting distance and elevation thresholds, the rough area of traffic
sign can be obtained. Then we project the candidate planes fit-
ted by RANSAC onto the image, regions of Interest (ROIs) of
traffic signs are localized in the video log images. At this stage,
Random Forest is adopted to detect the traffic signs among these
ROIs. Finally, a tracking algorithm is proposed to analyze this
temporal context by combining the Camshift and Kalman filter-
ing together.

2. TRAFFIC SIGN LOCALIZATION

The proposed traffic sign detection algorithm first focuses on us-
ing the distance and elevation information to segment the traffic
signs from the point cloud. By filtering the noise point through
setting distance and elevation thresholds, the rough area of traffic
sign can be obtained. Then we project the candidate planes fitted
by RANSAC onto the image, regions of Interest (ROIs) of traffic
signs are localized in the video log images.

2.1 Pre-processing

We need to handle laser point clouds to reduce the amounts of
data to process or it will be time-consuming. The 3D data we ac-
quire includes pavements, traffic signs, buildings, billboards, it is
important to extract the local interest information instead of the
whole data. Those points consist mainly of two types: one is on
the ground such as traffic signs, billboards, trees and guardrail-
s; the other is ground segments like pavements, lane markings.
Considering the data of each photo contains the trajectory po-
sition of the vehicle, the range containing the road as well as
the traffic sign can be located temporally from a large scenari-
o. Within a certain distance and height of the pavement boundary
and plane respectively, points of the overhead and roadside traf-
fic signs can then be obtained through the setup specification of
traffic signs.

Since the point cloud data contains huge information and involves
in thousands of pictures like Figure.3(a), we need to set values
for distance and elevation to obtain necessary points for single
image. The classification starts with the distance from the 3D
points to the sensor is computed, and points further than 20 me-
ters are filtered out. At this case, it is obvious that the remaining
points contain a set of points that belong to traffic signs, but they
still include points on the floor, on lane markings and on near-
by buildings, as Figure.3(b) Among the whole points, traffic sign
points are mostly in higher altitude compared to other belong-
ings. According to the Chinese road traffic laws, the traffic sign
is placed on the edge of the road shoulder, and its height is 2 to
2.5 meter away from the road. We reserve those points whose
elevation is 1.8 meters higher than the average, the general road
plane’s height. As we can see from the Figure.1(c), only the in-
formation of the traffic sign where the MMS is traveling will be
kept for further processing.

2.2 RANSAC

After the first pre-processing step, the remaining point clouds
contain mainly the road sign. The 3D candidate planes of traf-
fic signs are then fitted using the RANSAC plane-fitting strategy

(a)

(b) (c)

Figure 1: Different results after pre-processing. (a) Original point
clouds; (b) The remaining points after certain distance is set;
(c)Only the points around the traffic sign is reserved.

among those points.

The RANSAC algorithm is a learning technique to estimate pa-
rameters of a mathematical model from a set of observed data
contains both inliers and outliers. Inliers can be explained by a
model with a particular set of parameter values, while outliers
do not fit that model in any circumstance. The voting scheme
is used in RANSAC to find the optimal fitting result. The im-
plementation of this voting scheme is based on two assumptions:
the entire data we are observing consists of both inliers and out-
liers, and a process which can optimally estimate the available
parameters of the chosen model from the inliers. The input to the
RANSAC algorithm is a set of observed data values including
point clouds produced from previous step, a way of fitting some
kind of model to the observations, and some confidence param-
eters. The RANSAC algorithm is essentially composed of two
steps that are iteratively repeated:

• Firstly, a sample subset containing minimal data items is
randomly selected from the input dataset. We can get the
fitting model and the corresponding model parameters by
computing the elements of this sample subset. The cardinal-
ity of the sample subset is the smallest sufficient to deter-
mine the model parameters.

• Secondly, for all the points in our data, the distance to the
fitting model is computed. A data element will be consid-
ered as an outlier if its distance is larger than the threshold
we set before the procedure.

The set of inliers obtained for the fitting model is called consen-
sus set. This procedure is repeated a fixed number of times, each
time producing either a model which is rejected because too few
points are part of the consensus set, or a refined model togeth-
er with a corresponding consensus set size. In the latter case, we
keep the refined model if its consensus set is larger than the previ-
ously saved model. The estimated model which contains the most
inliers is considered as the optimal model, final figure is shown
as Figure.2.
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An advantage of RANSAC is its ability to estimate the model
parameters robustly. But, RANSAC can only do the estimation
of the parameter model we want for a particular data set, i.e. if
the data contains traffic sign and greenbelts, the plane fitted by
RANSAC may fail to find either one.

Figure 2: The plane result fitted by RANSAC.

2.3 Projection

During the third phase of our procedure, the projection of traffic
signs plane is accomplished by using co-linearity equation, via
shooting rays from the image to the 3D geometry. Traditional
road sign detection is carried out using 2D image only, this may
would not guarantee high accuracy. Also, the spatial resolution
of a point cloud is not enough to recognize traffic sign. The best
source of information that the MMS provides for the recogni-
tion task are RGB cameras, whose internal calibration and exter-
nal orientation parameters with respect to the vehicle are known.
The relative registration between laser point clouds and array C-
CD images is achieved by using POS data and relative position
of each sensor.

Let x,y refer to a coordinate system with the x-axis and y-axis
in the sensor plane. Denote the coordinates of the point P on the
object by xp, yp, zp, the coordinates of the image point of P on
the sensor plane by x and y and the coordinates of the projection
(optical) center by x0, y0, z0. As a consequence of the projection
method there is the same fixed ratio between x−x0 and x0−xp
, y − y0 and y0 − yp the distance of the projection center to the
sensor plane z0 = c and zp − z0 . Hence:

x− x0 = −λ(xp − x0) (1)

y − y0 = −λ(yp − y0) (2)

c = λ(zp − z0) (3)

Solving for λ in the last equation and entering it in the others
yields:

x− x0 = −cxp − x0
zp − z0

(4)

y − y0 = −cyp − y0
zp − z0

(5)

The point P is normally given in some coordinate system ”out-
side” the camera by the coordinates X , Y and Z, and the pro-
jection center by X0, Y0, Z0. These coordinates may be trans-
formed through a rotation and a translation to the system on the
camera. The translation doesn’t influence the differences of the
coordinates, and the rotation, often called camera transformation,
is given by a 3×3-matrixR, transforming (X−X0, Y −Y0, Z−

(a) (b)

Figure 3: Projection result.

Z0)into:

xp−x0 = R11(X −X0)+R21(Y −Y0)+R31(Z −Z0) (6)

yp− y0 = R12(X −X0) +R22(Y − Y0) +R32(Z −Z0) (7)

and

zp − z0 = R13(X −X0) +R23(Y − Y0) +R33(Z −Z0) (8)

Substitution of these expressions, leads to a set of two equations,
known as the collinearity equations:

x− x0 = −cR11(X −X0) +R21(Y − Y0) +R31(Z − Z0)

R13(X −X0) +R23(Y − Y0) +R33(Z − Z0)
(9)

y − y0 = −cR12(X −X0) +R22(Y − Y0) +R32(Z − Z0)

R13(X −X0) +R23(Y − Y0) +R33(Z − Z0)
(10)

The most obvious use of these equations is for images recorded
by a camera. The projection process can be described by transfor-
mations from object space (X,Y, Z) to image coordinates (x, y).
It indicates that the image point (on the sensor plate of the cam-
era), the observed point (on the object) and the projection center
of the camera were aligned when the picture was taken. After
projection, the candidate region is located shown as Figure.3(b)

3. TRAFFIC SIGN DETECTION

By projecting the candidate planes onto the image, Regions of
Interest (ROIs) of traffic signs are found physically with the ge-
ometric constraints between laser profiling and camera imaging.
At this stage, Random Forest is adopted to detect the traffic signs
among these ROIs.

Based on the blob feature of (Vicen-Bueno et al., 2005), a blob
of 24*24 pixels for each component(R, G, and B) of each ROI
of the video log image is sent to random forest classifier. The
total dimension of the input vector is 51 nodes. They consists of
3 normalized average maximum pixel values, MR, MG and MB,
24 inputs from the vertical histogram (vh) and 24 inputs from the
horizontal histogram(hh).

Random forests, introduced by Breiman and Cutler (Breiman,
2001), are an ensemble learning method for classification. It is
operated by constructing a multiple of decision trees at training
time and outputting the class. Each tree in the ensemble is built
from a random sample of the original data with replacement from
the original training data. The main steps of random forest are as
follows:

• Take a subset from the whole set of data (training set).

• The algorithm clusters the data in groups and subgroups. If
you would draw lines between the data points in a subgroup,
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and lines that connect subgroups into group etc. the struc-
ture would look somewhat like a tree. This is called a deci-
sion tree. At each split or node in this cluster/tree/dendrogram
variables are chosen at random by the program to judge
whether data points have a close relationship or not.

• The program makes multiple trees a.k.a. a forest. Each tree
is different because for each split in a tree, variables are cho-
sen at random.

• Then the rest of the dataset (not the training set) is used to
predict which tree in the forests makes the best classification
of the data points (in the dataset the right classification is
known).

• The tree with the most predictive power is shown as output
by the algorithm.

The random forests achieve state-of-the-art performance in many
multi-class classification applications. A further advantage is that
they are fast to build, easy to implement in a distributed comput-
ing environment

4. TRAFFIC SIGN TRACKING

The sequential occurrence of a traffic sign among consecutive
video log images are defined by the geometric constraint of the
imaging geometry and GPS movement. Candidate ROIs are ana-
lyzed in this temporal context to double-check the salient traffic
sign among video log images. In this section, a tracking algo-
rithm is proposed to analyze this temporal context by combining
the Camshift and Kalman filtering together. Camshift can track
the moving objects quickly and robustly, using the color charac-
teristics. Kalman filtering can predict the most probable object
location in the next frame according to the geometric constraints
and the updated observations in the current frame.

4.1 Camshift

The Camshaft algorithm is based on the color probability distri-
bution of the target, so the changes of the object shape would not
affect the result. By calculating similarity of the color probability
distribution, the moving target in the current frame image location
is taken as the initial location of the next frame. Its core algorithm
is the Meanshift algorithm, a probability density estimation based
on rapid non-parametric pattern. Meanshift looks for the maxima
of a density function and Camshift is the extension of it. The flow
of the algorithm is as follows:

1. Set the size of the search window(s) in the color probability
distribution.

2. Calculate the zero moments:

M00 =
∑
x

∑
y

I(x, y) (11)

M01 =
∑
x

∑
y

yI(x, y) (12)

M10 =
∑
x

∑
y

xI(x, y) (13)

Where, I(x, y) is the image element value of coordinates
(x, y), and x and y change in the scope of the search win-
dow.

3. Calculate the center of mass for the search window (Xc, Yc):

xc =
M10

M00
, yc =

M01

M00
(14)

4. The size of the search window that is the function of a color
probability distribution of the former search window can be
re-installed as s.

5. Repeat steps 2, 3, 4 until they are constringent (the change
of the center of mass is less than the threshold value).

6. The major axis l, minor axis w and direction angle of the
target can be obtained by calculating the second-order ma-
trix.

M11 =
∑
x

∑
y

xyI(x, y) (15)

M20 =
∑
x

∑
y

x2I(x, y) (16)

M02 =
∑
x

∑
y

y2I(x, y) (17)

l =

√
(a+ c) +

√
b2 + (a− c)2

2
(18)

w =

√
(a+ c)−

√
b2 + (a− c)2

2
(19)

θ =
1

2
arctan(

2b

a− c ) (20)

Where

a =
M20

M00
− xc2, b = 2(

M20

M00
− xcyc), c =

M02

M00
− yc2

(21)

Following the aforementioned procedures yields a window which
is very likely to contain the original target. However, if the occlu-
sion or large-scale similar color interference occur during track-
ing process, Camshift algorithm will fail. In order to deal with
such problem, we improves the Camshift algorithm in two ways:
background subtraction algorithm and kalman algorithm.

4.2 Kalman filter

Before we do Camshift method, we need to judge the effects of
background to the tracking. If the background color is too sim-
ilar to the object, we need to use background subtraction first.
It is a motion detection algorithm begins with the segmentation
part where foreground or moving objects are segmented from the
background. The simplest way to implement this is to take the
previous image as background and take the current frames, de-
noted by I to compare with the background image denoted by B.
Here using simple arithmetic calculations, we can segment out
the objects simply by using image subtraction technique of com-
puter vision meaning for each pixels in I, take the pixel value
denoted by P [I] and subtract it with the corresponding pixels at
the same position on the background image denoted as P [B].

P [F ] = P [I]− P [B], (22)

Where the difference image denoted as P[F], which would only
show some intensity for the pixel locations which have changed
between the two frames. Then the difference image will be sent to
Camshift procedure for further processing. After that, the kalman
filter is adopted here to estimate the parameters of the moving
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targets. The key of kalman filter is prediction and update. The
state vector Xk = [x, y, Vx, Vy], measurement vector is Yk =
[x, y]T , Where x and Vx are the target image in the horizontal
direction of the position and velocity; y and Vy are the target
image in the vertical position and velocity. The state equation of
the system is (23), and observation equation is (24).

Xk+1 = AkXk +Wk (23)

Yk+1 = HkXk + Vk (24)

Where Ak is state transition matrix. Yk is measurement state of
system. Hk is observation matrix. Wk is dynamic noise cor-
responding to state vector, and Vk is measurement noise corre-
sponding to observation vector. The equation of prediction and
update are as follows:

Prediction-equation1:

Xk
′ = F ∗Xk−1 (25)

Prediction-equation2:

Pk
′ = F ·Pk−1·FT +Q (26)

Kalman-gain-equation:

Kk
′ = Pk

′·HT ·(H·Pk
′·HT +R)−1 (27)

Update-equation1:

Xk = Xk
′ +Kk·(Zk −H·Xk

′) (28)

Update-equation2:

Pk = Pk
′ −Kk·H·Pk

′ (29)

where F is state transition matrix , H is measurement matrix,
Q represents process noise covariance matrix and measurement
noise covariance matrix is R.

The main steps are as follows:

• Whether the background color is similar to the object, if it
is, we do background subtraction first.

• Initialize a search window.

• Search the target using CamShift algorithm in the estimated
range to locate the possible position of target.

• Estimate the appearing position of target in the next moment
by Kalman filter.

• If the diatance of Camshift predicted center and kalmans
center is in the threshold, the search is seen as a success,
and the observed value of Kalman filter will be regarded as
the next window position.

5. EXPERIMENTAL RESULTS

In this section, the proposed algorithm is tested for the accuracy
of traffic sign detection using the video log images and 3D point
cloud of the MMS. The data is captured on May 19th 2013 in
Ningbo, China and provided by Leador Spatial company. All the
detection and tracking methods are programmed with VS2010
and are executed on a PC of 2.3GHz Pentium 4 with 6GB RAM
with the Windows 64 bits operating system. The size of video
image is 2448 × 2048.

The experiments demonstrated the detection and tracking of the
traffic sign. For most traffic sign which only appears in few im-
ages, we project our 3D point cloud onto the first image involv-
ing the traffic sign. After projecting the fitted planes onto the
image, regions of interest of traffic signs are localized in the im-
age. Then we use random forest to detect our traffic sign, the
algorithm obtained a higher accuracy than traditional methods,
which improves our detection efficiency quickly. Then we ini-
tialize the search window for tracking according to the ROIs. The
background of the video log image is similar to what we need to
track, thus the search window we set is larger than ROIs but share
the same center. By using Camshift and Kalman filter, our track-
ing outputs are shown as Figure 4. In most cases, we can track
the object successfully. One reason is the well-fused 3D point
cloud with the video log image, through which we can narrow the
search region in our images and eliminate the noise interference
effectively. Besides, the RANSAC algorithm helps us screening
out some noise points by fitting a cluster of point into a plane of a
limited tolerance. If we track the object on a consecutive images
successfully, for instance, in the first four images, we can tack the
object in three or more images, a conclusion can be made that we
definitely detect a traffic sign.

However, when traffic signs are mixed up together with trees, our
pre-processing sometimes may fail to localize the traffic sign, as
shown in Figure.5. The traffic sign sits in the bush, our RANSAC
fitting of planes can not achieve high accuracy with the distur-
bance of those points of trees, as shown in Figure.6. The con-
trast between our traffic sign and background becomes low in
Figure.7, where we can’t predict the right position and track the
sign timely, as shown in Figure.8.

Figure 5: The traffic sign sits in the bush.

Figure 6: The pre-processing result.
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Projection image.

Search window.

Tracking result.

Tracking result.

Tracking result.

Figure 4: Final results of our algorithm. Our method is able to predict and track the possible position according to geometric constraint
of the imaging geometry and GPS movement.
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Figure 7: The background of the video log image is similar to
what we need to track.

Figure 8: The predicted position of the traffic sign is deviated
from the right position.

6. CONCLUSION AND RECOMMENDATIONS

Mobile Mapping System (MMS) collects the Lidar points by the
laser profiler, as well as the video log images in a scenario with
the digital camera. However, most literature focuses on the textu-
ral/color details of video log images and the 3D geometric shape
of point cloud separately. In this paper, 3D Lidar points are in-
corporated into 2D video log images to enhance the detection of
traffic sign both physically and visually. By filtering the noise
point through setting distance and elevation thresholds, the rough
area of traffic sign can be obtained. Then we project the candi-
date planes fitted by RANSAC onto the image , regions of Inter-
est (ROIs) of traffic signs are localized and sent to random forest
classifier. Candidate ROIs will be tracked using the Camshift and
Kalman filter among consecutive video log images. The proposed
algorithm is tested on video logs with the size of 2448 × 2048.
Experimental results show the proposed algorithm can not only
detect traffic signs but also track the next possible occurrence of
candidate ROIs. It is promising for automatic identification of
traffic signs.

Although the proposed algorithm demonstrates its capability for
traffic sign detection, we recommend that:

• Reduce interference of billboards using the rule, which is lo-
cated regularly alongside the pavement and larger than most
road signs.

• Increase the exposure in areas with poor weather conditions,
which will refine the candidate ROIs in tracking the similar
color.

• Innovative formulation and application of such process as
Camshift and Kalman filter.
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